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Introduction
DNA and RNA can fold onto themselves to form secondary 
structures. Among these structures, G-quadruplexes (G4s) 
are stable non-canonical structures, made with Hoogsten 
pairings instead of Watson-Crick pairings. In G4s, the 
Hoogsten pairings occurs between 4 guanines to form a 
G-quartet. These G-quartets can stack on top of each other 
to create a G4 structure.1,2

Because they occur in both DNA and RNA,3 G4 structures 
impact many biological processes. Indeed, DNA G4s are 
known to influence telomere homeostasis, epigenetics and 
transcription.4-6 RNA G4s (rG4s) have been demonstrated  
to affect several post-transcriptional regulation mechanisms, 
such as those in messenger RNA (mRNA) with its impact  
on splicing, polyadenylation, non-coding RNA like miRNA 
regulation, translation and RNA transport.7-12 For more 

information about G4s and rG4s functions, please refer to 
Varshney et al.’s review.13

G4 structures are involved in biological mechanisms associ-
ated with several pathologies, such as cancer and neurodegen-
erative diseases.13 For instance, a G4 can fold at the c-MYC 
gene promoter.14 Usually, this G4 remains unfolded in cancer 
cells; however, when it adopts a folded state, it activates an 
apoptotic cascade. Recently, a team designed a peptide to target 
the c-MYC G4, increasing its clinical application.15 Further, a 
miRNA increases the production of β-amyloids via the inacti-
vation of SORL1 translation, which is a cause of Alzheimer’s 
disease.16 The binding of the miRNA toward its target can be 
prevented if the rG4 in the pre-miRNA remains folded.17 
Moreover, some G4s are associated with DNA methylation 
instability, leading to aging and cancer, which increases the 
potential utility of these structures in clinical studies.18
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All these discoveries stimulated G4s massive prediction  
and detection. Initially, G4s were predicted using a canonical 
motif G3+ N1-7G3+N1-7G3+N1-7G3+

19,20 (see Figure 1). These 
tools showed that G4 structures are widespread among the 
human genome, with a particular enrichment in telomere and 
gene promoters at the DNA level. Over the years, scientists 
have identified G4s that were not matching the initial motif, 
thus called non-canonical G4s. These G4s may consist of only 
two G-quartets, have loops longer than 7 nucleotides or have a 
bulge inside a G-tract.21-23 Consequently, the design of new 
prediction tools consider these non-canonical G4s.24,25 G4 
Hunter and cGcC are 2 tools that were developed using the 
GC skewness to assess the probability of G4 formation in a 
sequence, rather than relying on the motif.26,27 New generation 
prediction tools use machine learning with experimentally 
detected G4s or rG4s. These tools include G4RNA screener, 
DeepG4 and rG4detector.28-30

These computational tools are employed to identify pre-
dicted G4s (pG4s) within the entire genomes and transcrip-
tomes of various species. G4s are enriched in telomeres and 
promoters within the human genome. Additionally, the predic-
tion also showed that rG4s are mainly enriched in 5′UTR of 
coding transcripts, with a modest enrichment in 3′UTR.31-33 
High-throughput G4s and rG4s detection corroborate most of 
these findings.34-36 Yet, neither the prediction nor the detection 
is perfect. Indeed, the former yields some false negatives (ie, 
failing to predict G4s in sequences that fold into G4s), while 
the latter yields some false positives (ie, detecting G4s when 
they should not). Moreover, it has been shown that G4s in 
transcriptomes seem to be globally unfolded.37 This study led 
to the hypothesis that rG4s have co-evolved with RNA-
binding proteins (RBPs), which assist rG4s to stay unfolded 
when they are not required. RNA G4s would be globally 
unfolded to avoid negative impact on cell transcriptomes and 
translations, since their DNA counterpart are known as 
genomic instability marker.38,39 This hypothesis aligns with the 
fact that bacteria inhabiting warm environments, where rG4s 

can freely fold and unfold, possess more rG4s than closely 
related bacteria in temperate environments.40

Considering all these elements, studying the evolution of 
rG4s and their potential coevolution with RNA binding sites 
of RBPs might help to understand their distributions and 
functions. Over the last years, several databases containing 
information on RNA G4 Binding Proteins (RG4BPs) have 
been made available. For example, G4IPDB contained over  
60 RG4BPs,41 but is not available anymore. More recently, 
QUADRatlas (https://rg4db.cibio.unitn.it/) was introduced, 
featuring data on rG4s overlaid with binding sites of RBPs, 
presenting information on over a thousand RG4BPs are pre-
sented.42 Among these RG4BPs, many are known to have a 
meaningful impact on biological processes. One well-known 
example is DHX36, an RBPs known to bind rG4s, and scien-
tists recently reviewed their interactions.43 This review delves 
into many functions of the interaction between the helicase 
DHX36 and its G4 targets, discussing their implications in 
diseases like cancer, neurodegenerative diseases, and the aging 
process. Many studies have started to focus on the interaction 
between RBPs and G4s, and new RG4BPs continually being 
discovered, such as G3BP1.44 This discovery was made by 
comparing rG4-seq data and eCLIP (enhanced version of  
the CrossLinking and ImmunoPrecipitation (CLIP) assay) 
data.36,45 All these studies show that the comparison between 
RBPs and G4s still have a lot to reveal.

