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Abstract: Influenza A virus (IAV), like other viruses, depends on the host cellular machinery for
replication and production of progeny. The relationship between a virus and a host is complex,
shaped by many spatial and temporal interactions between viral and host proteome, ultimately
dictating disease outcome. Therefore, it is imperative to identify host-virus interactions as crucial
determinants of disease pathogenies. Heterogeneous ribonucleoprotein A1 (hnRNPA1) is an RNA
binding protein involved in the life cycle of many DNA and RNA viruses; however, its role in
IAV remains undiscovered. Here we report that human hnRNPA1 physically interacts with the
nucleoprotein (NP) of IAV in mammalian cells at different time points of the viral replication cycle.
Temporal distribution studies identify hnRNPA1 and NP co-localize in the same cellular milieu in
both nucleus and mitochondria in NP-transfected and IAV-infected mammalian cells. Interestingly,
hnRNPA1 influenced NP gene expression and affected viral replication. Most importantly, hnRNPA1
knockdown caused a significant increase in NP expression and enhanced viral replication (93.82%) in
IAV infected A549 cells. Conversely, hnRNPA1 overexpression reduced NP expression at the mRNA
and protein levels and impeded virus replication by (60.70%), suggesting antagonistic function. Taken
together, results from this study demonstrate that cellular hnRNPA1 plays a protective role in the host
hitherto unknown and may hold potential as an antiviral target to develop host-based therapeutics
against IAV.

Keywords: protein-protein interactions; host-virus relationships; IAV replication; nucleoprotein;
hnRNPA1

1. Introduction

Influenza A is a zoonotic intracellular RNA virus that imposes a significant disease bur-
den, with approximately 3–5 million infections annually worldwide. Currently, available
intervention strategies are rendered ineffective due to the ever-evolving nature of the virus
and the emergence of drug-resistant strains [1,2]. IAV, unlike other RNA viruses, replicates
in the nucleus and consequentially gets access to a plethora of host factors facilitating its
survival in the host [3,4]. Unraveling the physiological function of host proteins crucial
for viral replication provides mechanistic insights into the intracellular viral lifestyle and
disease pathogenesis that aids in developing novel antivirals [1,5].

NP forms the basic structural and functional unit of the viral ribonucleoprotein (vRNP)
complex. Multiple studies have suggested that NP functions as an adapter protein at
the center of host-virus interactions [6–8]. Further, NP manipulates various host signal
transduction pathways by interacting with multiple host proteins like actinin-4, RNF 43,
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clusterin, AP 15, HSP 40, etc. [9–13]. Host RNA binding proteome (RBPome) is composed
of evolutionarily conserved, abundantly expressed proteins that regulate various aspects of
RNA metabolism and eventually affect gene expression [14–17].

Preliminary studies from our lab using high throughput proteomics approach; im-
munoprecipitation coupled with mass spectrometry (IP/LC-MS) to study the NP inter-
actome in IAV infected A549 cells, identified hnRNPA1 as a plausible interacting partner
of NP. hnRNPA1 is the most ubiquitously expressed member of the hnRNP A/B subfam-
ily, known to regulate various aspects of RNA metabolism and gene expression [18,19].
Heterogeneous ribonucleoproteins (hnRNPs) are functionally the most well-characterized
and evolutionarily conserved family of RNA binding proteins (RBPs), comprising of at
least 40 different proteins from hnRNPA1-U [18,20]. Multiple hnRNP family members
like hnRNP M, H1, A2B1, AB are reported to interact with IAV proteins and regulate viral
replication [21–24]. Therefore, cellular RBPs are believed to be crucial factors shaping
the host-virus dialogue [14]. Diverse binding affinities of hnRNPA1 to DNA, RNA, and
protein shape this protein’s physiological role in the host, ranging from transcription, post-
transcriptional modification, translation, binding affinity, and expression [19,25]. hnRNPA1
controls the expression of genes involved in crucial metabolic pathways and is implicated
in a wide variety of cancers and neurodegenerative disorders [18,26–28]. Mutations of
hnRNPA1 result in amyotrophic lateral sclerosis (ALS) and the syndrome multisystem
proteopathy [29,30]. Unfortunately, what we know is the tip of the iceberg and needs
subsequent investigation.

There is mounting evidence that hnRNPA1, an RNA binding protein, interacts with
many viral gene products and differentially regulates host-virus gene expression in viral
infections [14,31]. It is shown that in Sindbis virus, EV-71, human rhinovirus (HRV), porcine
epidemic diarrhea virus (PEDV) infections, hnRNPA1 promotes viral infection. In contrast,
in others like human T-cell lymphotropic virus (HTLV-1) and hepatitis C virus (HCV),
it abrogates viral infection, protecting the host [14,32–36]. However, there is a dearth of
studies examining the role of hnRNPA1 in IAV infection. Here, endogenous hnRNPA1
was identified and validated as an interacting partner of NP in a mammalian cell system
by co-immunoprecipitation. Temporal distribution studies identified that hnRNPA1-NP
co-localize primarily in the nucleus and the mitochondria of the infected cell. We report that
IAV infection enhanced hnRNPA1 protein expression in a dose-dependent manner. Most
importantly, we have shown that hnRNPA1 overexpression attenuates NP gene expression
at mRNA and protein level and abrogates viral replication. Concordantly, downregulation
of hnRNPA1 enhanced NP gene expression and progeny virion production in IAV-infected
cells. Our results demonstrate a novel role of human hnRNPA1 in the IAV replication.

2. Materials and Methods
2.1. Cell Culture, Plasmids, and Antibodies

Human Embryonic Kidney (HEK293), Adenocarcinomic human alveolar basal epithe-
lial cells (A549), Madin-Darby canine kidney (MDCK) were procured from Animal type
tissue culture collection (ATCC, Manassas, VA, USA). Cells were maintained in Dulbecco’s
minimal essential medium, high glucose (DMEM) (Gibco, Invitrogen, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS), 1 mM Sodium hydrogen carbonate,
2 mM L-glutamine, and 1% penicillin-streptomycin (Gibco, Invitrogen, USA). Cells were
incubated at 37 ◦C, 5% CO2 for 24–48 h.

