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Detrended Fluctuation Analysis (DFA) measures the complexity of a glucose time series obtained by means of a Continuous Glucose
Monitoring System (CGMS) and has proven to be a sensitive marker of glucoregulatory dysfunction. Furthermore, some authors
have observed a crossover point in the DFA, signalling a change of dynamics, arguably dependent on the beta-insular function. We
investigate whether the characteristics of this crossover point have any influence on the risk of developing type 2 diabetes mellitus
(T2DM). To this end we recruited 206 patients at increased risk of T2DM (because of obesity, essential hypertension, or a first-degree
relative with T2DM). A CGMS time series was obtained, from which the DFA and the crossover point were calculated. Patients
were then followed up every 6 months for a mean of 17.5 months, controlling for the appearance of T2DM diagnostic criteria. The
time to crossover point was a significant predictor risk of developing T2DM, even after adjusting for other variables. The angle of
the crossover was not predictive by itself but became significantly protective when the model also considered the crossover point.

In summary, both a delay and a blunting of the crossover point predict the development of T2DM.

1. Introduction

Glycaemic variability is considered a risk factor for dia-
betic complications, over and above raw glycaemic levels
(as measured through fasting blood glucose or glycosylated
haemoglobin) [1-3]. However, there is still controversy about
which metric should be used to assess these dynamic aspects
[4]. Conventional statistics (standard deviation, coefficient
of variability) have the pitfall of considering every measure
as independent, thus overlooking an essential part of the
time series: its sequentiality. Mean Amplitude of Glycaemic
Excursions (MAGE) takes sequentiality into account but
fixes an arbitrary threshold of “significant” excursions, thus
overlooking the fine-grain regulation.

Complexity analysis of glucose time series, measured
by means of Detrended Fluctuation Analysis (DFA), has
emerged as a useful alternative and is increasingly being used
as a standard to measure glucose dynamics, especially in

diabetic patients [5-15]. In all of these papers, there is a con-
sistent correlation between loss of complexity (i.e., increased
DFA) and glucoregulatory dysfunction.

Ogata et al. [9] have also described a crossover point
in DFA, located approximately in the 2-hour time window.
Furthermore, they observed a decrease in long-range neg-
ative correlations (i.e., decreased complexity in large time
windows) in patients with diabetes [11]. Although DFA has
mainly been used in patients with diabetes, several papers
suggest that there is a progressive fall in complexity (i.e.,
increase in DFA) as a patient walks his way from health,
through the prediabetes states to full-blown type 2 diabetes
mellitus (T2DM) [6, 9-12, 15-17].

The present study intends to analyse the characteristics
of the DFA crossover point in a population with high risk
of becoming diabetic and to find out if these character-
istics may have any influence on the risk of developing
T2DM.
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2. Methods

2.1. Patients. A sample of 262 patients from the Internal
Medicine Outpatient Clinic and the Vascular Risk Unit of
the University Hospital of Mostoles were selected based on
an assumed increased risk of developing T2DM. The main
characteristics of this sample have been published previously
[12]. The inclusion criteria were an HbAlc > 5% and <6.5%
and any of the following:

(i) essential hypertension;
(ii) BMI > 30 Kg/m?;
(iii) a first-degree relative with a diagnosis of T2DM.

Patients were excluded if they had a diagnosis of DM or were
on drugs that could interfere with glucose regulation (e.g.,
glucocorticoids).

After an interview, physical exam, and routine biochem-
ical tests, a 3-day glucometry was performed by means
of a Continuous Glucose Monitoring System device (iPro,
Medtronic MiniMed, Northridge, CA, USA). The glucometry
was obtained in an ambulatory setting, while the patient
followed his normal life, with no special dietary restrictions.
The patient was thereafter followed up every 6 months with a
clinical visit and routine biochemical tests. The present study
is an interim analysis on the project’s third year.

The main outcome was a diagnosis of T2DM (basal gly-
caemia > 7.0 mmol/L, glycosylated haemoglobin (HbAlc) >
6.5%, or starting on antidiabetic drugs).

2.2. DFA and Crossover. From the glucometry obtained at
admission, a clean, 24-hour-long time series was selected
for each patient. Whenever possible, the selected 24-hour
sequence started at 08.00 AM the day after the device
insertion, to avoid the stressful hours in the hospital. If there
were missing values, these were obtained by interpolation
as long as the missing string was <3 consecutive values. If
there were three or more consecutive missing values, another
24-hour period was selected. If no adequate 24-hour period
was found, the time series was considered unsuitable and
discarded.

Each selected series was thus composed of 288 consecu-
tive measures of interstitial glucose, sampled every 5'.

