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Introduction
Gulf war illness (GWI) is a chronic multi-symptom disorder 
that has impacted approximately one-third of the veterans 
involved with Operation Desert Shield and Desert Storm in 
the 1990 to 1991 Gulf War.1 GWI symptoms include cogni-
tive and motor impairments, mood deficits, headaches, 
migraines, fatigue, gastrointestinal and respiratory issues.2-4 
Gulf war illness is described in the widely accepted Kansas 
criteria, by the chronic symptom domains such as fatigue/sleep 
problems, pain symptoms, cognitive/mood symptoms, gastro-
intestinal symptoms, respiratory symptoms, and skin 
symptoms.5

Although the precise etiology of GWI is unknown, the 
exposure to chemicals, such as anti-nerve gas pills, pyridostig-
mine bromide (PB), and the insecticide permethrin (PER), 
may have contributed to the etiologically related factors of 
GWI.6,7 Soldiers were given PER to prevent vector-borne 
disease and PB as a prophylactic to protect from nerve gas 
agent.8 PB, a reversible acetyl cholinesterase and butyryl cho-
linesterase inhibitor does not readily cross the blood-brain-
barrier. That PB is correlated with working and long-term 
memory deficits in preclinical models suggests that PB alters 
neural networks directly or indirectly.9-13 PER, a synthetic 
pyrethroid, is a widely used insecticide14 that can cause patho-
logical sustained opening of voltage-gated sodium channels,15 
and cell death in humans.16 Exposure of these chemicals in 
preclinical models was reported to cause symptoms including 

neuroinflammation,17 similar to those observed in GWI.18-21 
These mechanisms may underlie the chronic functional disor-
ders that characterize GWI.22-25 The chemical exposure 
hypothesis is supported by the report of the Research advisory 
committee (RAC) on GWI indicating that the overall preva-
lence of GWI is greater in veterans who were exposed to 
higher amounts of pesticides than veterans who had limited 
exposure to pesticides during the Gulf war.25,26

Brain structural and functional abnormalities have also been 
observed in Gulf war veterans. These include reduced hip-
pocampal volume,27-29 astrocytosis,30 neuroinflammation,31-33 
and increased diffusivity in white matter connections.3,6,34 In 
addition to the human data, several established animal models 
are available to study the influence of Gulf war illness-related 
(GWIR) chemical exposure.9,17 Among these, the model in 
which PB and PER are administered intraperitoneally (i.p.) to 
mice for 10 consecutive days results in cognitive deficits, altered 
pain thresholds, long-term memory impairment, changes to 
the proteomic profiles and neuroinflammation.7,11,23,35,36 
Therefore, this animal model enables essential basic research 
needed to understand GWI exposure factors, potential disease 
mechanisms, and to identify therapeutic targets.

Multiple studies have reported that GWIR chemical expo-
sure is associated with astrocyte activation.11,37–46 Cognitive 
impairments are reported with increased reactive astrocytes in 
the cerebral cortex in the GWI model.17 GWIR chemical 
exposure is also associated with decreased neurogenesis and 
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hypertrophy of astrocytes.9 Astrocytes, a type of neuroglial cell, 
meditate chemical exchange in synaptic transmission, and are 
involved in the secretion of neuroinflammatory cytokines and 
chemokines during pathological conditions.47 Neural injury 
and inflammatory conditions induce elevated glial fibrillary 
acidic protein (GFAP) expression in astrocytes,48 and GFAP-
expressing astrocytes can be used to assess the astrocytic popu-
lation. Astrocyte dysfunction can lead to impaired synaptic 
glutamate clearance and dysregulated neuronal activity.3 
Behavioral impairments have also been linked to the presence 
of reactive astrocytes along with increased proinflammatory 
cytokine markers,17 and such changes are associated with 
hypertrophied astrocytes in the hippocampus after GWI 
chemical exposure.9 Rayhan et al.3 reported that astrocyte dys-
function was associated with altered brain function in GWI 
veterans. Therefore, treatments that target astrocyte changes in 
GWI might improve outcome measures. Specifically, hip-
pocampal astrocytes may be important because the hippocam-
pus is involved in learning and memory, emotion, affect, and 
many other cognitive functions.

Vagus nerve stimulation (VNS) has been shown to directly 
influence activated astrocytes, neurogenesis and plasticity in 

the hippocampus.49 VNS is FDA-approved to treat refractory 
seizures in epilepsy patients, depression, and has been used to 
treat numerous other maladies. These include, obesity, chronic 
refractory headaches, migraines, rapid-cycling bipolar disor-
der, treatment resistant anxiety disorders, and Alzheimer’s 
disease. Many of these disorders, as well as GWI, are 
known or thought to have a chronic inflammatory disease 
component. VNS has been previously shown to be anti-
inflammatory50-53 and anti-neuroinflammatory54-57 among its 
possible mechanisms of therapeutic efficacy. We hypothesized 
that exposure to PB and PER in mice causes lasting changes 
to GFAP-labeled astrocytes in the hippocampus and dentate 
gyrus that can be reversed by stimulation of the cervical vagus 
nerve. We further hypothesized that VNS in a mouse model 
of GWI would reduce the long-term behavioral and cognitive 
deficits.

To test this hypothesis, this study incorporated the mouse 
model of GWI in which PB and PER are injected once 
daily for 10 days, after which vagus nerve stimulators were 
implanted at 33 weeks post-exposure. Chronic cognitive-
behavioral performance was examined, as was astrocytosis in 
the hippocampus.