The NP gene of A/Puerto Rico/8/34 (PR8) H1N1 was cloned in pcDNA3.1 myc-His
plasmid to be used as bait for immunoprecipitation studies (Invitrogen, USA). Human
hnRNPA1 gene (NM_031157) cloned in pcDNA3.1+(C)-(K)-DYK vector was purchased
from GenScript, USA. NP, hnRNPA1, β actin, and Vinculin were detected using specific
antibodies. Anti-NP (ab66191) and anti-hnRNPA1 (ab4791) were purchased from Abcam
(Abcam, Waltham, MA, USA). Anti-NP (9G8), anti-hnRNPA1 (4B10), anti-vinculin, anti-β
actin antibodies were procured from Santa Cruz Biotechnology, USA (Santa Cruz, CA, USA).
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2.2. IAV Infection and Virus Infectivity Assay (Plaque Assay)

VR-95 (A/Puerto Rico/8/34 (H1N1) PR8) virus obtained from ATCC was used for in-
fection, and virus titer was determined using MDCK cells, as described previously [13]. For
infection studies, A549 cells were infected with PR8 at a multiplicity of infection (MOI = 1)
unless specified otherwise. After adsorption for 1 h, the unbound virus was removed
by washing the cells with DMEM, and cells were incubated in DMEM media supple-
mented with 0.3% bovine serum albumin (BSA) and 0.1 µg/mL N-p-tosyl-1-phenylalanine
chloromethyl ketone (TPCK) (Sigma Aldrich, St. Louis, MO, USA) to support infection.
Cells were then incubated at 37 ◦C for 24 h in a 5% CO2 micro-environment.

MDCK cells cultured as monolayers (90–95% confluent) in DMEM complete me-
dia were incubated with 150–200 µL of virus inoculum at different serial dilutions in
0.3% BSA supplemented DMEM media, traversing from 100–10−4 at 37 ◦C with 5%
CO2, 1h. Briefly, MDCK cells were seeded in four 6 well plates at a seeding density
of 0.325 × 106 cells per mL and incubated at 37 ◦C for 22–24 h. Plates were rocked every
15 min to ensure uniform virus distribution for an hour. Mock infected cells were treated
with minimal media supplemented with 0.3% BSA. Post-incubation, virus inoculum was
removed and substituted with 0.6% low melting point agarose (LMP) (Life Technologies,
Carlsbad, CA, USA) in L15 medium (2X L15, 1M HEPES, 50 µg/mL gentamycin, NaHCO3
& Pen Strep) (Hi-Media, Mumbai, India) supplemented with 2 µg/mL Trypsin-TPCK
(Sigma-Aldrich, MO, USA) to support infection. Cells were incubated for 48 h at 37 ◦C.
L15-agarose overlay was removed, and cells were stained with staining solution (1% crystal
violet and methanol) for 30 min and washed with running water. After that, the stain-
ing solution was removed, and the number of plaques (plaque-forming unit (PFU)) was
elucidated after drying, as described previously [13].

2.3. Plasmids and siRNA Transfection

Plasmid DNA transfections were performed using Lipofectamine 2000TM (Invitrogen,
Waltham, MA, USA) in HEK and or A549 cells maintained in serum and antibiotic-free
basal DMEM media, following the manufacturer’s protocol. The culture was then replaced
with DMEM media supplemented with 10% FBS and Penicillin streptomycin, 4–6 h post-
transfection (Gibco, Invitrogen, USA) for indicated time points before processing.

hnRNPA1 ON-TARGET plus SMARTpool siRNA was procured from Dharmacon,
USA. Nontargeting control siRNA (NTC) (negative control) was procured from Santa Cruz,
Biotechnology, USA. For siRNA-mediated transfection, A549 cells (80–90% confluency)
were transfected with test or NTC control siRNA using RNAiMaxTM (Invitrogen, USA) in
basal DMEM media for 6 h. Post-incubation, serum-free media was supplemented with
complete media (10% FBS, 1% penicillin-streptomycin) and incubated for 24 h, 37 ◦C, 5%
CO2. Cells were washed with 1X Phosphate buffer saline (PBS) followed by PR8 infection
at a multiplicity of infection (MOI = 1), unless specified otherwise, and incubated for
24 h, 37 ◦C, 5% CO2. Cell lysates were harvested at indicated time points and processed
by immunoblotting.

2.4. Protein Extraction, Western Blotting and SDS Polyacrylamide Gel Electrophoresis (PAGE)

Cell lysates were harvested and homogenized in 1X RIPA lysis Buffer (150 mM Sodium
chloride, 50 mM Tris-Cl (pH-8.0), 1% nonyl phenoxypolyethoxylethanol (NP-40), 0.5%
Sodium deoxycholate with 10 mM phenylmethylsulphonyl fluoride (PMSF), and protease
inhibitor cocktail (PIC) (Roche, Basel, Switzerland) on ice. Total protein content in sam-
ples was deduced by standard Bradford assay (BioRad, Hercules, CA, USA) using BSA
2 mg/mL stock solution (Thermo Fischer Scientific, Waltham, MA, USA). Protein lysates
(30–40 µg) were electrophoretically separated on an SDS PAGE (10–15%) and transferred
using nitrocellulose membrane (Santacruz, Santa Cruz, CA, USA) via immunoblotting.
Membranes were blocked using 2.5% v/v skim milk (Santacruz, USA) or 5% BSA prepared
in Tris-buffered saline (TBS) (10 mM Tris HCl, pH 8, 150 mM NaCl) and 0.1% Tween-20
(Sigma Aldrich, USA), followed by primary and secondary horseradish peroxidase (HRP)
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conjugated IgG rabbit (Cell Signaling, Danvers, MA, USA) or IgG mouse antibody (Cell
Signaling, USA). Chemiluminescent detection of proteins using Immobilon crescendo west-
ern blotting HRP substrate detection reagent (Merck Millipore, Burlington, MA, USA) or
WESTAR Supernova (Cyanagen, Bologna BO, Italy), using the manufacturer’s protocol.
Proteins bands were captured using the G: Box XX6 imaging system (Syngene, Cambridge,
UK) and analyzed with Syngene gene tools software (Syngene, Cambridge, UK).