Each time series was submitted to Detrended Fluctuation
Analysis, without previous integration. A full description of
DFA may be consulted in [18]. A brief description can be
found in [12], and a basic introductory video is available at
http://www.complexity-at-the-bedside.org/complexity/tuto-
rials/.

In essence, DFA estimates the degree of long-range
correlations within a signal, analysing how the time series and
its linear regression diverge as the “time window” considered
increases (Figure 1). Metaphorically, one could consider the
linear regression of each time window as a “map” of a certain
“territory.” As the time windows increase, the regressions
fitness deteriorates, and thus the “map-to-territory gap”
increases. The rate at which this gap increases reflects how
the informational content of the time series is distributed.
A high-complexity time series will have comparatively more
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information encoded in the small windows. Conversely, low-
complexity time series will have more information encoded
in the large time windows, and therefore the “map-to-
territory gap” will be increasing at a steady pace well into
larger time windows.

Specifically, we submitted the time series (without pre-
treatment by integration) to detrending with a windowing
sequence of 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144,
and 288 points (corresponding to time windows of 15', 20’,
30', 40, 45', 60’, 80", 90', 120, 160", 180', 240, 360', 480/,
720, and 1440").

For each time window, a “map-to-territory gap” was
calculated:

N
Fn=1<Y [y -3, B m
k=1

Alog(Fn) ~ log(time window) was drawn for each glucome-
try, with 16 points (the aforementioned time windows).

Next, a set of pairs of linear regressions was built for
several combinations of points (i.e., points 1-4 for the first
limb and 5-16 for the second, then 1-5 and 6-16, then 1-6 and
7-16, etc., until 1-11 and 12-16) (Figure 2).

A combined weighted R* was obtained for each pair
of regression lines, and the best-fit pair was selected as
the best representation of the time series. The abscissa of
the intersection of both limbs, expressed in minutes, was
considered the crossover point, and the angle was from the
difference between the slopes of the two limbs. The slope of
the first and second limb was assumed to be the DFA for the
short and long time windows, respectively.

2.3. Statistical Analysis. Comparison between admitted and
excluded patients was performed by means of t-test (for
quantitative variables) or Chi-square test (for qualitative
variables).

The effect of the various variables was analysed by
means of a multivariate Cox proportional hazard survival
analysis. The statistical analysis was performed in R (R
(http://www.r-project.org/)). Significance was set at two-
tailed p < 0.05, although p < 0.10 were also displayed.

3. Results

Of the 262 patients initially included, 40 were finally excluded
because we were not able to obtain a suitable glucometry.
15 patients had no follow-up visits, and one patient was
excluded because she started on high-dose glucocorticoids
due to a facial palsy. Except for a slightly lower diastolic
blood pressure (73.9 mmHg versus 78.1mmHg, p = 0.01),
there were no major differences between admitted and
excluded patients regarding anthropometric, physical exam
or analytical parameters. Thus, exclusion did not seem to
carry any bias.

The 206 patients finally included were followed up for a
mean of 18 months (IQR 15) (Table 1). There were 18 events
(T2DM new diagnoses), for an incidence of 58.2 cases/1000
patients-year.
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FIGURE 1: DFA analyses how the time series (the “territory”) and its representation through linear regression (the “map”) diverge as the time
window considered increases. (a), (b), and (c) display this “territory versus map gap” (grey area) with three different time windows. (a) One-
hour time window (12 points in each regression line). (b) Six-hour time window (36 points in each regression line). (c) Twenty-four-hour
time window (288 points in the regression line). The complete windowing sequence used was 3, 4, 6, 8, 9,12, 16, 18, 24, 32, 36, 48, 72, 96, 144,
and 288 points (corresponding to time windows of 15, 20', 30", 40", 45", 60’, 80" 90', 120", 160, 180", 240’, 360, 480', 720', and 1440"). (d)
plots the log(“map-to-territory gap”) versus log(time window). The slope of a regression line through this set of points (not shown) would be

the DFA of the time series (not considering the crossover).

The median to the crossover point was 114 min (IQR
64.7 min), and the median angle between the first limb (small
time windows, before the crossover point) and the second
limb (large time windows) was 0.64 radians (IQR 0.17 rad).

In a Cox proportional hazard ratio model, the crossover
point was a significant risk factor for the development of
T2DM ( = 0.015, p < 0.001). This implied a hazard rate
of 1.53 for every 30-minute delay in crossover. These results
did not change significantly when adjusting for other relevant
variables, whether anthropometric (gender, age, body mass
index, and waist circumference), clinical (blood pressure and
first-degree relatives with diabetes), or analytical (HbAlc,
insulin, mean glucose, glucose standard deviation, MAGE,

HOMA, or global DFA). When adjusting for basal glycaemia,
the effect of crossover did not attain significance, although it
persisted as a trend (p = 0.08).

