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Abstract: In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes
the beginning of the end disease, which eventually leads to cancer death. Many mechanisms
have been identified in this process that can be rationalized into targeted therapy. Among them,
epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell
trans-differentiation during embryo development and now recognized in promoting cancer cells
invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted
from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very
diverse in different cancer types, which certainly represent a challenge for developing effective
intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with
clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected
to reduce the disease mortality.
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1. Introduction

The plasticity of cellular phenotypic transformation is fundamental to embryonic development.
During gastrulation stage, the reprogramming process of epithelial-to-mesenchymal transition (EMT)
mainly governs the phenotypic change of polarized ectodermal epithelial cells into migratory
mesenchymal cells that ultimately constitute the mesodermal layer of the embryo [1]. EMT occurs by
breakdown of cell-to-cell or cell-to-extracellular matrix (ECM) adherence at the polarized epithelium
lining. E-cadherin is a major component of epithelial adherence junction and acts as the master
gatekeeper of EMT. Loss of E-cadherin, considered to be the key step to initiate EMT, leads to
collapse of intercellular mechanical communication. In contrast, critical mesenchymal markers such as
vimentin and N-cadherin, as well as several E-cadherin transcriptional repressors including zinc finger
proteins Snail/SNAI1 and Slug/SNAI2, twist-related protein 1 (Twist 1) and zinc finger E-box-binding
homeobox 1 and 2 (ZEB1 and ZEB2) are highly elevated during EMT (Figure 1), leading to acquisition
of mesenchymal phenotype of enhanced cell mobility [2]. EMT is critical for tissue remodeling during
embryonic morphogenesis [3–6]; however, this reprogramming process is also observed in different
pathological process such as organ fibrosis, wound healing and carcinoma progression. In particular,
primary carcinoma cells switch from epithelial characteristics to mesenchymal-like phenotype while
responding to either intrinsic genetic and molecular alteration or extrinsic microenvironmental
stimuli, which leads to the invasion into surrounding stroma and subsequent vasculature, ultimately
colonization at a distant pre-metastatic niche [6,7]. Particularly, the role of EMT in metastasis has
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been demonstrated in many cancer types including prostate cancer (PCa) to elicit their metastatic
potentials [2,8,9], which is supported by significant correlation between TGF-β and EMT-related genes
detected from circulating prostate cancer cells of PCa patients [10]. PCa is the most common male
malignancy and the second leading cause of cancer mortality in the men of US. Current treatments
for primary prostatic tumor involve radical prostatectomy, external radiotherapy, brachytherapy, and
androgen deprivation therapy (ADT). The major cause of PCa mortality is the onset of metastatic
castration-resistant PCa (mCRPC). Although none of these therapeutic strategies are curative for PCa,
surgery and radiation remain the most effective regimen for patients with organ-confined disease.
It is known that PCa is a multifocal disease with heterogeneous cell population. Thus, understanding
cellular and molecular mechanisms underlying metastatic dissemination of PCa, such as EMT could
generate potential therapeutic strategies to prevent PCa related mortality. In this review, we will
discuss several key players in driving EMT in PCa and the different mechanisms that produce distinct
signaling cascades to modulate gene transcription or epigenetic regulation, and post-transcriptional
regulation by microRNA (miRNA) or long non-coding RNAs (lncRNAs).
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Figure 1. The regulatory mechanisms associated with epithelial-to-mesenchymal transition (EMT)
in prostate cancer (PCa). MPP8: M-phase phosphoprotein 8; SIRT1: NAD-dependent deacetylase
sirtuin-1; HIC1: Hypermethylated in cancer 1; EZH2: Enhancer of zeste homolog 2; YB-1: Y-box
binding protein 1; MTA1: Metastasis Associated 1 protein; mTOR: Mammalian target of rapamycin;
TGFβR: Transforming growth factor beta receptor; FGFR: Fibroblast growth factor receptor; IL-6R:
Interleukin 6 receptor; Snail: Zinc finger protein SNAI1; Slug: Zinc finger protein SNAI2; ZEB1: Zinc
finger E-box-binding homeobox 1; Twist: Twist-related protein 1.