Until now, and according to our knowledge, limited research 
has been dedicated to the evolution of G4s. These studies have 
highlighted their limited conservation.46-49 rG4s evolution 
within transcriptomes remains largely unexplored, apart from 
looking for the conservation at specific rG4s. For instance, a 
conserved rG4 within ribosomal RNA in mammals has been 
reported.50 The complexity of studying the evolution of G4s 
and rG4s arises from the challenges of working with low- 
quality sequence alignments. However, their distribution has 
been examined across various phyla, including mammals, 
vertebrate, yeast, eukaryotes, bacteria and archaea).46,51-54  

Figure 1. Schematic representation of a canonical G4 (A) and 3 non-canonical G4s: 2 G quartet G4 (B), long loop G4 (C) and bulge (D).

https://rg4db.cibio.unitn.it/
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The most advanced study on G4s’ evolution utilized ortholo-
gous genes alignment and suggested that G4s did not seem to 
be conserved.47 Nevertheless, recent advances in predicting 
G4s across entire genomes and transcriptomes have revealed 
their distribution in every living kingdom and in numerous 
species.46,51-54 Since G4s are widespread, a common origin 
could be possible. We expect to find at least some G4 families 
shared abroad a spectrum of species, indicating a common evo-
lutionary history.

In the present study, we aim to untie G4s evolution by first 
using the core principle of the Frees et al47 method on ortholo-
gous genes of eukaryotes, archaea, and bacteria. The principle 
of this method is to utilize gene alignments of closely related 
species in order to find related G4s. Secondly, given the appar-
ent importance of RBPs in rG4s folding, we will assess RBPs’ 
propensity and the locations of their binding sites in conjunc-
tion with predicted rG4s of different species to explore their 
interactions. This final step aims to confirm the possible coevo-
lution between rG4s and RBPs.

Material and Methods
pG4 family identif ication

Data were retrieved from the Ensembl Compara database.55 
This dataset comprises information on genes and transcripts, 
including their genomic fasta sequences, and details all homol-
ogy relationships (paralogs and orthologs) among coding 
genes from 60 species (with 25 eukaryotes, 12 archaea and 23 
bacteria, as outlined in Supplemental data Table 1). To ensure 
the quality of our data, we filtered homology relationships  
to avoid low sequence conservation among homologous  
genes. Consequently, only homologous genes with one-to-one 
ortholog relationships were retained (ie, genes that are derived 
from a speciation event and present one copy in each species). 
This stringent criterion enabled us to obtain good quality 
gene alignments from multiple distantly related species. 

Orthologous gene families were retrieved via the default 
homologies file from the pan genome Ensembl release 46. In 
total, we extracted 9094 genes belonging to 4763 gene families 
from the Ensembl Compara database.

Subsequently, these gene sequences were aligned using 
kAlign (https://www.ebi.ac.uk/Tools/msa/kalign/), a tool for 
semi-global multiple sequence alignments able to align dis-
tantly related sequences.56 Alignments were filtered based  
on their conservation identity and their ratio of nucleotides 
(number of nucleotides of a column in the alignment divided 
by the number of sequences), because some alignments mainly 
included aligned gaps due to the high phylogenetic distance 
between species. Thus, only alignments with an average nucle-
otide ration exceeding 55% were retained. Within these gene 
alignments, pG4s were positioned. The prediction of G4s was 
carried out using G4RNA screener (http://scottgroup.med.
usherbrooke.ca/G4RNA_screener/), as explained below. Then, 
overlapping pG4s in the alignment were detected to identify 
pG4 families, without taking in account alignment identity. 
The alignments were not manually adjusted to make the pG4s 
coincide. Figure 2A summarizes the main steps of the pG4 
family identification process. We used the G4RNA screener on 
the sequences of genes to predict G4s.28 Default parameters 
were used for the prediction: windows of 60 nucleotides, step of 
10 nucleotides between windows, threshold of 0.9, 0.5 and 4.5 
for respectively G4 hunter, G4NN and cGcC. The G4s predic-
tion process was previously reported in.33,54

Defining pG4 families as groups of overlapping pG4s 
within gene alignments also allowed to predict additional pG4s 
by homology, thereby increasing the number of pG4s in pG4 
families. In the alignments columns where some gene sequences 
had pG4s and some other did not, we used GGRS Mapper 
(https://bioinformatics.ramapo.edu/QGRS/index.php)57 and 
G4RNA screener to find pG4s in the genes with missing  
pG4s. The G4RNA screener scanning results in this step were 
like the initial one, but the prediction made using QGRS 

Figure 2. Schematic representation of the main methods. (A) The pG4 family retrial process comprises 3 steps: alignments of orthologous genes, 

positioning of pG4s, and then identification of pG4 families through detection of overlapping pG4s. The panel (B) demonstrates the gene sequences 

shuffling used to know how much G4s are predicted by chance. (C) Shows randomly relocated prG4s dataset, which consist in getting the total number of 

prG4s in a species, and randomly relocate them in transcripts of the species.

https://www.ebi.ac.uk/Tools/msa/kalign/
http://scottgroup.med.usherbrooke.ca/G4RNA_screener/
http://scottgroup.med.usherbrooke.ca/G4RNA_screener/
https://bioinformatics.ramapo.edu/QGRS/index.php
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Mapper with the default parameters predicted more G4s (see 
Supplemental data Table 1). In total, 36 548 G4s were pre-
dicted, with 14 569 identified by G4RNA screener and 22 019 
through homology. These computational steps were conducted 
on a cluster of computers provided by the Digital Research 
Alliance of Canada.