The crossover angle had no significant influence on the
development of T2DM when considered alone (f = -2.43,
p = 0.15) but became significantly protective when the
model considered also the crossover point (f = —4.172, p =
0.005). Similarly, neither the DFA of the first nor the second
limb (before and after the crossover) alone had significant
influence on the hazard rate of developing T2DM (dfal: 8 =
~0.475, p = 0.735; dfa2: § = 1.452, p = 0.279), but they both
became significant when adjusting for the crossover point
(dfal: B = 4.876, p = 0.018; dfa2: 8 = 4.050, p < 0.001).
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TABLE 1: Patients' characteristics.

History and physical exam

Age (years) (median, IQR) 61 (13)
Gender (F/M) 101/105
Smoking habit (%) 23 (11%)
Relatives with T2DM (%) 55 (28%)
Systolic BP (mmHg) (median, IQR) 133.5 (19.25)
Diastolic BP (mmHg) (mean, SD) 78.2 (9.0)
BMI (Kg/m?) (median, IQR) 30 (6)
Abdominal perimeter (cm) (mean, SD)

Men 104.5 (10.1)

Women 99.2 (12.1)

Complementary tests

Basal glycaemia (mmol/L) (mean, SD) 5.56 (0.62)
HbAlc (%) (median, IQR) 5.76 (0.3)
IFG (%) 105 (51%)
HbAIlc > 38.3 mmol/mol (%) 129 (66%)
HDL-cholesterol (median, IQR)

Men 135 (0.35)

Women 1.50 (0.32)
Triglycerides (mmol/L) (median, IQR) 0.125 (0.71)
EPI-GFR (mL/min/1.73 m*) (mean, SD) 93.0 (9.5)
Insulin (mlU/L) (median, IQR) 11.7 (9.5)
HOMA-index (median, IQR) 3.06 (2.27)
Albuminuria (mg/gr creatinine) (median, IQR) 2.78 (6.15)
Number of ATP-III MS defining criteria (median, IQR) 2(1)
Number of patients complying with the ATP-III MS definition (>3 criteria) 100 (49%)

Glucometry
Median glucose of the time series (median, IRQ) 5.44 (0.89)
Median SD of the time series (median, IRQ) 0.81(0.41)
CV (%) glucose time series (median, IQR) 14.2 (6.7)
MAGE (mg/dL) (median, IQR) 36.5(22.9)
DFA (whole time series) (mean, SD) 0.90 (0.09)
Crossover

Time to crossover (min) (mean, IQR) 114.0 (64.7)
Crossover angle (rad) (mean, IQR) 0.64 (0.17)
DFA first limb (mean, IQR) 1.53 (0.23)
DFA second limb (mean, IQR) 0.36 (0.24)

T2DM: type 2 diabetes mellitus; BP: blood pressure; BMI: body mass index; IFG: impaired fasting glucose (basal glucose > 100 mg/dL); EPI-GFR: estimated
glomerular filtration rate (EPI-creatinine equation); HOMA: homeostasis model assessment; MS: metabolic syndrome; CV: coefficient variation; MAGE: mean

average glucose excursions; DFA: Detrended Fluctuation Analysis.

Mean and standard deviation for normally distributed variables and median and interquartile range for nonnormally distributed variables.

4. Discussion

DFA analyses how the correlation between successive points
evolve as the time-window considered increases. Following
the conventional homeostatic paradigm, a healthy physio-
logical system should promptly detect trends and unleash
mechanisms to correct them. Therefore, it is reasonable to
expect a deterioration in the fit of the regression line as the
time windows increase. Furthermore, one would expect that
as the physiological system becomes old or dysfunctional, its
response will become “sluggish,” and the decorrelation will
be slower. This loss of sharpness (i.e., loss of complexity)
is displayed as an increase in DFA. Indeed, there is ample

evidence relating diabetes mellitus with an increase in glucose
time series’ DFA [6, 7, 9-12, 16].

An important advantage of DFA with respect to other
conventional dynamic metrics (i.e., coefficient of variability
or MAGE) is that it considers the time series as a whole, not
as a set of independent measurements (as with the coefficient
of variability) nor does it make any assumptions on the
“significance” of each glycaemic excursion (as with MAGE).

