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Abstract: In this communication, we aim to summarize the role of estrogen receptor beta (ERβ) in
lipid metabolism in the main metabolic organs with a special focus on sex differences. The action of
ERβ is tissue-specific and acts in a sex-dependent manner, emphasizing the necessity of developing
sex- and tissue-selective targeting drugs in the future.
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1. Introduction

There is substantial evidence that females and males differ in their basic metabolic physiology
and in their susceptibility to developing obesity-associated metabolic dysfunctions including insulin
resistance, low-grade inflammation and fatty liver diseases. Interestingly, the response to excessive food
intake is sex-dependent, e.g., obesity is more prevalent in women than in men, as type 2 diabetes (T2D)
is more likely to be associated with obesity in men or postmenopausal women rather than in young,
fertile women [1]. These changes over the lifespan or as a function of lifestyle make these sex differences
even more difficult to treat. A better understanding of the sex differences in body composition would
facilitate the anticipation of these changes and prevent the development of associated metabolic
complications. Importantly, these differences in metabolic adaptations to disease infer that one sex has
a specific attribute that protects them from disease. If that trait can be modulated, either directly or by
modifying its downstream pathways, then disease development and/or progression may be tempered.

17β-Estradiol (estrogen, E2) binds to both of the estrogen receptors (ERα and ERβ) as well as the
membrane-bound G-protein-coupled ER (GPER1). ERα and ERβ are the main receptors that mediate
the genomic action of E2; while GPER1 is best known for its ability to regulate cell signaling, it may
also synchronize gene expression [2]. E2 treatment reduces adiposity in both sexes and improves
metabolic adaptation to obesity through the activation of both ERs [3,4]. However, it also mediates cell
proliferation through activation of ERα present in target tissues and can thus contribute to malignant
growth in these tissues. These detrimental effects render the use of E2- and/or ERα-selective agonists
as a treatment for obesity difficult, whereas ERβ is thought to counteract these activities [5]. Recently,
selective activation of ERβ has demonstrated beneficial outcomes on metabolic control in obesity [6–9],
probably through feedback mechanisms, since ERβ is expressed at very low levels in metabolic tissues
including the liver. In this review, we aim to summarize the current understanding of the role of ERβ
in the regulation of lipid homeostasis, with a special focus on sex differences in obesity and associated
metabolic dysfunctions.
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2. ERα Versus ERβ, Laboratory Mouse and Ligands in Metabolic Studies

It has been demonstrated that estrogens are involved in the regulation of metabolic processes by
investigating the actions of ERα and ERβ using appropriate models lacking either ERα (αERKO) [10]
or ERβ (βERKO) [11,12]. Aromatase knockout (ArKO) [13] or ovariectomized (OVX) [14] mice are
also models that are frequently used in research on estrogen receptor signaling due to loss of,
or reduced, circulating estrogens. Moreover, the activation of ERs by synthetic ligands/agonists is
another approach used in endocrinology studies in both males and females that may better reflect
human physiology. A large number of ERβ-selective ligands including DPN [11], WAY200070 [15],
β-LGNDs [8,12], LY3201 [10] and DIP [6,9] have been used to further investigate the role of ERβ in
metabolic homeostasis.

3. ERβ in Visceral and Subcutaneous Adipose Tissue

It is well established that sex hormones are a key driving factor behind the sex differences
in the regulation of adiposity and fat distribution; however, the mechanism is still unclear.
Men and postmenopausal women, in general, have less total body fat and a higher accumulation of
visceral adipose tissue (VAT) characterized as the “male, apple shape fat distribution phenotype”.
Premenopausal women accumulate more gluteal and subcutaneous adipose tissue (SAT) characterized
as the “female, pear shape fat distribution phenotype” [16–20]. The decreased circulating hormones
in postmenopausal women may explain the increased visceral obesity that is highly correlated with
metabolic complications. Interestingly, hormone replacement therapy (HRT) has been considered as
a method for reversing this phenomenon [21]. Nevertheless, the timing of HRT initiation has been
shown to play a crucial role in the beneficial effect of therapy [22].