The pG4 family identification have been limited to DNA 
pG4s due to disparities in the transcript annotation across dif-
ferent species. This incongruity has made the interpretation 
RNA pG4 families identification too challenging at present.

pG4s trees computation and comparison  
with gene trees

pG4 family alignments were computed using Align AI pack-
age from the Biopython library, version 1.79.58 For each pG4 
family, we computed a phylogenetic tree with the PhyML 
option of SeaView (http://pbil.univ-lyon1.fr/software/seav-
iew3) and the default parameters based on pG4s sequences 
alignment.59 To facilitate visual comparisons between pG4 
family trees and their corresponding gene trees, the branches of 
pG4 family trees were swapped to closely resemble the gene 
trees. Next, we used a custom R script to generate mirror trees 
with the gene trees and pG4 family trees to help the visual 
comparison. Finally, the python library ete3 was employed to 
calculate the normalized Robinson-Foulds distance between 
pG4 family trees and gene trees.60,61 This metric enables the 
quantification of the distance between phylogenetic trees, with 
higher values indicating grater dissimilarity.

In our analysis, species are organized into species trees con-
structed using super tree methods to combine several species 
trees from studies.62-65 These trees were used as relational indi-
cators between the species. Within these trees, we display pG4s 
densities, which were computed by normalizing the number of 
pG4s in a species by the length of genes and expressed in kilo 
base pair (kbp). This normalization process helps mitigate 
biases of species/genes having longer genes sequences, which 
might have a higher likelihood of containing pG4s.

RBP data retrieval and process

To compare RBPs CLIP data and pG4s, RNA pG4s were 
used. This was achieved by considering transcript locations 
rather than gene locations. As mentioned previously, G4s  
are predicted using G4RNA screener, a tool primarily 
designed for RNA G4s prediction, although it is also capable 
of predicting DNA G4s.54 To prevent any confusion, pG4s 
refer to DNA pG4s, while prG4s denotes RNA pG4s. 
prG4 seconds data were compared with the RNA binding  
sites of RBPs obtained from CLIP data. We used the CLIP 
data from ENCORE (https://www.encodeproject.org) and 
POSTAR (http://111.198.139.65), which are derived from 
Cross-Linking Immuno Precipitation experiments focused on 
the binding of an RBP of interest to RNA45,66,67 (Supplemental 

data Tables 2 and 3). In essence, when RBPs are bound to tran-
scripts, a digestion was carried out to remove the unbound 
RNA. Then, immunoprecipitations were made on the RBPs. 
The recovered RNA sequences were then sequenced. This pro-
cedure led to mapping the RNA binding sites of RBPs onto 
the transcriptome. For Homo sapiens, eCLIP data were retrieved 
from the ENCORE database for K562 and HepG2 cell lines45 
(Supplemental data Table 4). All RBPs with eCLIP data were 
retrieved, and subsequently those lacking control or replicate 
files, or for which a tag was revoked, were excluded. This 
resulted in a subset of 150 RBPs (103 from HepG2 and 117 
from K562 with a common set of 70 to both cell lines). To 
extract peaks corresponding to binding sites on RNA from the 
mapped reads available in bam file, we employed MACS3.68 
Then, we processed the files using bedtools and custom python 
scripts to obtain information on the overlapping binding sites 
on RNA and prG4 sequences. We computed overlaps between 
binding sites on RNA of RBPs and prG4s and added 150 
nucleotides upstream and downstream. Given that both RBPs 
and rG4s form 3D structures, even though RBPs do not bind 
directly the rG4s but a flanking region close to them, this inter-
action might still be impacted by the rG4s formation or the 
binding of proteins. The use of flanking regions from both 
sides allowed us to check for the co-location of RBP binding 
sites on RNA and prG4s, and not only their direct interaction. 
For other species (ie, Mus musculus, Danio rerio, Drosophila mel-
anogaster, Caenorhabditis elegans and Saccharomyces cerevisiae), 
we obtained CLIP data from the POSTAR database where 
each species contained respectively 46, 2, 7, 6 and 81 RBPs.67 
These datasets were processed using the same procedure as 
for Homo sapiens, with the exception that peaks were already 
provided.

Shuffle and random datasets

To ensure the validity of our results, we generated different 
random or shuffled datasets. A first type of dataset was designed 
to evaluate the construction of pG4 families. In this dataset, we 
generated multiple shuffled sequences to establish a control for 
the normal density of pG4s. This comparison allowed to con-
trol if there were more or less pG4 than what was expected by 
chance. Additionally, the shuffled density can be considered as 
a background that can be subtracted from the normal density. 
To accomplish this, we used the python library “ushuffle” to 
shuffle entire genes sequences.69 We generated 3 types of shuf-
fles: mononucleotide, dinucleotide and trinucleotide (ie, 1-, 
2-mer and 3-mer nucleotide shuffling). Each of these shuffling 
processes was repeated 10 times and only the average appears. 
This results in most case in decimal numbers.