Glucoregulation is a rather asymmetric system: while
there are at least four main counterregulatory hormonal
systems in charge of fighting hypoglycaemia (glucagon,
alpha-sympathomimetics, glucocorticoids, and growth
hormone), there is only one strictly antihyperglycaemic
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FIGURE 2: To calculate the crossover point, a set of pairs of linear
regression lines are built with several combinations of points: points
1-4 for the first limb and 5:16 for the second, then 1:5 and 6:16,
then 1: 6 and 1:16, and so on until 1:11 and 12:16. A combined R*
is calculated for each pair of regression lines, and the best-fit pair
is assumed to be the best representation of the time series. In this
figure, the shade of the regression lines represents the goodness of
fit (darker grey: better fit). The best fit is represented by a solid line.
The abscissa of the intersection between both limbs is the crossover
point (represented as log(number of measurements per window)).

To obtain the time (in minutes) for a value x, crossover (minutes) =
(5-x)
e,

hormone, namely, insulin. This has obvious evolutionary jus-
tifications (short-term hypoglycaemia is far more dangerous
than hyperglycaemia) but may cause significant differences in
the counterregulatory dynamics. While the hyperglycaemic
drift may be a swift, multisystem driven reaction, the
antihyperglycaemic push is mainly a one-man job and may
therefore have more abrupt characteristics. Arguably this may
explain the dynamic change underlying the crossover point
described by Ogata et al. [9]. If this were the case, it would
be reasonable to expect a progressive delay (and fading) of
this dynamic change as the beta-function deteriorates, long
before its failure allows for the diagnosis of diabetes.

Our findings of a delay in the crossover point and a
blunting of the angle between both limbs as prognostic factors
for the development of T2DM in patients at increased risk are
congruent with this hypothesis. Arguably, this may represent
both a delay and a dampening of the insulin kick-in and
may reveal an early dysfunction of glucoregulation. This
should be further confirmed by means of conventional beta-
function examination. However, our model has significant
advantages over other experimental evaluations of beta-
function: it may be applied in real-life situations rather than
in the laboratory, it is much simpler, and it displays the
functioning of the glucoregulatory system as a whole, not as
the specific response to a certain glycaemic load or insulin
infusion.

We may be starting to have drugs available that can delay
or prevent the evolution to T2DM in subjects at risk [19-23]. It
will be crucial to identify those patients who would eventually
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FIGURE 3: Glycaemia (solid line, left axis) and integrated glycaemia
(dashed line, right axis). Generally, before proceeding to the
detrending process mentioned in Figure 1, most authors preprocess
the time series through integration: y(k) = Zle(Gi — Gppean)> Where
y(k) is the integrated value, G; is each individual measurement, and
Gipean 18 the mean of the series. The resulting integrated time series
complies with the conventional random-walk model and thus is
easier to interpret. However, this standardization comes at the price
of a significant smoothing of the time-series profile, thus arguably
loosing significant information.

walk all their way to diabetes in order to better target thera-
peutic interventions. Classic variables (basal glycaemia, oral
glucose tolerance test, and HbAlc) are probably insufficient,
and it is not through fine-tuning thresholds that this problem
will be solved. Arguably, glucodynamic techniques studying
how glucose levels fluctuate in time may afford a fresh, new
insight into this problem.

It should be mentioned that, contrary to most studies
with DFA in glycaemia, we have not preprocessed the time
series through integration before performing the sliding-
windows fluctuation analysis. This arguably takes us out of
the conventional random-walk model and the standard 1.5
threshold of “brown” noise (integrated random series) DFA
cannot be applied. Our model is therefore only a tool to
compare different time series (within similar series length
and time windows). However, integrating the time series
erases important information (e.g., Figure 3 displays the
same time series, with and without pretreatment through
integration), and we believe that preserving this information
is worth the loss of standardization caused by omitting the
conversion to a random-walk model. DFA measures the
complexity of a time series by evaluating how the “map-
territory gap” enlarges (i.e., how the linear regression and
the curve diverge) as the time window increases and thus
provides a useful measure of the series’ entropy even omitting
the random-walk model.

We have run the same analysis before treating the time
series through integration, and although the same tendencies
persist, the crossover effects are much less obvious and often
do not reach statistical significance.

4.1. Study Limitations. Oral glucose tolerance tests were not
performed, and thus neither Impaired Glucose Tolerance nor
insulin response to OGTT could be analysed.



The notion that a delay in crossover represents a damp-
ening of beta-function is only a hypothesis and needs confir-
mation through conventional experimental tests.

5. Conclusions

The characteristics of the crossover phenomenon have pre-
dictive value for the development of T2DM in patients at
risk and may provide a sensitive and easy way to explore the
earliest signs of glucoregulatory failure.
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