2.5. Co-Immunoprecipitation Assay

Cells were harvested in Lysis Buffer, washed (20 mM Tris-HCl pH 8.0, 10% glyc-
erol, 137 mM NaCl, 0.5% NP-40, 2 mM EDTA, PIC (Roche, USA)) and subjected to co-
immunoprecipitation. Cell extracts were mixed with appropriate antibodies and incubated
at 4 ◦C, 10 rpm, and overnight. The following day, protein G DynabeadsTM (Invitrogen,
Life Technologies, USA) was mixed and rotated at 4 ◦C for 2–3 h. Post-incubation, beads
were washed thrice with ice-cold 1X PBS, and protein-antibody complexes were eluted
in 2X Laemmli Sample Buffer [13]. NP or hnRNPA1-immunoprecipitated proteins were
detected by western blotting.

2.6. Immunofluorescence Imaging

A549 or HEK cells were seeded on coverslips in a 24-well culture plate. Cells were
washed by 1X PBS and fixed by 4% paraformaldehyde (PFA) in PBS for 15 min and
permeabilized using 1% Triton X-100 in PBS for 10 min (Sigma Aldrich, USA) post-infection
or NP-transfection. The cells were then washed with 1X PBS and blocked with blocking
buffer (2% BSA and 1X Phosphate buffer saline in 0.1% Tween 20 (PBST)) for 2 h, 40 rpm at
room temperature (RT), followed by incubation with specific primary antibodies targeting
either hnRNPA1 or NP in antibody dilution buffer (0.5% BSA, 0.3% Tween-20, and 1X
PBS) for 2 h, 40 rpm at RT or 4 ◦C, overnight. After washing with 1X PBST cells thrice, 5
min each, cells were subsequently incubated with indicated Alexa Fluor (Abcam, USA)
conjugated secondary antibodies for 2 h at RT. After washing with 1X PBST twice, the
coverslips were mounted onto glass slides using the ProlongTM Gold Antifade Mountant
with DAPI (Thermo Fisher Scientific, USA) and incubated for 24 h at RT or 4 ◦C. Images
were acquired by a fluorescence microscope (Nikon, Tokyo, Japan) or a Leica TCS SP5 II
confocal imaging microscope (Leica, Wetzlar, Germany). The intensity-based quantification
of confocal imaging data was done using the Leica application suite (LAS X 3.1.1) software.

2.7. Subcellular Fractionation

For cellular fractionation assay, 1 × 106 cells were seeded in a 100 mm cell culture
dish and subjected to subcellular fractionation assay using Abcam cellular fractionation kit
(ab17019, Abcam, USA) following the manufacturer’s protocol. Fractions hence obtained
were subjected to immunoblotting and probed with anti-NP (Abcam, USA) and anti-
hnRNPA1 (Santacruz, USA) antibodies. Vinculin (Santacruz, USA), Voltage-dependent
anion-selective channel 1 (VDAC1) (Santacruz, USA), and LaminB1 (Santacruz, USA) were
used as cytoplasmic, mitochondrial, and nuclear fraction controls to validate the purity of
the fractions.

2.8. RNA Extraction and Real-Time PCR (qRT-PCR) Analysis

Total RNA was extracted from cells after the specific treatment, at indicated time
points, using RNeasy Mini Kit (QiagenTM, Hilden, Germany) as per the manufacturer’s
protocol (n = 9). Briefly, 1 µg of RNA was reverse transcribed using the ReverTraAce® qPCR
RT Master Mix with gDNA remover (ToyoboTM, Osaka, Japan) as per the manufacturer’s
protocol. The quality of the cDNA synthesized was evaluated via Biodrop 260/280 nm (Bio-
Rad, Hercules, CA, USA). The resulting cDNA was diluted in a 1:10 ratio, and 150 ng of the
cDNA was used as a template for SYBR green (Bioline, London, UK) based real-time PCR
amplification reaction. The amplification was performed using the following conditions:
one cycle of 95 ◦C for 3 min, 35–40 cycles of 95 ◦C for 30 s, and respective annealing for 45 s
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followed by melt curve analysis. Housekeeping genes like glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), was used as internal control, and the relative target gene fold
change in NP and hnRNPA1 mRNAs was calculated using the delta-delta threshold cycle
2−∆∆Ct method (in reference to the control) [37]. Statistical analysis was performed to
compare the difference between two different treatment groups using the student’s t-test
(two-tailed), respectively.

The primers used for real-time based analysis are tabulated in Table 1.

Table 1. qRT-PCR primers and sequence details used in this study.

Target Gene Primer Name Sequence (5′–3′) References

Human hnRNPA1 Forward TGGACCCATGAAGGGAGGAA
Reverse GCAAAGTATTGGCCTCCACC

Human GAPDH Forward TCACTGCCACCCAGAAGACTG
Reverse GGATGACCTTGCCCACAGC

NP mRNA Forward TGTGTATGGACCTGCCGTAGC [38]
Reverse CAATCCACACCAGTTGACTCTTG [38]

2.9. Densitometry and Statistical Analysis

Western blots quantification (densitometry analysis) and qRT-PCR results are expressed
as the mean± S.D. from at least three independent experiments (n = 3), and statistical analysis
was performed using two-tailed, student’s t-test by GraphPad Prism 9 (USA).