Accumulating studies have demonstrated that activation of EMT transcription factors induces
acquisition of stem cell properties in epithelial cells and contributes to the emergence of tumor-initiating
cell population in several cancer types such as breast and pancreatic cancer [11–13]. In PCa, one
study also indicates that N-cadherin can increase prostate tumor spheroid formation by elevating
expression of stemness markers such as c-Myc, Klf4, Sox2 and Oct4 via ErbB signaling pathway [14].
In addition, the ectopic expression of Semaphorin 3 C can concurrently enhance the invasiveness and
stemness in normal prostate epithelial cells, and that mesenchymal markers such as N-cadherin and
Vimentin are highly upregulated in CD44-positive populations, compared to CD44-negative ones [15].
Using transgenic mouse model, prostate tumor cells with mesenchymal characteristics displayed
enhanced invasiveness and stemness [16]. However, using primary prostate cancer-derived cells,
there is no significant correlation between stemness and the expression level of EMT markers such as
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vimentin and N-cadherin [17], suggesting that more studies are needed to delineate the regulation of
EMT leading to PCa stemness.

EMT-related transcription factors such as Snail, Slug and Twist are shown to confer
chemo-resistance in ovarian, breast and nasopharyngeal carcinoma [18–20]. In PCa, a study
demonstrated that reintroduction of E-cadherin significantly sensitizes chemo-resistant PCa cell lines
to paclitaxel [21]. A recent study showed that Skp2-mediated Twist stabilization can facilitate the
acquisition of chemo-resistant to paclitaxel or doxorubicin during PCa progression toward CRPC [22].
In addition, ZEB1 has been shown to promote the chemo-resistance in Paclitaxel-resistant PCa [23].
Taken together, the onset of EMT can lead to PCa cells acquiring drug resistance during progression.

2. The Signal Pathways Leading to Epithelial-To-Mesenchymal Transition (EMT) in Prostate
Cancer (PCa)

The tumor surrounding microenvironment has been shown to play an important role in eliciting
EMT of carcinoma cell through paracrine/endocrine fashion. Many extracellular signals are responsible
for cell–cell communication that alter PCa cell behavior through a receptor-dependent manner.
Several peptide hormones such as TGF-β, IL-6, FGF and Wnt are detected in prostatic stromal cells,
which are associated with cancer progression [24–27] (Table 1). Among these factors existing in the
tumor microenvironment, TGF-β is one of the most well characterized EMT inducer in PCa. It is known
that TGF-β can promote EMT via induction of vimentin, fibronectin and suppression of E-cadherin
level in vitro [28,29]. It appears that the canonical pathway of TGF-β plays a key role in increasing
the expression of EMT transcriptional factor such as (Snail1/2 or ZEB1), which is supported by the
evidence that E74-like factor (Elf5), a member of the large E-twenty-six (ETS) transcription factor
family, can directly bind to Smad3 and block EMT [30]. Noticeably, the expression of this protein is
associated with and E-cadherin expression in PCa specimens [30]. In addition to the canonical pathway,
TGF-β-induced Twist expression appears to be mediated by non-canonical pathway of Stat3 in PCa
cell lines such as PC3 and DU145 [31,32].

IL-6 is also demonstrated to be an EMT inducer leading to PCa invasiveness [33] and its elevated
level is found in metastatic specimens of PCa patients [34]. A study investigating TRAMP (transgenic
adenocarcinoma of the mouse prostate) mouse-derived PCa cell lines demonstrated elevated IL-6
levels in hormone resistant cells. Knocking down IL-6 can increase E-cadherin expression and
decrease vimentin expression via Stat3 pathway, which also reduces tumor invasion in vivo [35].
Consistently, in LNCaP cells, IL-6 can induce cell migration as well as altered mesenchymal morphology.
Mechanistically, IL-6 can induce Twist expression via State3 pathway and lead to the increased
fibronectin expression and the inhibited E-cadherin expression [36]. In addition, a similar effect of IL-6
on EMT has been reported using BPH cells [37].

Accumulating evidence has demonstrated that fibroblast growth factor (FGF) family is associated
with EMT in PCa. An in vitro study using PCa cell lines demonstrated that FGF2 increases
mesenchymal markers, N-cadherin, vimentin and decreases epithelial marker, E-cadherin, leading
to cell invasion [38]. Moreover, by using a transgenic mouse-expressing FGF9 in PrECs crossed with
the TRAMP mouse model, the authors found that forced expression of FGF9 can accelerate the PCa
progression in TRAMP mice. Mechanistically, FGF9 derived from LNCaP cells is shown to activate
c-Jun dependent TGF-β secretion from prostatic stromal cells, which in turns triggers EMT of LNCaP
cells in a paracrine manner [39].