Both human and rodent adipose tissue express ERα and ERβ [14,23–25]. In humans, both ERs exist
in SAT and VAT in both genders with no gender differences in the expression level of Erα, while Erβ is
expressed to a greater degree in women in both SAT and VAT compared to men but is certainly lower
than Erα [24]. Erα and Erβ gene expression is increased in adipocytes in SAT in premenopausal women
treated with E2 in vitro. However, in adipocytes from men, only the Erα subtype was increased by
E2 in both fat pads [24]. In contrast, Anwar et al. showed that the protein level of ERα is decreased
in postmenopausal female SAT cells treated with E2 [25]. Interestingly, in postmenopausal women,
Erα expression level is unchanged in SAT, as opposed to Erβ that shows increased expression compared
to premenopausal women [26]. The differences in the expression levels of the two subtypes creates an
unstable ratio of ERα/ERβ, which could account for the different biological activity of estrogens in
men and women. A correlation between obesity and the ratio of ERα and ERβ in SAT and VAT was
found [27]. It is possible that the differences in expression levels of ERα and ERβ in the various fat
pads could explain the shift of SAT and VAT between the pre- and postmenopausal women states.

Recent studies using female and male animal models have highlighted the key role of ERβ
in the regulation of white adipose tissue (WAT) between genders. Female and male mice lacking
ERβ (ERβKO) increased their body weight and fat mass [11,12]. A recent study performed on
ovariectomized versus intact 1-year-old mice claimed that ERβ, but not ERα, may be required to
bring about beneficial metabolic outcomes after ovariectomy [28]. Administration of ERβ-selective
ligand (β-LGND2) provokes a reduction in body weight and a significant loss of total fat mass
in wild-type (WT) mice on a high-fat diet (HFD), without altering food consumption, but not in
ERβKO male mice [12]. HFD male mice treated with the ERβ-selective ligand (β-LGND1/β-LGND2)
exhibited decreased weight gain and total fat accumulation in WAT. In the same study, ovariectomized
female mice increased their fat mass, and the administration of β-LGND2 reversed this effect [8].
Conversely, in vivo magnetic resonance imaging measurement in the same animals, before and after
administration of the drug, revealed that ERβ-selective ligand (DIP) administration reduced total
body fat accumulation in HFD female young mice by reducing de novo lipogenesis [6], but this was
not observed in HFD male mice [9]. Most interestingly, DIP administration in HFD males caused
a remodeling of the fat towards a feminized distribution (i.e., increased SAT and unchanged VAT) [9].
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In a recent study, we showed that sex-specific fatty acid and triglyceride (TG) pathways exist in
both adipose depot VAT and SAT in ob/ob mouse fed a control diet [20], with males synthetizing
more C18:2n-6 trans fatty acid associated with inflammation, and more of the long-chain TGs in VAT
compared to females. These differences could be the consequence of the different genetic basis of fat
distribution between the sexes [29]. In addition, female mice are more responsive to recruitment of
brown adipocytes in VAT than male mice, probably due to the higher level of estrogen-dependent
sympathetic innervation [30]. One possible mechanism that could be behind the actions of ERβ in
lipid homeostasis is the cross-talk between ERβ and PPARγ, where ERβ inhibits the ligand-mediated
PPARγ activity that leads to reduced adipogenesis [8,11]. Another possibility is the cross-talk with
hepatic stellate cells, where ERβ but not ERα is expressed [31], as has been suggested by several
studies [32–34].