The second dataset was generated to compare CLIP data 
and to evaluate if RBPs are binding rG4s more or less than 
expected by chance. Hence, the number of prG4s of each spe-
cies was retrieved from the GAIA database (https://gaia.
cobius.usherbrooke.ca/) and was randomly relocated in the 

http://pbil.univ-lyon1.fr/software/seaview3
http://pbil.univ-lyon1.fr/software/seaview3
https://www.encodeproject.org
http://111.198.139.65
https://gaia.cobius.usherbrooke.ca/
https://gaia.cobius.usherbrooke.ca/
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transcripts of the species, creating a “fake prG4” dataset.70 
Then, the fake prG4s were randomly selected, and their loca-
tions were randomly allocated throughout the transcriptome. 
The random data set was generated 10 times, and Figure 2C 
provides a simplified illustration of the concept.

Results
pG4 evolution inside species trees

The initial objective of our study was to get an overview of pG4 
evolution. The evolution of G4s and rG4s remains unresolved. 
Therefore, we decided to initially focus on gene level since 
more information is currently available regarding their evolu-
tion. Our strategy was to identify families of pG4s within 
orthologous genes. Therefore, pG4 families were computed 
through multiple sequence alignments of orthologous genes 
(refer to Figure 2A for the illustrated method). We identified 
overlapping pG4s in these alignments as pG4 families, without 
requiring a minimum overlap. Figure 3 illustrates the overall 
data. When comparing the prediction of G4s in normal and 

shuffle datasets, more G4s are predicted than expected by 
chance in eukaryotes. Conversely, for archaea and bacteria there 
are as many, or fewer pG4s than expected by chance. These 
observations were in good agreement with a previous study,54 
where a negative pressure of selection was observed in prokary-
otes while positive in eukaryotes. This result is further dis-
cussed in the discussion. Also, Chlamydomonas reinhardtii 
(Crei) stands out as a unique case among the studied species 
due to its high pG4 density, exceeding 0.6 pG4/kpb. This phe-
nomenon was also observed in another study in which the link 
between the high GC content of the species and its high pG4 
density is discussed.54 We noticed that only a few pG4s were 
conserved in both datasets. To illustrate, let’s consider eukary-
otes as an example (Figure 3A). Between Homo sapiens and 
Pan troglodyte (Hsap and Ptro) 476 pG4 families were con-
served in the normal dataset, whereas in the shuffled dataset, 
the average number was 3.8 (computed as an average of 10 
runs, resulting in decimal numbers). Yet, more than a thousand 
pG4 are predicted in these species (ie, 1684 for Ptro and 1693 
for Hsap, see Figure 3A). Consequently, less than a third of the 

Figure 3. pG4 evolution inferred in a species tree: (A) eukaryote species, (B) archaea species, and (C) bacteria species. Normal densities (pG4/kbp) 

appear in blue and the average of the mononucleotides shuffled density (pG4/kbp) appears in green. Numbers displayed at the nodes of trees indicate 

the count of conserved pG4 families, while numbers at the tree leaves indicate the number of predicted G4s within the orthologous groups.
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pG4 families are conserved between these closely related spe-
cies. For eukaryotes, there are more pG4s families in the nor-
mal dataset than in the shuffled one, which was expected since 
the pG4s density in the normal dataset is higher.

In prokaryotes, pG4s densities in the shuffled dataset are 
overall higher than in the normal ones (see Figure 3B and C). 
This phenomenon may be attributed to the absence of certain 
mechanisms in prokaryotes, potentially rendering pG4s a non-
advantageous feature for them, leading to a negative selection 
pressure against them. However, in the case of archaea, more 
pG4s families are conserved in the normal dataset in common 
ancestor than in the shuffled one. For instance, between 
Methanosarcina acetivorans (Mace) and Halobacterium salinarum 
(Hsal), there are only 2.1 pG4s families in the shuffled dataset, 
whereas there are 8 in the normal dataset. In bacteria, even 
though the pG4 densities in the shuffled dataset are higher 
than the normal one, there is globally few pG4 families in the 
shuffled dataset. To illustrate, there are only 4 different com-
mon ancestors with conserved pG4 families in the shuffled 
dataset, while in the normal dataset, there are more than 15 
common ancestors with conserved families. Hence, despite the 
prediction of fewer G4s bacteria than would be expected by 
chance, it appears that there might be a higher prevalence of 
shared pG4s in common ancestors than expected by chance.

When comparing species groups, we observe that the num-
ber of conserved families are higher in eukaryotes. However, in 
prokaryotes, pG4s families exhibit conservation in more 
ancient common ancestors. For example, in eukaryotes, the 
most ancient conserved families are found in plants or verte-
brates, but none are shared by all animals or fungi (Figure 3A). 
In contrast, in bacteria at least one pG4 family is conserved in 
the most ancient common ancestors. As a reminder, species 
trees were built using a super tree method, see Material and 
Methods for more information.

Globally, these results also appeared when comparing the 
predictions on the normal dataset to the prediction on dinu-
cleotide and trinucleotide shuffling datasets (see Supple-
mental Figures 1 and 2). Comparing the results for bacteria 
(Figure 3C, Supplemental Figures 1C and 2C), the number of 
conserved pG4s families for the common ancestor between 
Geobacter sulfurreducens (Gsul) and Myxococcus xanthus (Mxan) 
decreases from 10.3 in the mononucleotide shuffle to 7.8 in the 
dinucleotide shuffle, and further down to 2.4 in the trinucleo-
tide shuffle. Other species groups yield similar results. This 
indicates that the closest a shuffled sequence is to its normal 
sequence (from mononucleotide to dinucleotide and trinucleo-
tide), the fewer conserved pG4 families are found. In summary, 
although pG4s family conservation is low, it remains higher 
than what would be expected by chance. The results also dem-
onstrate that pG4s are more conserved in terms of numbers in 
eukaryotes, but they are not conserved at the root of eukary-
otes. While for prokaryotes, fewer pG4s are conserved com-
pared to eukaryotes, but they are present in some ancient 
common ancestors.