PCa is a typical androgen-dependent disease and ADT is a standard treatment for patients with
metastatic disease. It is known that androgen receptor (AR) can induce the expression of several
proteases such as MMP2/9 and TMPRSS2 underlying cell invasion [40–42]. In contrast, AR ablation
has been shown to induce EMT genes [43]. Mechanistically, AR directly represses Snail gene expression
by directly binding to its responsive elements of the promoter. Thus, enzalutamide can promote PCa
EMT by de-repressing Snail [44]. Similarly, AR-negative PCa cell lines, PC3 and DU145, show higher
mesenchymal gene expression and lower epithelial characteristics than androgen-dependent PCa
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cell lines, LNCaP [45]. By using patient-derived xenograft model, a study demonstrated that both
N-cadherin and vimentin become elevated after ADT [46]. Furthermore, ADT can affect EMT gene
expression partly due to the emergence of AR variants [47,48]. For example, one of AR variant such
as AR-V7 has been shown to induce mesenchymal genes such as ZEB1 and vimentin, and stem cell
marker, Nanog, leading to metastasis [49–51].

Clinically, there is a positive correlation between AR and β-catenin in high-grade PCa [52].
It certainly implies Wnt/β-catenin signaling is associated to PCa [53]. Indeed, DAB2IP, a potent
tumor suppressor, is able to block Wnt-induced EMT by facilitating β-catenin degradation resulted
in increasing E-cadherin expression through the canonical pathway [54]. It has been reported that
up-regulation of Frizzled 8 (FZD8), which is a subtype of Wnt family receptor, induces PCa to
metastasize to bone [55]. Moreover, osteoblast derived Wnt-induced secreted protein-1 (WISP1)
facilitated PC3 and DU145 invasion through up-regulation of VCAM-1 [56]. In addition, non-canonical
Wnt signaling could also contribute EMT, for example, in high-grade PCa specimens exhibiting
elevated Wnt5A, N-cadherin and vimentin expression but no change in E-cadherin expression [57].

Table 1. Microenvironment soluble factors involved in EMT progression of PCa.

Soluble Factors Role in EMT Impacts on PCa Progression Reference

TGF-β1 Inducer Invasion, Migration, Metastasis, Sphere formation [28–32]
BMP Inducer Sphere formation [58]
IL-6 Inducer Invasion, Metastasis, Sphere formation, Tumor incidence [33–35,37]
FGF Inducer Invasion, Metastasis [38,39]
AR Suppressor EMT Suppression [24,43,44,52]

AR variants Inducer Metastasis [47–50]
Wnt/β-catenin Inducer Invasion, Metastasis, Stemness [42,52,53,55–57]

EMT: epithelial-to-mesenchymal transition; PCa: prostate cancer.

Accumulating evidence has demonstrated that interplay between signal transduction pathways
in response to external stimuli is a critical mechanism to drive the development of metastatic CRPC.
In particular, signaling pathways involved in the initiation of EMT often lead to suppression of
E-cadherin, resulting in enhanced cell proliferation and metastasis. Particularly, the phosphoinositide
3-kinase (PI3K)-Akt signaling pathway integrates external growth factor stimulations with internal
cellular processes. TGF-β can initiate EMT by dissociation of E-cadherin/catenin complexes from
the actin cytoskeleton via PI3K/Akt signaling [58]. In this study, the authors demonstrated that
TGF-β treatment induces PI3K activation, phosphorylation on either α- or β-catenin associated
with E-cadherin localized at the actin cytoskeleton. Dissociation of phosphorylated α- or β-catenin
molecules from the E-cadherin results in diminished cell–cell adhesion, as well as enhanced cell
migration and invasion. Moreover, TGF-β treatment also leads to significant down-regulation of
E-cadherin protein level, accompanied by dramatic change of cancer cell shape from epithelial-like
to spindle-like morphology. In contrast, PTEN is a PI3K-Akt signaling regulator involved in
stabilization of adherent junctions via de-phosphorylation of β-catenin. TGF-β treatment causes
PTEN dissociation from β-catenin, and thus reduced β-catenin dephosphorylation further facilitates
PI3K-induced β- and α-catenin phosphorylation, leading to reduction of E-cadherin/catenin complex
at the adherent junction and transformation into a more mesenchymal-like phenotype. Meanwhile,
bone morphogenetic protein-7 (BMP-7) is shown to induce activation of PI3K and ERK signaling and
contributes to the morphological conversion of bone metastatic PCa cell line in both 2D monolayer and
3D spheroid culture system [59]. In particular, the authors observed a significant down-regulation of
E-cadherin, accompanied by up-regulation of both Twist and Slug in 3D-cultured PC3 spheroids after
exposure to BMP7 treatment. In contrast, inhibition of both Akt and ERK signaling cascades abolishes
BMP7-mediated EMT in PC3 cells by diminishing cell migration motility. Overall, this study suggests
that initiation of EMT by BMP7 can be regulated through PI3K and ERK signaling in PCa.