3. Results
3.1. Human hnRNPA1 Interacts with IAV Nucleoprotein

Using high throughput proteomics techniques, immunoprecipitation coupled with
liquid chromatography and mass spectrometry (IP-LC/MS), the interacting partners of
Influenza A NP from PR8 were screened in PR8-infected A549 cells. This preliminary
screening identified hnRNPA1 as a putative interacting partner of NP, 8 h post-infection (p.i).
(Data not shown). A co-immunoprecipitation assay was performed to confirm further and
validate this interaction post-NP transfection and IAV infection (MOI 1, 3) in mammalian
cells. To this end, HEK cells were transfected with pcDNA3.1-myc/HisB (vector control)
or NP from H1N1 isolate cloned in pcDNA3.1-myc/HisB expression vector. The cell
lysates were harvested 48 h post-transfection and subjected to co-immunoprecipitation
assays and western blotting using anti-NP and/or anti-hnRNPA1 antibodies (Figure 1A–C).
Myc-tagged expression of NP was confirmed using immunoblotting (Figure 1A,B). As
shown in Figure 1A, immobilized anti-myc antibody (NP) precipitated a large amount of
hnRNPA1 in pcDNA-3.1-myc/HisB-NP transfected cells than with the empty vector control
(pcDNA3.1-myc/HisB). Similarly, a reciprocal IP, using anti-hnRNPA1 antibody followed
by immunoblotting with anti-myc (NP) antibody, confirmed hnRNPA1-NP interaction
(Figure 1B). These results demonstrate that IAV NP specifically associates with cellular
hnRNPA1 in NP-transfected mammalian cells.

After validating NP-hnRNPA1 in NP-transfected cells, we next sought to determine
this interaction in IAV-infected cells. Briefly, A549 cells were infected with PR8 at different
multiplicities of infection (MOI), 1 and 3. Further, cells were harvested at indicated time
points, p.i., and subjected to immunoprecipitation using anti-NP antibody. In line with
our previous results, NP of PR8 co-immunoprecipitated with human hnRNPA1 in A549
infected cells at 8 and 24 h p.i (n = 3) (Figure 1C–E), emphasizing its significance in the
IAV life cycle. These results collectively confirm that human hnRNPA1 and NP are direct
interacting partners.
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Figure 1. hnRNPA1 interacts with viral nucleoprotein (NP) in mammalian cells transfected with
the NP expression plasmid and infected with A/Puerto Rico/8/34 virus H1N1 (PR8) by co-
immunoprecipitation. HEK cells were transfected with either pcDNA3.1 (pcDNA3.1-myc/HisB)
or pcDNA3.1-NP from PR8 expression plasmids, 48 h post-transfection, cells were harvested, and
co-immunoprecipitation (IP) was performed using (A) anti-NP (myc) antibody, (B) anti-hnRNPA1 an-
tibody. Anti-NP (myc) antibody and anti-hnRNPA1 antibody were used to detect NP and hnRNPA1,
respectively, by immunoblotting (IB). Vinculin was used as the loading control. (C), A549 cells were
infected with PR8 virus (MOI = 1) and harvested 24 h post-infection (p.i), followed by immunopre-
cipitation (IP) using anti-NP antibody. (D,E) A549 cells were infected with PR8 virus at (MOI = 3)
and harvested at designated time points, p.i, followed by immunoprecipitation (IP) using an anti-NP
antibody (n = 3). Uninfected cells (Mock) were used as a control. IgG isotype control shows no
nonspecific binding (D). anti-hnRNPA1, anti-NP, anti-Vinculin, and anti-β actin were used to detect
the proteins by immunoblotting (IB). In the figure, Co-IP is the immunoprecipitated fraction, and
unbound is the washed fraction. (D,E): M1, M2, M3 represent uninfected cells (biological triplicates,
n = 3), and I1, I2, and I3 represent PR8 infected cells (MOI 3) (n = 3).
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3.2. Cellular hnRNPA1 Co-Localizes with Viral Nucleoprotein in NP-Transfected HEK Cells and
IAV-Infected A549 Cells

Cellular translocation of hnRNPA1 in response to external stimuli like stress, osmotic
shock, or viral infections is well known; however, its expression and temporal distribution
in IAV infection are rather elusive. After validating hnRNPA1 and NP as direct interacting
partners, we next performed kinetics studies to determine the primary site of hnRNPA1
and NP interaction in mammalian cells. This was investigated by adopting two approaches:
immunostaining by confocal microscopy and subcellular fractionation. In the first ap-
proach, HEK cells were transfected either with pcDNA3.1-myc/HisB (vector control) or
pcDNA3.1-myc/HisB-NP plasmid to induce the expression of viral NP in mammalian
cells transiently. Cells were fixed with 4% PFA, 48 h post-transfection, and processed for
immunostaining by incubating with NP and hnRNPA1 primary antibodies and Alexa fluor
594 (NP) and Alexa fluor 488 (hnRNPA1) tagged secondary antibodies. To stain the nu-
cleus, 4′,6-diamidino-2-phenylindole (DAPI) was used (Figure 2A). As shown in Figure 2A,
Panel II, NP, and hnRNPA1 co-localized predominantly in the nucleus in NP transfected
cells (48 h). pcDNA3.1-myc/HisB transfected cells (control) showed no co-localization
(Figure 2A, Panel I).