Since the quality of alignments was good for most orthologs 
gene groups after filterin, we conducted a detailed inspection of 
the sequence alignments for the 5 most conserved pG4 families 
in eukaryotes and prokaryotes (for more information on these 
families, please refer to Supplemental Figure 3). One align-
ment exhibited numerous insertions and deletions, and this 
alignment exclusively included eukaryotic genes (Supplemental 
Figure 3E). This observation can be attributed to the presence 
of long introns between exons in eukaryotic genes, which are 
less conserved in sequences.71 Across all these alignments,  
we found that the regions of G-tracts were consistently  
well-aligned and conserved, even in genes where no G4s were 
initially predicted. As an example, consider Supplemental 
Figure 3A, where the gene FTT_0154 had a pG4 with the 
initial prediction, but GSU1819 did not, despite having some 
conserved G-tracts. However, the regions between the G-tracts, 
which represent putative loops of pG4s, were less conserved 
than G-tracts. Surprisingly, G-tracts were found to be most 
conserved in the gene group with the fewest predicted G4s 
predicted G4s (Supplemental Figure 3C). Based on this obser-
vation, a G4 prediction was made within these genes at the 
location of a pG4 family using QGRS Mapper with a wide 
motif.57 The results revealed that this homology-based predic-
tion approach helped identify more conserved pG4s (refer to 
Figure 4). For the expanded pG4 families, the gene tree and the 
pG4 family tree were compared (see Supplemental Figure 4). 
In some cases, the topology of the trees was very similar, while 
in others, the trees were very different. This distinction was 
confirmed by the mirror tree, which represents the relationship 
between the pG4 family tree and the gene tree, and the nor-
malized Robinson-Foulds measure (RF).61 The RF metric 
quantifies the difference between the sets of clades of 2 phylo-
genetic trees, providing an estimate of the distance between 
them. For instance, in Supplemental Figure 4A, the trees 
diverged considerably and exhibited an RF value of 0.79, 
whereas in Supplemental Figure 4D and 4E, the trees displayed 
few changes and had an RF value of 0.50. This demonstrates 
that the evolution of pG4 families and the gene families is not 
always congruent. Therefore, pG4 families may evolve differ-
ently from the genes that contain them.

Subsequently, the evolution of the expanded pG4 families in 
species trees was investigated using the same strategy employed 
for the initial prediction. The pG4 family’s evolution was 
inferred in species trees using Count, and the results are pre-
sented in Figure 4. As anticipated, pG4 densities in the normal 
dataset were higher compared to the initial prediction without 
homology-based prediction. However, the number of G4s pre-
dicted in this condition for the shuffled dataset remained simi-
lar to the initial prediction. Therefore, the normal densities 
were higher than the shuffled ones or at similar levels for 
prokaryotes. This was in contrast to the previous observation 
where pG4s densities were higher in the shuffled dataset 
than in the normal dataset. Among eukaryotes, pG4s exhi-
bited higher conservation compared to the initial prediction.  
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For example, there were initially 476 pG4 families between 
Hsap and Ptro, which increased to 4170 pG4s with the homol-
ogy-based prediction. Consequently, the conservation of pG4s 
between these species increased from less than 50% to more 
than 80%, resulting in a total of 4764 and 5000 predicted G4s 
in Ptro and Hsap, respectively. Additionally, pG4 families were 
more conserved in common ancestors. For instance, in Fungi, 
one pG4s family was conserved in the most ancient common 
ancestor, which was not the case with the initial prediction. 
Furthermore, with the initial prediction, the most ancient con-
served pG4 family was in the most ancient common ancestor 
of vertebrates, but with the homology prediction, there were  
3 common pG4s families for all animals used in this study. 
Nevertheless, even with the discovery of more pG4s families in 
more ancient common ancestors, no pG4 families were identi-
fied in the most ancient common ancestors of all eukaryotes. 
For prokaryotes, pG4 family conservation highly increases. 
Specifically, 27 and 25 pG4s families were conserved in all 
archaea and bacteria respectively, compared to 6.4 and 1.7 in 

the shuffled dataset. This indicates that more pG4 families are 
conserved than expected by chance. We also compared the nor-
mal predictions to predictions made using dinucleotide and 
trinucleotide shuffled datasets (see Supplemental Figures 5 and 
6), and the results were consistent with the initial prediction. In 
summary, the initial prediction revealed that only a few pG4 
families were common to different species, yet the conservation 
was more important than expected by chance. With the homol-
ogy prediction, pG4 conservation increased substantially, espe-
cially for prokaryotes and closely related species in eukaryotes.

Relationship between prG4s and RBPs

Previous studies highlighted differences in prG4s densities 
between eukaryotes and prokaryotes,37,54 yet the underlying 
reasons remain unclear. The prevailing hypothesis suggests that 
RBPs, particularly helicases, might account for this difference 
by potentially unfolding rG4s in the human transcriptome.37 
Therefore, our next objective was to investigate potential 

Figure 4. pG4 evolution predicted using homology inferred in species tree: (A) eukaryote species, (B) archaea species, and (C) bacteria species. 