Moreover, another critical downstream effector of Akt during prostate tumorigenesis is the
mammalian target of rapamycin (mTOR) kinase. Hyper-activation of mTOR is observed in nearly 100%
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of advanced PCa [60,61]. In a study using ribosomal profiling approach, mTOR signaling mediates the
translation of a specific repertoire of PCa genes involved in cell proliferation, metabolism and invasion.
Based on the profiling outcome, mTOR translationally regulates genes including YB-1 (Y-box binding
protein 1), vimentin, and MTA1 (metastasis associated 1) that are mainly involved in PCa invasion and
metastasis [62]. Notably, ectopic expression of YB-1 can enhance translational activation of Snail and
Twist, leading to down-regulation of E-cadherin and enhanced cell migration motility. In contrast, loss
of YB-1 results in significant reduction of several mesenchymal factors such as Twist, N-cadherin and
Snail [63]. Overall, this study demonstrated a critical impact of YB-1 on EMT, MTA1 is a chromatin
remodeler playing an important role in PCa invasiveness. A study using MTA1 transgenic knock-in
mouse model displayed an inverse correlation between MTA1 and E-cadherin level in the murine
prostate tissue, and that MTA1 is shown to suppress E-cadherin expression at post-transcriptional
level [64]. Meanwhile, another study also showed that MTA1 impacts on the invasiveness of PCa
cells through regulating E-cadherin expression [65]. Functionally, ectopic expression of MTA1 leads
to increased invasive capacity of untransformed prostate epithelial cell line [64,66,67]. In addition,
studies using clinical specimen and tumor model also demonstrated a significant elevation of MTA1
in highly aggressive PCa, and that loss of MTA1 diminishes PCa invasion, bone metastasis and
angiogenesis [68–70]. Overall, these studies demonstrated a significant role of MTA1 and YB-1 in
the EMT of PCa leading to metastatic progression of the disease. In addition, different protein
components of the mTOR complex such as mTORC1 and mTORC2 exhibit its significant impact on
PCa metastasis. Loss of the mTORC1 or mTORC2 complex components, Raptor or Rictor, leads to
attenuation of PCa migration and invasion due to elevated E-cadherin and β-catenin expression and
reduced mesenchymal markers such as N-cadherin and vimentin [71]. Moreover, it appears that
paclitaxel-resistant PCa cells are invasive [21]; this is initiated by EMT via Notch-1 signaling and
suppression of E-cadherin expression. Overall, this study implies that Notch-1 signaling facilitates the
mesenchymal phenotype associated with the acquisition of chemo-resistance in PCa cells.

3. Transcription Factors Associated with EMT

E-cadherin is an essential cell–cell adhesion molecule involved in maintaining the epithelial
integrity of the carcinoma cell. Hence, loss of E-cadherin becomes a critical step for EMT initiation and
is mainly regulated by several transcriptional repressors such as Snail [72], Slug [73], Twist [74,75] and
ZEB1 [76].

Snail is a zinc-finger protein binding to E-box sequences of the E-cadherin promoter [72].
Aberrant up-regulation of Snail has been observed in many malignancies such as breast cancer,
ovarian cancer [77,78], colorectal cancer [79,80] and PCa [44,81]. In particular, elevation of Snail protein
expression has been seen in both enzalutamide-resistant PCa cell line as well as highly metastatic PCa
patient specimens [81]. Particularly, ectopic expression of Snail results in enhanced elevation of both AR
and AR variants, which might be an initial cause of enzalutamide resistance in PCa lines, suggesting
the impact of Snail on the recurrence of metastatic CRPC. In addition to its suppressor function,
Snail may facilitate cancer metastasis via enhancing the protein expression and enzymatic activity
of urokinase-type plasminogen activator (uPA) leading to enhanced motility in PCa cell lines [82].
In addition, Snail impacts on the expression level of several tight junction protein components by
repressing the promoter activity of claudins and occludin genes, and inhibiting Zona occludin 1 (ZO-1)
expression at post-transcriptional level [83,84]. Overall, the impact of Snail on EMT process and cell
adhesion molecules demonstrates its crucial regulatory role in the disease progression of PCa.