Figure 2. Co-localization of cellular hnRNPA1 and NP in the nucleus in NP transfected (A) and IAV
infected (B) mammalian cells. (A) HEK cells were transfected with either empty vector, pcDNA3.1
(pcDNA3.1-myc/HisB), or pcDNA3.1-NP for 48 h and processed for immunofluorescence analysis.
hnRNPA1 and NP were detected using anti-hnRNPA1 monoclonal antibody and Alexa flour 488
conjugated secondary antibody (green); NP polyclonal antibody and Alexa flour 594 conjugated
secondary antibody (red), respectively. Arrows indicate co-localization of NP and hnRNPA1 in
NP transfected cells. Panel I shows pcDNA3.1 transfected (vector control), and Panel II depicts
pcDNA3.1-NP transfected cells. Images were acquired using an immunofluorescence microscope
(Nikon, Japan). (B) A549 cells were either uninfected (Mock) (Panel I) or PR8 infected (MOI = 1)
(Panel II, III, IV, V) and fixed with 4% paraformaldehyde at indicated time points, p.i. hnRNPA1 and
NP were detected using anti-hnRNPA1 antibody and Alexa fluor 488 conjugated secondary antibody
(green); anti-NP polyclonal antibody, followed by Alexa fluor 594 conjugated secondary antibody
(red), respectively. Cells were mounted using ProLongTM Gold Antifade Mountant with DAPI (blue)
and processed for confocal microscopy (63X). Arrows indicate co-localization of NP and hnRNPA1 in
IAV infected cells. (C) Intensity-based quantification of confocal data was performed using LASX
3.1 software (Leica Microsystems, Wetzlar, Germany). Co-localization rate (%) (y-axis) of NP and
hnRNPA1 at different times post-infection (p.i) (x-axis) was extrapolated. Co-localization % was
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computed using Pearson’s correlation (+1–(−1)) (+1: perfect co-localization and−1: perfect exclusion)
and Overlap Coefficient (0–1) (1: perfect co-localization and 0: No co-localization) by LASX 3.1 using
the intensity-based quantification feature. Briefly, 10–13 z-stack slices per image per time point were
selected, and a co-localization rate was generated using Pearson’s correlation coefficient and Overlap
Coefficient for further processing (n = 3). Statistical analysis was performed using one-way ANOVA
and post-hoc Tukey test, * indicates that each time point data is significant with respect to each other.

Similar results were seen in PR8 infected A549 cells by confocal microscopy. As shown
in Figure 2B, NP and hnRNPA1 co-localized predominantly in the nuclear sub-compartment
at different time points, p.i (Figure 2B, Panel II, III, IV, and V). The data collected from
three independent regions of interest are represented graphically, wherein Pearson’s corre-
lation coefficient and Overlap coefficient was used to measure the degree of co-localization
hnRNPA1 and NP (Figure 2C). Quantification of confocal data in IAV-infected A549 cells
suggested maximal co-localization (Pearson’s correlation coefficient, 0.701; Overlap coeffi-
cient, 0.729) in the nucleus in the following pattern: 8 h > 4 h > 24 h > 12 h in IAV-infected
A549 cells (Figure 2C). As IAV replicates in the nucleus, NP and hnRNPA1 co-localization
hints that human hnRNPA1 may influence IAV replication.

Viral infections are known to regulate the cellular localization of hnRNPA1; therefore,
to ascertain and confirm the enrichment of hnRNPA1 and IAV NP in various subcellular
compartments, cellular fractionation assay was performed using Abcam fractionation kit
(ab 109719) following the manufacturer’s protocol in pcDNA3.1-myc/HisB-NP transfected
HEK cells and PR8-infected cells (MOI = 1). hnRNPA1 expression was concentrated in the
mitochondrial and nuclear sub-compartments at all the time points investigated in both
pcDNA3.1-myc/HisB-NP-transfected cells (Figure 3A, Panel II and III) and PR8-infected
cells (Figure 3B, Panel II and III). In uninfected cells, hnRNPA1 was diffusely distributed
across all fractions while IAV infection upregulated endogenous hnRNPA1 expression
compared to its uninfected control (Mock) (Figure 3B, Panel III). On the other hand, NP
was diffusely distributed across all the compartments with an overall increase in expression
at later time points (12 and 24 h) of infection (Figure 3B, Panel III). As seen in this study,
enhanced NP expression and cytoplasmic translocation may be attributed to the synthesis
of viral proteins, as previously reported [11,39]. In addition, at later stages, hnRNPA1
and NP co-localized in all the fractions, with maximal co-localization in the nucleus and
mitochondria. Uninfected cells (Mock) showed no co-localization (Figure 3B, Panel II).
hnRNPA1 is a nuclear protein known to alter its subcellular location in response to viral
infections, mitochondrial localization of this RBP in IAV infection is very interesting. Based
on the preceding findings, we may deduce that hnRNPA1-NP co-localizes in NP transfected
and IAV infected cells at early and late stages of infection, further supporting our previous
observation. Thereby implying that the site of hnRNPA1-NP interaction may be in the
nucleus and mitochondria of the cell.