Normal densities (pG4/kbp) appear in blue and the average of the mononucleotides shuffled densities (pG4/kbp) appears in green. Numbers displayed 

at the nodes of trees indicate the count of conserved pG4 families, while numbers at the tree leaves indicate the number of predicted G4s within the 

orthologous groups.
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coevolution between RBPs and prG4s. Our strategy involved 
analyzing the relationship between prG4s densities obtained 
here and annotated RBPs from the RBP2GO database 
(https://rbp2go.dkfz.de).72 The results suggest a complex rela-
tionship between these factors. Figure 5 presents the ratio of 
the helicases (ie, the number of helicases over the annotated 
RBPs number) versus the normalized prG4 densities. Since 

the annotation of RBPs varies among species, normalizing the 
number of helicases allows for comparisons between species. In 
Figure 5A, the helicase ratio is plotted against the normalized 
prG4 density (normal prG4 density minus the shuffled den-
sity). Firstly, the ratio of helicases appears higher in eukaryotes 
than in prokaryotes. Specifically, the helicase ratio ranged from 
0.0025 to 0.025 in prokaryotes, while in eukaryotes, it ranged 

Figure 5. prG4 densities and helicase ratio. (A) Distribution of species based on their helicase ratio and the normalized prG4 density (calculated by 

subtracting the shuffle density from the normal density); (B–E) depict correlations between the helicase ratio and prG4 densities for respectively all 

species, eukaryotes, archaea, and bacteria. The r-value represents to the Pearson correlation coefficient.

https://rbp2go.dkfz.de
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from 0.020 to 0.040. Globally, there seems to be a positive 
correlation between normalized prG4 densities and the heli-
case ratio. To confirm this observation, we performed a linear 
regression on this data, removing outliers using the inter-
quartile range method. The results suggest a significant posi-
tive correlation between prG4s densities and helicases ratio  
(Figure 5B). However, when examining the correlation within 
each species group separately, the significant positive correla-
tion is not consistent. Specifically, for archaea and bacteria, no 
significant correlations are found, whereas for eukaryotes, there 
is a strong significant negative correlation. In conclusion, there 
is a complex relationship between helicases and prG4 densities 
with significant correlations, but the nature of this relation var-
ies depending on the species group. Moreover, contrary to our 
expectations, we found a negative correlation for eukaryotes, 

which contrasts with the hypothesis. This result is further dis-
cussed in the discussion, particularly regarding its interpreta-
tion and the use of the helicase ratio over RBPs.

CLIP data versus pG4s

To further investigate the relationship between prG4s and 
RBPs, we examined the relative location of RBPs RNA bind-
ing sites and prG4s. This analysis provided an overview of  
the distribution of these locations across different species.  
To achieve this, we crossed rG4s prediction data with freely 
available CLIP data for Homo sapiens (Hsap), Mus musculus 
(Mmus), Caenorhabditis elegans (Cele), Danio rerio (Drer), 
Drosophila melanogaster (Dmel) and Saccharomyces cerevisiae 
(Scer). However, due to variation in the annotation of RBPs 

Figure 6. Top and bottom 10 proportions of prG4s near RBP binding sites relative to the total number of prG4s present on the transcripts bound by the 

RBP. (A) to (F) correspond respectively to Homo sapiens (Hsap), Mus musculus (Mmus), Saccharomyces cerevisiae (Scer), Caenorhabditis elegans 

(Cele), Drosophila melanogaster (Dmel) and Danio rerio (Drer). For Hsap, 2 cell lines are presented: HepG2 on the left column and K562 on the right 

column. RBPs names are displayed next to heatmaps.
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RNA binding sites among different species, the interpretability 
of these results is somewhat limited. These findings indicate 
that RBPs interacts prG4s in diverse ways, depending on cell 
lines and/or species. For the human, we compared the locations 
of RBPs RNA binding sites to prG4s locations and to a ran-
domly generated prG4 dataset. By subtracting the random 
count of prG4s located near RBP binding sites from the actual 
count, we derived a proportion that indicates whether prG4s 
are more frequently found in close proximity to RBP binding 
sites than would be expected by chance. In Figure 6A, the top 
10 RBPs with the highest positive and negative proportions are 
presented. Some RBPs exhibit similar binding profiles in the 2 
cell lines (eg, HepG2 and K562), while others do not. For 
instance, GTF2F1 is among the top 10 RBPs with the highest 
proportion of prG4s in both cell lines, whereas TBRG4 shows 
a negative prG4 proportion in HepG4 but a positive propor-
tion in K562. Supplemental Figure 7 displays all eCLIP-anno-
tated RBPs from HepG2 and K562, along with additional 
information, such as whether the RBPs are helicases or known 
to bind rG4s. Interestingly, the observation applies to the RBP 
FXR2, which exhibits less co-location than expected in HepG2 
but more co-location than expected in K562, despite being an 
rG4 Binding Protein (RG4BP).73 Surprisingly, HNRNPL 
consistently exhibits low co-location with prG4s despite also 
being an RG4BP. This confirms that while some RBPs are 
known to bind rG4s, rG4s are not their only or primary target. 
A general observation is that all proportions are low. The high-
est proportion in both cell lines does not exceed 20%, indicat-
ing that RPBs do not primarily bind sites in close proximity to 
prG4s. Additionally, over half of the RBPs have one of their 
proportions under 2%. This is expected since RBPs bind 
numerous sites independently of prG4s. In most cases, RBPs 
are binding as much or more randomly relocated features than 
prG4s. Only 24 out of 103 RBPs HepG2 and 19 out of 117 
RBPs in K562 have both their proportions above zero. These 
findings do not appear to result from the random generation of 
features, as shown in Supplemental Figure 8, where all 10 runs 
yield similar results.