Slug is a dominant regulator of EMT in many cancers including PCa. In addition to acting
as an E-cadherin transcriptional repressor, Slug also regulates other factors leading to EMT in
PCa. An in vitro study showed that Slug up-regulates both CXCL12 and CXCR4 and impacts on
CXCL12/CXCR4 signaling downstream target gene, MMP9, leading to highly invasiveness of PCa [85],
implying that up-regulation of autocrine CXCL12 is a critical mechanism underlying Slug-mediated
migration and invasion of PCa. In primary PCa, Slug/SNAI2 gene expression are often down
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regulated due to the promoter methylation; the expression of Slug is restored or elevated in the
invasion front of high grade PCa and lymph node metastases [86]. In addition, Slug can suppress
several metastasis-suppressor genes such as KISS1. Particularly, KISS1 is able to inhibit EMT by via
suppressing N-cadherin and vimentin, and increasing E-cadherin expression then diminish tumor
cell migration and invasion motility [87]. Clinically, loss of KISS1 is widely observed in primary and
metastatic PCa compared with benign tissue. Restoring KISS1 expression in highly metastatic PCa cell
lines results in diminishing cell invasion motility [88]. Taken together, Slug is a highly potent promoter
for PCa metastasis via EMT induction, cytokine production and metalloprotease secretion.

Twist is a basic helix-loop-helix protein that plays critical roles during development and
tumorigenesis. Many studies have demonstrated that Twist can activate EMT, and that it enhances cell
migration via binding to the promoter of the E-cadherin gene. In the past, the mechanistic association
between Twist and transcriptional repression of E-cadherin has been shown in many malignancies
including esophageal squamous cell carcinoma [89], bladder cancer [90], breast cancer [91] and
PCa [92]. Clinically, Twist is found highly expressed in malignant prostatic tissue when compared to
BPH tissue, and its protein level is significantly correlated with Gleason grades and metastasis [75].
Meanwhile, overexpression of Twist at the marginal area of prostatic tumor has been correlated with
capsule invasion and biochemical recurrence (BCR) in PCa patients receiving radical prostatectomy [93].
In addition to acting as E-cadherin repressor, Twist also facilitates EMT by regulating N-cadherin
expression [94]. This study demonstrated that β1 integrin-mediated nuclear translocation of Twist is
capable of inducing N-cadherin transcriptional activation via binding of Twist to the E-box regulatory
element within the N-cadherin gene, suggesting that Twist acts as pivotal transcription factor in the
metastatic progression of PCa.

ZEB1 is a zinc finger homeodomain transcriptional repressor that regulates skeletal patterning
during development and suppresses E-cadherin transcriptional activity in multiple malignancies.

Clinically, ZEB1 is elevated in high-grade prostatic tumors, compared to benign or lower grade
PCa specimens [95]. A recent study demonstrated that ZEB1 is physically associated with the histone
H4K20-specific methyltransferase, SET8. Mechanistically, SET8-induced H4K20 methylation is implied
to exert a dual function in ZEB1-regulated gene expression. Functionally, ZEB1 and SET8 cooperatively
trigger EMT by suppression of E-cadherin and induction of vimentin in PCa cells, leading to the
invasive potential of PCa [96]. Moreover, an in vitro study has demonstrated that elevation of
ZEB1 and loss of E-cadherin is concurrently observed in a subpopulation of PC3 cells that acquired
trans-endothelial migration characteristics in vitro, compared to the parental cell line. In contrast, loss
of ZEB1 partially restores the epithelial phenotype and reduces trans-endothelial extravasation of PC3
cells [76]. Overall, this study suggests that ZEB1 is a critical regulator of EMT and mediates vascular
extravasation of PCa cells during the disease progression.