3.3. Influenza Infection Enhances hnRNPA1 Protein Expression in IAV-Infected A549 Cells

Based on our findings that NP and hnRNPA1 interact and co-localize in the same
cellular compartments, we investigated if Influenza infection influenced hnRNPA1 protein
expression in a dose-dependent manner. To achieve this, A549 cells were infected with
PR8 at MOI 1, 3, 5, and relative hnRNPA1 protein expression was studied, 24 h p.i in A549
cells (Figure 4A,B). As shown in Figure 4A,C, increasing viral load (MOI 1, 3, 5) positively
regulated NP expression (n = 3), p < 0.05. Likewise, hnRNPA1 expression exhibited a
significant increase with increasing MOI with up to 34.4%, 89% increment at MOI 3 and
5, respectively (n = 3), p < 0.05 (Figure 4A,B). Thereby hinting that increasing viral load
concurrently upregulates hnRNPA1 expression in IAV-infected cells. This is in line with
previous reports wherein viruses adopt diverse strategies to regulate the expression of
crucial host proteins for their benefit [10,13,39].
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Figure 3. NP of IAV co-localizes with cellular hnRNPA1, primarily in the nucleus and mitochon-
drial compartment in pcDNA3.1-NP-transfected (A) and IAV-infected cells (B). (A) HEK cells were
transfected with either vector control, pcDNA3.1 (pcDNA3.1-myc/HisB) (Panel II) or pcDNA3.1-NP
(pcDNA3.1-myc/HisB-NP) plasmids (Panel III). Cell lysates were harvested at the designated time
points (6, 12, 24 h), post-transfection, and subjected to subcellular fractionation, followed by im-
munoblotting. (B) A549 cells were either uninfected (Mock) (Panel II) or infected with PR8 (Panel III)
at an MOI of 1 and subjected to subcellular fractionation at designated time points p.i (6, 12, 24 h) and
processed for immunoblotting. Anti-vinculin, anti-VDAC1, and anti-laminB1 were used as controls
for cytoplasmic, mitochondrial, and nuclear fractions. hnRNPA1 and NP were detected using anti-
hnRNPA1 and anti-NP primary antibodies. Cyto; C: cytoplasmic fraction, Mito; M: mitochondrial
fraction, and N: nucleus.
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Figure 4. Increasing viral load enhances cellular hnRNPA1 protein expression. (A) A549 cells were
either uninfected (Mock) or infected with (PR8) virus at varying MOI (1, 3, 5). Cell lysates were
harvested 24 h p.i in RIPA Buffer, and 30 µg of the sample were subjected to immunoblotting to detect
hnRNPA1, NP, and vinculin using specific antibodies. (B) Relative fold change in the expression of
hnRNPA1 protein was deduced by densitometry analysis using Syngene gene tools analysis software
(Syngene, Cambridge, UK) and relative hnRNPA1 protein levels normalized against vinculin and,
uninfected sample group (Mock) were plotted (n = 3). (C) Relative fold change in the expression
of NP protein was deduced by densitometry analysis using Syngene gene tools analysis software
(Syngene, Cambridge, UK), and relative NP protein levels normalized against vinculin MOI 1 sample
group were extrapolated. Results shown in (B,C) represent mean ± S.D. from three independent
experiments (n = 3). Statistical significance was determined using one-way ANOVA with post-hoc
Tukey test *, p < 0.05, **, p < 0.01, ***, p < 0.001.

3.4. RNAi-Mediated Knockdown of hnRNPA1 Enhances Nucleoprotein Gene Expression

Next, we examined the consequences of hnRNPA1 downregulation on NP gene ex-
pression in infected cells. hnRNPA1-specific small interfering RNAs (siRNAs) were used
to knockdown constitutively expressed hnRNPA1 in mammalian cells. A total 30 nM
concentration of hnRNPA1 siRNA pool was used to achieve optimal silencing in A549 cells
(Figure 5). hnRNPA1 expression was modulated via small interfering RNA (siRNA) against
hnRNPA1 in PR8-infected A549 cells. hnRNPA1 protein levels were drastically reduced in
cells transfected with hnRNPA1 SMART pool siRNA compared to the NTC siRNA control
(Figure 5A). The efficiency of hnRNPA1 knockdown was validated by western blotting
as significant hnRNPA1 depletion (~90%) was observed in hnRNPA1 siRNA treated cells
in comparison to NTC siRNA treated control (n = 3), p < 0.05 (Figure 5A,B). Further, hn-
RNPA1 siRNA treated cells exhibited enhanced NP protein expression (n = 3), p < 0.05
(Figure 5A,C).
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Figure 5. siRNA-mediated knockdown of hnRNPA1 enhances NP gene expression and viral repli-
cation in A549 cells. (A) A549 cells were transfected with non-targeting control (NTC) siRNA pool
or hnRNPA1 specific siRNA pool for 24 h. At 24 h post-transfection, cells were either uninfected
(Mock) or infected with PR8 at an MOI of 1. Cell lysates were harvested in RIPA buffer, and 30 µg
of the sample was analyzed by SDS PAGE and western blotting using anti-NP and anti-hnRNPA1
antibodies (n = 3). Vinculin was used as a loading control. (B,C) The fold change in expression levels
of hnRNPA1 (B) and NP (C) protein was deduced by densitometry analysis using Syngene gene
tools analysis software (Syngene, Cambridge, UK) and plotted. Results shown in (B,C) represent
mean ± S.D. from three independent experiments (n = 3). Statistical significance was determined
using a nonparametric, two-tailed student’s t-test. *, p < 0.05, **, p < 0.01, ***, p < 0.001. (D,E) Total
cellular RNA was isolated, and relative mRNA expression of (D) hnRNPA1 and (E) NP was deduced
using specific primers by qRT-PCR (n = 9). Briefly, A549 cells were transfected with non-targeting
control siRNA (NTC) (NTC siRNA (I)) or hnRNPA1 siRNA pool (hnRNPA1 siRNA (I)) for 24 h,
followed by infection with PR8 at an MOI of 1. Data shown in (D,E) represent mean ± S.D. from
three independent experiments (n = 9). Statistical significance between control and treated sample
groups was determined using nonparametric, two-tailed student’s t-test *, p < 0.05, **, p < 0.01, ***,
p < 0.001. NTC siRNA (I): NTC control siRNA treated PR8 infected cells and hnRNPA1 siRNA (I):
hnRNPA1 siRNA treated PR8 infected cells.
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As hnRNPA1 depletion enhanced NP protein expression, we anticipated that NP
mRNA expression would also be impacted. To test this hypothesis, NP mRNA levels
were monitored in hnRNPA1 depleted, IAV infected cells via quantitative real-Time PCR
(qRT-PCR). Briefly, total RNA isolated from A549 cells treated with either hnRNPA1 specific
siRNA or NTC siRNA, followed by infection with PR8 virus (MOI = 1) and subjected to
qRT-PCR analysis (Figure 5D,E). hnRNPA1 mRNA levels were significantly downregulated
(~97.12%) in hnRNPA1 siRNA treated cells (n = 9), p < 0.05 (Figure 5D). On the contrary,
NP mRNA levels showed significant upregulation (~2.3 folds) in hnRNPA1 silenced, IAV-
infected cells, 24 h p.i (n = 9), p < 0.05 (Figure 5E). NTC siRNA treated, IAV infected
cells were used as a negative control. This alteration in NP gene expression in hnRNPA1
depleted, IAV infected cells implies an antagonistic relationship between hnRNPA1 and NP.