We also examined other model organisms using RBPs bind-
ing sites data from the POSTAR database for Mus musculus, 
Danio rerio, Drosophila melanogaster, Caenorhabditis elegans and 
Saccharomyces cerevisiae (see Figure 6B–F).67 Our first observa-
tion was the variation in annotations between these species. 
For instance, there were only 2 RBPs’ CLIP data for Danio 
rerio, whereas more than 20 RBPs’ CLIP data were accessible 
for Saccharomyces cerevisiae and Mus musculus. Despite these 
uneven annotations, most of the proportions are around 0, sim-
ilar to those observed in humans. The only exception was the 
results for Scer, mainly due to the low number of predicted in 
this species. The primary explanation for these results is that 
only 26 rG4s were predicted in Scer.70 With such a small num-
ber, the proportion range varied greatly, from −28% to 44%. 
Importantly, these results do not appear to be the result of poor 

random generation, as demonstrated in Supplemental Figures 
9 and 10.

Overall, the co-location of binding sites and prG4s does 
appear to support co-evolution. To further investigate the co-
evolution between RBPs and prG4s, the effort should concen-
trate on specific RBPs known to interact with prG4s and study 
them across many more species.

Discussion
Although pG4s are prevalent in numerous species, only a few 
pG4 families are conserved. Figure 3 illustrates that few pG4s 
are conserved (less than half are shared between Hsap and 
Ptro), they exhibit a higher level of conservation than expected 
by chance. In the case of bacteria, even though G4s are rarely 
predicted, those that are predicted and belong to a pG4 family 
tend to be conserved across different species. This suggests that 
pG4s in bacteria might play significant roles, given their con-
servation in multiple species. In contrast, eukaryotes show 
lower conservation, a finding consistent with a previous study 
using a similar methodology.47 Nevertheless, beyond these 2 
methods, there is a need to develop additional techniques for 
detecting pG4 families. Given that sequence alignment 
between pG4s is feasible in some cases (see Supplemental 
Figure 3), the development of a multiple alignment tool 
designed to maximize the alignment of G-tracts rather than 
entire sequences could be beneficial. Such an approach could 
initially use G-tracts to guide the alignment and then focus on 
aligning of loops, potentially enhancing the alignment quality 
between G4 sequences. Until now, no specific class of pG4s has 
been identified apart from motif-based classifications. G4s 
have traditionally been grouped based on different motifs: G4s 
with two G-quartets, G4s with two G-quarters and a loop of 
one nucleotide, G4s with three G-quartets and short loops, 
G4s with three Gs and long loops, and so on.36,48,53 While 
these motif-based grouping provide insights into the distribu-
tion of different G4 motif types within datasets, we lack a via-
ble and automated method for grouping and clustering G4s 
into groups of homologs. Clustering G4s based on metadata 
like their length, loop, k-mer occurrences in loops, etc., should 
be possible, especially with recent prediction tools employing 
machine learning.29,30 This clustering approach could enhance 
our ability to study G4 evolution and find properties specific to 
each G4 cluster, such as potential RBP binding preferences for 
specific G4s types. Interestingly, in 45 species, more G4s are 
predicted and conserved through homology than via G4RNA 
screener (see Supplemental data Table 1). These G4s predicted 
by homology often correspond to non-canonical G4s with 2 
quartets (see Supplemental Figure 3). It appears that non-
canonical G4s with 2 quartets exhibit higher conservation 
compare to more stable G4s with 3 quartets or more. Several 
factors might explain this result, including the possibility that 
this motif is less constrained and thus more easily identified. 
Alternatively, there could be genuine evolutionary selection 
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favoring 2-tetrad pG4s, or theses 2-tetrad pG4s might be con-
served to facilitate the evolutionary selection toward more sta-
ble G4s that required by certain species.

The prediction of G4s through homology appears to be a 
promising approach for discovering additional G4s. However, 
the viability of this method should first be experimentally con-
firmed. This method also highlights some limitations of 
G4RNA screener predictions in some species. For example, the 
initial prediction identified few G4s in Scer or Ftub (ie, 
Saccharomyces cerevisiae or Francisella tuberculosis), and the 
number increased with the homology prediction. This might 
be due either to G4RNA screener yielding false negatives, a 
known issue with the tool, or from the homology-based pre-
diction being susceptible to false positives.54