Forkhead box (FOX) proteins constitute a large family of 19 subgroups of transcriptional regulators
that contain an evolutionary conserved DNA binding domain (Forkhead or winged-helix). Among
them, FOXA1 is known as a pioneering transcription factor for AR [97–99]. However, FOXA1 loss
is often detected in metastatic PCa specimen [100] because FOXA1 has an AR-independent function
on suppressing EMT via regulating Slug in PCa cells. In contrast, FoxO family is able to block EMT
in malignant cells of multiple cancers [101,102]. Clinically, emerging evidence has demonstrated an
inverse correlation between FoxOs level and PCa grade as well as tumor dissemination, indicating
its suppressor role in PCa metastasis [103]. Mechanistically, the transcriptional activity of FoxO3a is
negatively regulated by PI3K/Akt signaling through post-translational phosphorylate modification.
During PCa progression, progressive activation of Akt leads to increased phosphorylation of FoxO3a,
which impacts on its nuclear localization and hence FoxO3a-dependent transcriptional activity is
further inhibited [104]. Functionally, FoxO3a can directly compete with T-cell factor (TCF) for the
interaction with β-catenin, leading to inhibition of β-catenin/TCF transcriptional activity and thus
reduction in expression of β-catenin-target genes, such as ZEB1 and Snail. Moreover, knockdown
of FoxO3a leads to elevation of N-cadherin, fibronectin, ZEB1 and vimentin in highly metastatic
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PC3 cells [105]. Overall, these data demonstrated a crucial role of FoxO family in PCa metastasis via
targeting EMT factors.

4. Epigenetic Regulation of EMT

Epigenetic regulation is considered as a key initial step in mammalian development. Since EMT
occurs during embryogenesis, it is conceivable that epigenetics also plays a critical role in pathologic
EMT. Accumulating evidence has demonstrated that both hyper- and hypomethylation of DNA are
involved in the deregulation of several genes contributing to PCa progression [106–108]. In particular,
aberrant DNA hypermethylation in cancer may lead to inactivation of tumor suppressor genes,
leading to increased invasiveness of PCa. HIC1 is a tumor suppressor gene located at 17p13.3,
a chromosomal region that is frequently hyper-methylated or deleted in human tumors. HIC1 acts as
a transcriptional repressor involved in the suppression of SIRT1 and the regulation of TP53-dependent
apoptotic DNA-damage responses [109]. A study using PCa specimens showed that high frequency
of HIC1 gene hypermethylation is observed in metastatic PCa, compared to primary and benign
tissue. Moreover, hypermethylation of HIC1 gene in PCa cells leads to induction of cell migration and
metastasis by promoting EMT via enhancing both Slug and CXCR4 expression that are crucial to PCa
metastasis [110]. Meanwhile, restoring HIC1 expression in several PCa cell lines markedly inhibits cell
proliferation, migration and invasion in vitro, as well as reduces tumor growth, tissue metastasis and
bone destruction in vivo [111,112]. Clearly, epigenetic modification of HIC1 promoter can impact EMT
induction in PCa.

Moreover, histone modification of critical genes has similar effect on EMT induction during PCa
metastasis. The histone methyltransferase, MMSET/WHSC1 (Multiple Myeloma SET domain), is
capable of facilitating EMT in PCa cells via induction of Twist1, which in turns suppresses E-cadherin
expression [113]. In addition, Zeste homolog 2 (EZH2) is a critical component of Polycomb repressive
complex 2 (PRC2) and causes gene silencing by increasing histone methylation. Increased level
of EZH2 has been observed in PCa and many other cancer types. Particularly, transcriptional
repression of E-cadherin by EZH2 is often observed in highly aggressive PCa [114–116]. In addition,
EMT-related transcription factor can be an epigenetic regulator to orchestrate EMT process. SIRT1 is,
known as class III Histone deacetylase, also characterized as an EMT-related transcription factor.
By silencing of SIRT1 can cause down-regulation of ZEB1. In addition, recruitment of SIRT1 at the
promoter region of E-cadherin can be facilitated by the presence of ZEB1 in PCa cells, leading to
transcriptional suppression of E-cadherin [117]. A recent study demonstrated that silencing of SIRT1
can suppress PCa cell migration and invasion via down-regulation of Vimentin and N-cadherin, leading
to subsequent up-regulation of E-cadherin [118]. Overall, SIRT1 is a unique epigenetic regulator as
well as EMT-related transcription factor in PCa.