4. ERβ Function in Hepatic Lipid Metabolism

The role of ERα in liver metabolism homeostasis is well established. Studies using either ERαKO
mice of both sexes or ERα-specific ligand show that the presence of ERα has beneficial effects on liver
metabolism, glucose tolerance and hepatic insulin sensitivity [35,36]. However, the adverse effect of
ERα activation on uterus growth and breast cancer development has limited the use of ERα agonist
as a treatment for liver metabolic disorders. The role of ERβ in liver metabolism including insulin
sensitivity is less clear, especially as ERβ is minimally expressed in hepatocytes [37,38]. Nevertheless,
activation of ERβ by selective agonists has anti-obesogenic effects, prevents hepatic lipid accumulation
and reduces lipogenic gene expression levels [8,39]. Conversely, ERβKO mice showed decreased TG
accumulation and improved whole-body insulin sensitivity and glucose tolerance [11], while ERβ
activation improved insulin sensitivity in obese female and male mice [6,9,12,40]. In recent publications,
ERβ activation by the selective synthetic ligand DIP resulted in a reduction of lipid accumulation in the
liver in HFD female mice only, by means of both a reduction in de novo lipogenesis and increased lipid
breakdown, demonstrated by a deuterium labelling method. Interestingly, DIP treatment in HFD-fed
mice provokes a remodeling of triglyceride composition with a reduction in the fraction of saturated
lipids and an increase in the fraction of unsaturated lipids in both genders, as has been demonstrated
in vivo by magnetic resonance spectroscopy, using the animal as its own control [6,9]. Importantly,
both ERβ and ERα are key regulators of the phospholipid and fatty acid pathways in female and
male ob/ob mouse liver, by controlling the transcriptional activity of key genes in these pathways [20].
Male livers synthesized more long-chain triglycerides and phospholipids containing lipotoxic fatty
acids than did female livers, which may contribute to the sexual dimorphism in the metabolic adaptation
to obesity towards more metaflammation in males than in females [20]. Controversially, in some studies
ERβ failed to show positive regulation of insulin-mediated glucose disposal and insulin signaling in
both sexes [35]. Indeed, liver cells express very little the ERβ subtype compared to ERα; therefore,
the effects observed by the activation of ERβ by a ligand might result from a feedback loop or crosstalk
from other tissues. Hepatic stellate cells contain ERβ but not ERα, and it has been suggested that the
ERβ-selective agonist DPN ameliorates liver cirrhosis in rat through the inhibition of hepatic stellate
cell proliferation [41]. Taken together, these data suggest that ERβ would represent a promising target
as an anti-obesogenic, anti-fatty liver disease treatment; however, more studies should be conducted in
order to clarify the role of ERβ on liver homeostasis.

5. ERβ in Brown and Beige Adipose Tissue

The ability of brown adipose tissue (BAT) to oxidize lipids and generate heat through the
mitochondrial uncoupling protein (UCP1) is unique [12] and has led to interest in targeting BAT
to combat obesity. Several studies have observed differences in BAT activity between the sexes,
with females having higher metabolically active BAT compared to males [42,43]. Both ERs are expressed
in human fetal BAT, suggesting a key role for the two subtypes in BAT development, even though ERα is
the predominant one. However, ERβ was only present in mature brown adipocytes, which supports the
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theory that the differentiation process to brown adipocytes probably occurs through ERα [44]. BAT from
female mice is enriched in arachidonic and stearic acid phospholipid and depleted in triglycerides
compared to males. It has been suggested that these sex specificities will influence mitochondrial
membranes and other organelles, which will in turn affect tissue function [45]. Cold exposure and
high-fat diet intake induce browning of adipose tissue [12,46]. In old obese WT and ERαKO female
mice, but not young female and male WT mice, the administration of ERβ ligand (LY3201) caused
browning of SAT through the increased expression of UCP1. Additionally, it is interesting to note that
males had lower expression of ERβ in SAT compared to females, which could explain the absence of
the effect of the treatment in males [10]. In female mice, ERβ activation by DIP enhances BAT activity
by inducing the expression of UCP1 [6]. Conversely, in males, the accumulation of larger lipid droplets
in BAT was observed after DIP treatment, together with the generation of heat measured in vivo by
comprehensive laboratory animal monitoring system (CLAMS), that could result from browning sites
in the VAT [9]. In another study, ERβ-selective agonist (β-LGND1/2) given to HFD male mice prevented
body weight gain and fat storage by inducing browning of white adipose tissue [8,12]. However,
ERβ was shown to be more potent at suppressing adipose-derived stem cell brown adipose tissue
differentiation, from male mice, through decreased expression of Ucp1, Pgc1α and Pparγ genes [47].
Therefore, inducing browning in white adipose tissue through ERβ activation could be of clinical
relevance to tackle obesity.

6. Conclusions

There is no controversy about the fact that estrogens have important physiological actions in
the regulation of lipid homeostasis in both females and males. The expression of both ERβ and
ERα fluctuates in various metabolic tissues, which complicates our current understanding of their
distinct role in the regulation of energy and lipid homeostasis. More recently, extensive research has
demonstrated beneficial metabolic outcomes of ERβ activation and has defined a central role for
ERβ in metabolic control. However, further research is needed to elucidate the role of ERβ in lipid
homeostasis. Targeting ERβ in order to tackle metabolic disorders associated with obesity without
inducing the side effects of ERα activation could be a potential solution. However, numerous studies
have demonstrated that ERβ action is tissue-specific and acts in a sex-dependent manner, highlighting
the need to further develop sex- and tissue-selective targeting drugs in the future.
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