3.5. hnRNPA1 Overexpression Reduces NP Protein and mRNA Expression In Vitro

Because hnRNPA1 silencing enhanced NP gene expression, we next sought to deter-
mine if overexpressing hnRNPA1 in IAV infection exhibited an opposite effect. For this,
hnRNPA1 expression was transiently upregulated by transfection with human hnRNPA1
cloned in a mammalian expression vector; pcDNA3.1-hnRNPA1, followed by infection
with PR8 virus (MOI = 1). Briefly, A549 cells were transfected with either pcDNA3.1 con-
trol plasmid or pcDNA3.1-hnRNPA1 plasmid, followed by IAV infection (Figure 6). Cell
lysates harvested 24 h; p.i were subjected to western blotting. hnRNPA1 expression was
significantly upregulated in IAV-infected cells (n = 3), p < 0.005 (Figure 6A). Concordantly,
cells with enhanced hnRNPA1 expression showed a significant decline in NP protein levels
(n = 3), p < 0.005 in comparison to pcDNA3.1 transfected cells (negative control), suggesting
that enhancing hnRNPA1 cellular levels suppresses NP protein expression in IAV infection
(Figure 6A,B).

Similarly, NP mRNA expression was studied under the influence of hnRNPA1 up-
regulation in IAV infected cells via qRT-PCR. hnRNPA1 mRNA levels were significantly
enhanced (~2 folds) in pcDNA3.1-hnRNPA1 transfected cells (n = 9), p < 0.005 (Figure 6D).
As expected, NP mRNA expression was attenuated by ~3 folds in hnRNPA1 upregulated,
IAV-infected cells with respect to control (n = 9), p < 0.001 (Figure 6E). These results cor-
roborate our previous findings and emphasize the role of human hnRNPA1 in influencing
viral NP gene expression.

3.6. Human Heterogeneous Ribonucleoprotein A1 Expression (HNRNPA1) Impacts IAV
Replication In Vitro

Viral infections are known to regulate the expression of key host proteins to benefit
their replication. To investigate this aspect, we examined viral replication after transient
hnRNPA1 overexpression (plasmid transfection) or knockdown (specific siRNA mediated)
in A549 cells (Figure 7A,B). To study the consequence of hnRNPA1 depletion on viral repli-
cation, A549 cells were transfected with NTC siRNA or hnRNPA1 siRNA pool and infected
with; PR8 at a MOI = 1. Cell supernatants collected 24 h p.i were used to measure virus
titers in MDCK cells via plaque assay (Figure 7A). In line with our previous observations,
there was a steep increase of ~93.82% in viral replication as reflected by increased virus
titer (PFU/mL), post-hnRNPA1 siRNA treatment in comparison to NTC siRNA treated
control population (n = 3), p = 0.01 (Figure 7A). Similarly, the effect of transient hnRNPA1
overexpression on progeny virion production was also deduced. Briefly, A549 cells were
transfected with either control plasmid (pcDNA3.1) or pcDNA3.1-hnRNPA1 expression
plasmid for 24 h, followed by infection with PR8 at a MOI = 1 (Figure 7B). Supernatant
collected 24 h p.i was analyzed for viral growth by plaque assay in MDCK cells, as de-
scribed previously [13] (Figure 7B). As shown in Figure 7B, enforced hnRNPA1 expression
in IAV-infected cells reduced virus titer by ~60.70%, impeding progeny virion production,
suggesting antiviral function (n = 3), p = 0.006 (Figure 7B).
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Figure 6. hnRNPA1 overexpression suppresses NP protein and mRNA expression and impedes
viral replication. A549 cells were transfected with either pcDNA3.1 (vector control) or pcDNA3.1-
hnRNPA1 for 24 h and infected with PR8 at an MOI of 1. 24 h later, cells were harvested in RIPA buffer
and subjected to immunoblotting. (A) Relative expression of NP and hnRNPA1, post-hnRNPA1
overexpression in PR8 at an MOI of 1 infected A549 cells was deduced via immunoblotting using
anti-NP and anti-hnRNPA1 antibodies (n = 3). Vinculin was used as a loading control. The fold
change in expression levels of hnRNPA1 (B) and NP (C) protein was deduced by densitometry
analysis using Syngene gene tools analysis software (Syngene, Cambridge, UK) and plotted. Results
shown in (B,C) represent mean ± S.D. from three independent experiments (n = 3). Statistical
significance was determined using a nonparametric, two-tailed student’s t-test. **, p < 0.01, ***,
p < 0.001. (D,E) Total cellular RNA was isolated, and relative mRNA expression of (D) hnRNPA1 and
(E) NP was deduced using specific primers by qRT-PCR (n = 9). A549 cells were transfected with
either pcDNA3.1-hnRNPA1 or pcDNA3.1 expression (vector control) constructs for 24 h, followed by
PR8 infection at an MOI of 1. At 24 h, p.i, the total cellular RNA was isolated, and relative mRNA
expression of NP and hnRNPA1 was deduced using specific primers by qRT-PCR. The data in (D,E)
show mean ± S.D. from at least three independent experiments (n = 9). Statistical significance was
determined using nonparametric, two-tailed student’s t-test. **, p < 0.01, ***, p < 0.001. pcDNA3.1 (I):
pcDNA3.1 transfected, PR8 infected A549 cells and pcDNA3.1-hnRNPA1 (I): pcDNA3.1-hnRNPA1
transfected and PR8 infected A549 cells.
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Figure 7. hnRNPA1 regulates viral replication post-hnRNPA1 knockdown and overexpression in IAV
infected A549 cells. (A) Effect of hnRNPA1 silencing on progeny virion production in IAV-infected
A549 cells. A549 cells were treated with NTC siRNA or hnRNPA1 siRNA pool, followed by infection
with PR8 virus at an MOI of 1. Aliquots of supernatants collected after 24 h were used to determine
viral titers (PFU/mL) by plaque assay. Virus titers (PFU/mL) in NTC siRNA- or hnRNPA1 siRNA-
transfected cells were calculated and plotted (10−3 dilution was used to enumerate plaques). (B) Effect
of hnRNPA1 over-expression on viral replication. Briefly, A549 cells were transiently transfected with
either vector control, pcDNA3.1, or pcDNA3.1-hnRNPA1 expression construct for 24 h, followed by
infection with PR8 at an MOI of 1, 24 h later. Virus titer (PFU/mL) in supernatants of pcDNA3.1- and
pcDNA3.1-hnRNPA1-transfected cells collected 24 h p.i. were calculated and plotted (10−1 dilution
was used for enumeration of plaques. Data shown in (A,B) represent mean ± S.D. from at least three
independent experiments (n = 3). Statistical significance was determined using a nonparametric,
two-tailed student’s t-test. *, p < 0.05, **, p < 0.01, respectively.