5. MicroRNA Associated with EMT during PCa Progression

MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression
via post-transcriptional silencing of target genes. miRNA regulation is highly associated with
multiple biological processes such as differentiation, proliferation, migration, survival and invasion.
Several miRNAs are known to target transcription factors contributing to the mesenchymal phenotype
in PCa (Table 2). For incidence, members of the miR-200 family (miR-200a, miR-200b, miR-200c,
miR-141 and miR-449) are markedly down-regulated during PCa progression and are shown
to suppress EMT mainly by inhibiting E-cadherin repressors such as ZEB1 and ZEB2 at the
post-transcriptional level [119–121]. Both miR-203 and miR-205 are known to restore epithelial
phenotype in PCa cells by targeting Slug/SNAI2 and ZEB2. Clinically, expression level of miR-203
is significantly attenuated in bone metastatic PCa specimens compared with benign tissue, while
miR-205 is found to be decreased dramatically in lymph node metastasis when compared to primary
prostatic tumor [122,123]. Meanwhile, by miRNA microarray analysis, miR-508-5p, miR-145, miR-143,
miR-33a and miR-100 were found to be significantly down-regulated in metastatic PCa compared to
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the primary tumor. In particular, miR-143 and miR-145 derived from the same cluster are shown to
reverse EMT and reduce PCa cell migration and invasion by targeting fibronectin and ZEB2 [124,125].
Moreover, several mesenchymal factors such as N-cadherin, Twist and Snail are regulated by miR-29b,
which is also down-regulated significantly in PCa cell lines and PCa patient specimens when compared
to normal prostate epithelial cells and adjacent benign tissue, respectively. Ectopic expression of
miR-29b in PCa cells is capable of suppressing PCa invasiveness in vitro, and diminishing secondary
colonization at the lungs and liver following intravenous injection in vivo, suggesting miR-29b acts as
an anti-metastatic miRNA that is down-regulated during PCa progression [126]. Meanwhile, miR-23b
is found to be a methylation-silenced tumor suppressor that inhibits EMT via directly targeting
Src kinase and Akt. Moreover, this study also demonstrated that ectopic expression of miR-23b
in PC3 cells causes decline in mesenchymal markers vimentin and Snail, and increase of epithelial
marker, E-cadherin [127]. Similarly, miR-34a is a tumor suppressive miRNA implicated in EMT and
cancer stemness in multiple tumors. A study showed that miR-34a is negatively correlated with PCa
migration and invasion by targeting lymphoid enhancer-binding factor-1 (LEF1), a key transcription
factor involved in regulation of cell proliferation and invasion. This study also demonstrated that
ectopic expression of miR-34a causes the down regulation of N-cadherin and Snail, and induction
of E-cadherin in LNCaP and C4-2B cell lines, overall suggesting that miR-34a-LEF1 regulation plays
an important role in the metastatic progression of PCa [128]. In addition, miR-486 is significantly
down-regulated in metastatic C4-2 cells as well as disseminated tumors in PCa patients, compared to
parental LNCaP cell and localized PCa tissues, respectively. Functionally, miR-486 is demonstrated
to target Snail by post-transcriptional suppression and functionally inhibit PCa cell migration and
invasion [129]. Findings from this study suggest that miR-486 negatively mediates the migration and
invasion potential of PCa via targeting Snail.

In contrast to tumor suppressor miRNAs, aberrant expression of oncogenic miRNAs is observed
in highly aggressive PCa associated with EMT. A study using intra-cardiac inoculation of PCa cells in
mice demonstrated the oncogenic role of miR-409 in PCa bone metastasis [130]. Inhibition of miR-409
in highly metastatic PCa cells reverses EMT process by increasing E-Cadherin expression, reducing
N-cadherin level, and causing morphological change to the epithelial phenotype.

In addition, several studies demonstrated a negative feedback loop between miRNA and EMT
transcription factors. For example, ZEB2 known as a direct target of miR-145 can also suppress miR-145
at transcription level. This double negative feedback loop between ZEB2 and miR-145 determines
the invasiveness and stemness properties of PCa and contributes to the bone metastasis [131].
Moreover, ZEB1 can suppress the transcription of miR-375 that can inhibit EMT-elicited cell migration
and invasion via targeting YAP1 [132].
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Table 2. MicroRNAs involved in the EMT and metastatic progression of PCa.