The comparison of the gene tree with the pG4 family tree 
within these genes highlights instances where pG4s evolve dif-
ferently from their host genes. This divergence may be attrib-
uted to pG4s experiencing distinct selection pressure compared 
to the entire gene. It is well-established that different regions 
within a gene may be under different pressures of selection. In 
Supplemental Figure 4, some pG4s trees closely resemble gene 
trees, while others do not. Those pG4s families that closely 
mirror the gene tree may not have an important role on their 
own and thus evolved similarly to their host gene. Conversely, 
pG4s trees with different topologies than their host gene could 
indicate that these pG4s have important functional roles. 
These pG4s may be subject to positive or negative pressure of 
selection depending on how they affect the gene function, 
resulting in a different evolution than the gene. This divergence 
could also be influenced by coevolution with other elements 
such as RBPs. However, it is essential to interpret these results 
cautiously, as genes with pG4s (both from the initial prediction 
and homology prediction) and those without pG4s were found 
as neighbors pG4 family trees. Non-parsimonious gain or loss 
of pG4s, as well as errors in the tree topology, might explain 
this phenomenon. Overall, it appears that stable pG4s are less 
conserved than unstable ones. This observation aligns with the 
number of G4s predicted through homology, although these 
predictions require an experimental confirmation. Notably, 
some specific cases revealed pG4 families with similar trees 
compared to their host genes, while in other cases, the opposite 
pattern was observed. The underlying selection pressure 
driving this evolution remains elusive but is pointing toward 
coevolution with RBPs. This coevolution could aid in either 
stabilizing less stable G4s or destabilizing highly stable ones.

Different studies showed have indicated the existence of 
differences in prG4 densities between eukaryotes and pro-
karyotes.37,54 However, the reason remains unknown. The pre-
vailing hypothesis is that prokaryotes possess fewer RBPs and 
thus, if an rG4 forms in a prokaryotic cell, it is more likely to 
remain in this state, independently of the cell needs. In con-
trast, eukaryotes, which have a geater abundance of RBPs, may 
have more dynamic regulation of rG4s. A study showed that 

bacteria living in hot environments have more pG4s than other 
closely related bacteria living in normal temperatures.40 This 
suggests that in an environment where prG4s can fold and 
unfold freely, such as hot environments, more prG4s are pre-
sent. This aligns with the concept that with more RBPs to help 
rG4 fold and unfold, there are more prG4s. Figure 5A and B 
appear to support this hypothesis, but Figure 5C shows a con-
trary trend in eukaryotes. Several explanations can be consid-
ered for these results. First, it is essential to recognize that a 
correlation does not imply the causality of an event. The cor-
relation between the helicases ratio and prG4s density might 
occur by chance, and the strength or direction of this correla-
tion could vary among different species groups we selected. 
Another possibility is that we may be examining at the wrong 
parameters to evaluate the coevolution of RBPs with prG4s. 
Our analyses has focused solely on helicases, while chaperone 
or other RBPs, might have a closer relationship with prG4s. 
Notably, since there are fewer helicases among RBPs in eukary-
otes when the prG4 density becomes high, it might be due to 
the number of RBPs rising, thus lowering the helicase ratio. 
RBP2GO was used to retrieve gene ontology associated with 
RBPs, and only 2 chaperones were identified.72 This limited 
availability of chaperone data may have hindered the investi-
gation of the relationship between prG4s RBPs, although it 
remains an interesting lead for further research. Additionally, 
there could be other unaccounted-for factors influencing  
these results. In summary, a clear correlation exists between 
helicases ratio and prG4s densities across all species, support-
ing the notion of coevolution between rG4s and RBPs. Yet, 
for eukaryotes, this correlation is negative, suggesting that 
higher prG4 densities are associated with a lower ratio of 
helicases among RBP.

Based on these results, we looked at the co-location BSs and 
prG4s to determine whether most prG4s interacted with RBPs 
or not. We used eCLIP data to obtain BSs of 150 RBPs and 
compared them with normal pG4s and randomly relocated 
pG4s. Our analysis revealed that RBPs engage with prG4s in 
different ways, depending on the cell type and on species. This 
was expected, considering the distinct cellular environments 
and functions that necessitate different regulatory mechanisms. 
Surprisingly, even some known RG4BPs appeared to bind 
fewer prG4s than anticipated.to bind prG4s. For instance, 
HNRNPL, which has demonstrated interactions with G4s,74 
ranked lower in Figure 6. This outcome may be explained by 
another study indicating that HNRNPL preferentially binds 
regions rich in CA repeats,75 which might explain a higher co-
location with false prG4 exists compared to the normal dataset. 
Additionally, certain RBPs, despite their established prG4-
binding capabilities, may bind only specific prG4s and a subset 
of them. Some other RBPs are expected to appear at the bot-
tom of the list since they are known to interact with short non-
coding transcripts where few G4s are predicted (eg, YBX3, 
LIN28B and LARP7). In Supplemental Figure 7, like some 
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RG4BPs, helicases exhibit diverse binding profiles contingent 
on the RBP and cell lines. Yet these results should be mitigated 
considering many points. Firstly, not all binding sites are com-
prehensively annotated. While eCLIP data for Hsap included 2 
cell lines and were relatively comprehensive, data for other 
model organisms encompassed binding sites from various cell 
lines through multiple experimental methods (ParCLIP, HIT-
CLIP and others). For instance, Drer had data available for 
only 2 RBPs, with one of them having just one BS. Thus, we 
limit the presented comparison to the currently available anno-
tation. Also, some RBPs are absent from our analysis, even for 
Hsap, as more than 5000 RBPs are known,72 but only 150 
RBPs eCLIP data were available.

The identification of G4 families yields a complex view of 
G4 evolution. Most G4s are not grouped into G4 families; 
however, specific G4 families are found across bacteria or 
archaea species used in this study, indicating shared ancestral 
origins for these G4s. Additionally, our study reveals the pres-
ence of an intricate relationship exists between RBPs and 
pG4 density.
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