Collectively, these results advocate that human hnRNPA1 is a negative regulator of
virus replication and has a protective role in IAV infection.

4. Discussion and Conclusions

The limited coding capacity of viruses, including IAV, depends on the host cellular
systems for propagation and survival, paving the way for a plethora of interactions between
viral and host cellular compartments in infected cells [1]. Virus-host interactions are the
foundation of communication between the host and pathogen, which dictate the initiation
and outcome of infection. Therefore, a comprehensive understanding of the host factors
interacting with the viral machinery is crucial to understanding viral pathogenesis. Owing
to the limited efficacy of currently available virus-derived treatments targeting host proteins
to thwart viral infection is a promising approach. Transcriptional profiling of virus-infected
cells and genome-wide screens highlighted the plausible involvement of hnRNPA1 in viral
infections [14,19,30,40–42]. However, its role in Influenza infection is poorly defined. In
this study, utilizing co-immunoprecipitation, we confirmed and validated that NP of IAV
interacts with human hnRNPA1 in NP-transfected and IAV-infected mammalian cells.

Viral infections impact the host microenvironment by modulating the expression
and localization of essential cellular proteins, including hnRNPA1, consequently affecting
disease pathogenesis [5,21,40,42–45]. Temporal distribution studies identified increased
hnRNPA1-NP co-localization in the nuclear and mitochondrial compartments in NP-
transfected and IAV-infected cells, thereby enhancing the possibility of interaction between
the two. Mitochondrial accumulation of Influenza A vRNP is well documented as it is
associated with the induction of interferon (IFN) and antiviral immune signaling [46–50].
On the other hand, hnRNPA1 is enriched in the nuclear and cytosolic fraction in response
to various internal and external stimuli [51]. The present study provides evidence about the
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mitochondrial localization of hnRNPA1. Considering the recent studies highlighting the
role of mitochondria in regulating innate immune signaling in response to viral infections
and the negative effect of hnRNPA1 on IAV replication characterized in this study [48,52], it
can be speculated that hnRNPA1-NP co-localization in the mitochondria may be a strategy
adopted by IAV to regulate mitochondrial antiviral innate immune responses to facilitate
infection. However, these possibilities need to be examined in detail.

hnRNPA1 interacts with multiple viral gene products and influences viral replication
in other viruses like HIV, HTLV-I, and PEDV [14]. We have also shown that in an IAV
micro-environment, hnRNPA1 knockdown significantly enhanced NP gene expression
and promoted viral replication in A549 cells, suggesting a possible role of hnRNPA1
in the IAV life cycle. Contrastingly, hnRNPA1 overexpression significantly reduced NP
gene expression. The decline in NP protein and mRNA levels correlated with a reduced
number of plaques observed in hnRNPA1 overexpressed, IAV-infected cells, highlighting
its antiviral potential. IAV is known to induce and promote G0/G1 cell cycle arrest to
facilitate transcription and translation of viral gene products [53,54]. hnRNPA1 depletion
is also reported to enhance cell survival and promote G0/G1 cell cycle arrest in lung
cancer [55], thereby explaining increment in the enumerated plaques in hnRNPA1 depleted,
IAV-infected cells. The increment in virus titer, post-hnRNPA1 silencing further strengthens
our hypothesis that hnRNPA1 depletion may alter the host cellular landscape, making
it conducive for viral replication, evident by the increased number of plaques, whereas
hnRNPA1 overexpression exerted an equally opposite effect, hence the consequent decline
in virus titer depicted in Figure 8. In addition to Influenza A, hnRNPA1 has also been
reported to have an antiviral role in HTLV-I and HCV infections [14].

Figure 8. The proposed model depicts the role of hnRNPA1 in IAV infection. hnRNPA1 modulation
is proposed to affect NP gene expression and viral replication. hnRNPA1 interacts with IAV NP
in mammalian cells. IAV infected cells with reduced hnRNPA1 expression exhibit enhanced NP
expression and viral replication (A). Contrastingly, IAV infected cells with enhanced hnRNPA1 levels
show reduced NP expression and abrogated viral replication (B).

The findings from our study unravel a novel role of the host RNA binding protein,
hnRNPA1, in regulating the expression of viral nucleoprotein gene products (the primary
factor that dictates viral replication and disease pathogenesis) and IAV replication. The
protective role of hnRNPA1 in IAV infection sheds light on the unforeseen aspects of
hnRNPA1 functionality and substantiates the role of NP as an adapter protein for host-
virus cross-talk. Future studies are needed to address the molecular mechanisms by which
hnRNPA1-NP interaction regulates viral gene expression, antiviral responses, and IAV
replication which may aid in the development of next-generation therapeutics.
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