MicroRNAs Role in EMT Target Impacts on PCa Progression Reference

miR-200b Suppressor ZEB1, ZEB2
Suppress cell proliferation, EMT, invasion,

and inhibit prostate tumor growth
and metastasis.

[120,133,134]

miR-141 Suppressor ZEB1, CD44, EZH2, Rac1
Inhibits cell sphere formation, invasion,

and suppresses tumor regeneration
and metastasis.

[119]

miR-203 Suppressor ZEB2, Bmi, Survivin, RunX2
Suppress prostate tumor metastasis, inhibit

cell proliferation, EMT, and
invasion motility

[122]

miR-205 Suppressor c-SRC, ZEB1, ZEB2 Attenuate cell proliferation, invasion and
tumor growth [123,135,136]

miR-143 Suppressor Fibronectin, ZEB2, MMP13 Suppress cell invasion and migration [125,137]

miR-145 Suppressor Fibronectin, ZEB2 Repress cell bone metastasis, invasion
and migration [125]

miR-29b Suppressor N-cadherin, Twist1, Snail Suppress cell invasion, migration and
attenuate prostate tumor lung metastasis [126]

miR-23b Suppressor Slug, Vimentin, Src Suppress cell migration, invasion and
attenuate prostate tumorigenecity [127]

miR-34a Suppressor LEF1, N-cadherin, Snail Attenuate cell invasion and migration [128,138]

miR-486 Suppressor Snail Suppresses migration and invasion of cells. [129]

miR-409 Inducer STAG2, RBL2, RSU1, NPRL2
Increase invasiveness and aggressiveness,
and promotes tumorigenecity, EMT and

stemness of prostate tumor
[130]

6. Long Non-Coding RNA Regulation of EMT in PCa

Long non-coding RNAs (lncRNAs), such as the prostate specific prostate cancer antigen
3 (PCA3/DD3), also plays a critical role in PCa EMT. Silencing of PCA3 in LNCaP cells modulates the
expression pattern of several cancer-related genes coding EMT markers such as MTA2 and PLAUR.
Meanwhile, PCA3 is shown to facilitate PRKD3-mediated invasion and migration via competitive
sponging of miR-1261 [139]. In addition, SChLAP1 (Second Chromosome Locus Associated
with Prostate-1) is prevalently expressed in a subset of metastatic PCa, compared to localized
primary PCa. Mechanistically, SChLAP1 is able to enhance PCa metastasis by altering the cellular
localization and gene regulation of tumor-suppressive SWI/SNF (Switch/Sucrose Nonfermenting)
chromatin-modifying complex through interaction with SNF5 [140]. In addition, a recent study also
demonstrates that SChLAP1 can modulate the MAPK1 signaling pathway, leading to accelerating
cell proliferation and enhancing metastatic potential of PCa in vitro and in vivo [141]. Another highly
up-regulated lncRNA in PCa is Metastasis-associated Lung Adenocarcinoma Transcript 1 (MALAT1)
that is shown to enhance EZH2-mediated repression of Polycomb-dependent target gene, E-Cadherin.
Mechanistically, by interacting with the Polycomb protein enhancer of EZH2, MALAT1 is capable of
facilitating EZH2 recruitment to target genes, such as E-cadherin and DAB2IP, resulting in enhanced
EZH2-mediated migration and invasion in aggressive CRPC cell lines [142–144]. PlncRNA-1 has been
shown to induce N-cadherin expression through modulating TGF-β1 signaling, and hence increase
PCa cell migration and invasion motility [145].

7. Conclusions

The initiation of EMT is considered the initial step leading to cancer metastasis that is expected
to contribute to the poor prognosis of cancer patient. Thus, targeting EMT is likely to improve the
overall survival of a patient. EMT is a highly regulated process that can be engaged by the reciprocal
interaction between tumor surrounding microenvironment and cancer cells. Through extensive survey
in PCa, several key inducers associated with the specific signaling pathways and their regulations have
been reported. With respect to the role of EMT in cancer metastasis, stemness, and chemo-resistance,
apparently, these key regulators can be druggable targets to be a new generation of cancer medicine as
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a targeted therapeutic strategy. In this case, small molecule inhibitor such as EZH2 inhibitor or certain
unique miRNA such as miR-200 [146] and miR-145 [147] can be further tested in vivo to evaluate their
efficacy and validate their mechanism of action.
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