Methods
Animals

All animal experiments were approved by the Texas A&M 
Health Science Center and Baylor Scott and White 
Institutional Animal Care and Use Committee and adhere to 
Federal and State Guidelines. Animals were housed in indi-
vidually ventilated cages under controlled environment with a 
12-hour light dark cycle (light on 6:00 and light off 18:00). All 
animals had continuous access to food and water, and main-
tained on a standard diet (Envigo #8604). Mice were randomly 
assigned to either the chemical exposure group or the control 
group. CD1 mice (male, age 10 weeks) were purchased from 
Jackson Laboratories and were allowed to acclimate for 1 week 
in the animal facility. GWI was induced by giving a single i.p. 
injection of PER and PB, for 10 consecutive days, as previously 
described7,23,35 Briefly, the mixture consisted of 200 mg/kg of 
PER and 2 mg/kg of PB in volume of 50 µl (1:600 drug cock-
tail ratio of volume/weight) dimethyl sulfoxide (DMSO) or 

the same volume of DMSO alone for vehicle control animals. 
In total, we had 5 groups: Naïve (litter matched, no manipula-
tions), DMSO (as vehicle for GWI chemicals), GWI, GWI + 
sham VNS, and GWI + VNS.

Vagus nerve implantation and stimulation. A total of 17 mice 
were implanted with the stimulators (n = 8 GWI + sham 
VNS and n = 9 GWI + VNS). Vagus nerve stimulation 
(VNS) was achieved by implanting stimulators at 33 weeks 
after induction of GWI. Under anesthesia, a midline incision 
was made at the level of the front neck by placing the animal 
on its back. Most commonly, vagus nerve stimulators are 
implanted around the left vagus nerve for effective stimulation 
and programmable microprocessors allow precise control of the 
stimulation paradigm. The bipolar stimulator coil electrodes 
were positioned around the carotid sheath on the left side of 
the vagus. The stimulator was placed subcutaneously below the 
right axilla. Once implanted, the mice were allowed 4 days of 
recovery, after which the stimulators were activated and kept 
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on continuously for 2 weeks. VNS frequency was set at 5 Hz 
with 1 ms pulse width, which cycled continuously for 30 sec-
onds and then turned off for 4 minutes and 30 seconds. Vagus 
nerve stimulators were regularly monitored by an emittance of 
audible tone from stimulators at 660 kHz and received via an 
AM radio. Stimulators were set to “OFF” position (toggled 
with a magnet and confirmed with the AM radio) at the end of 
the Vagus nerve stimulation. The post-VNS assessment was 
performed following VNS de-activation. GWI + Sham VNS 
group mice received the GWI injections and the VNS stimula-
tors were implanted, but not activated.

Behavioral analyses. Previous studies reported that GWI ani-
mals exhibited cognitive impairment up to 4 months after the 
induction of the GWI model.9,10,37,58-60 To extend the timing 
of GWI models to better align with the almost 30 years since 
the 1990 to 1991 Gulf War, we examined mice using the object 
location test (OLT) to examine memory deficits at almost 9 
months after GWI-induction. OLT evaluates spatial learning 
related to hippocampal activity.61 For behavioral testing, the 
number of animals used for each group were as follows: OLT: 
Naïve (n = 10); DMSO (n = 14); GWI (n = 12); GWI + 
VNS Sham (n = 7); GWI + VNS ON (n = 8).

Object location test (OLT). This test consists of 3 successive 
trials.62,63 The first trial (habituation trial) comprised placing 
the mice in the center of the open field box and allowing the 
mice to freely explore the box for 5 minutes with an inter-trial 
interval of 1 hour. In the second trial (sample trial), mice were 
allowed to explore 2 familiar objects (FO1 and FO2) placed on 
opposite sides of the box for 5 minutes. Following the 1-hour 
inter-trial interval, the third trial (test trial) was performed for 
5 minutes. In this trial, the mice were allowed to explore the 
same objects in the open field box with one of the familiar 
objects (FO1) remaining in the previous location while the 
other object (FO2) moved to a new location in the box. The 
mice were continuously video recorded using NOLDUS Etho-
vision automated movement tracking software. The box was 
cleaned with 70% alcohol and air-dried prior to and between 
tests for every mouse. A mouse is considered to be exploring 
an object when its nose was within 1 cm of the respective area. 
Data were collected as the time spent in exploring the object 
moved to a new location or the object remaining in the familiar 
location and the total time spent in object exploration. Times 
spent in exploring the novel place object, familiar place object, 
and total object exploration time were measured. Furthermore, 
the place discrimination index was calculated by using the 
formula, time spent with novel place object/total time spent 
in exploring the novel place object and familiar place object 
×100. Then, the percentage of object exploration time spent 
with a novel place object and familiar place object were com-
pared within each group. The novel place discrimination index 
was also directly compared between naïve and GWI mice. 
The total distance moved, the velocity of movement and the 
total exploration times were also measured for test trial and 

compared across groups to determine whether testing in OLT 
was influenced by locomotion.

Tissue preparation. After behavioral testing, mice were deeply 
anesthetized with Euthasol (390 mg pentobarbital sodium 
and 50 mg phenytoin sodium i.p.) and transcardially perfused 
with 0.9% saline until blood ran clear, followed by 4% para-
formaldehyde.64,65 The brains were allowed to postfix for 24 
hours in the skull, after which they were extracted and fixed 
for an additional 24 hours in 4% paraformaldehyde and subse-
quently cut into 50-µm thick serial coronal sections with a 
vibratome and stored in tissue cryoprotectant at −20°C until 
further use. For GFAP analysis, a subset of animals from each 
group were randomly selected, as follows: Naïve mice (n = 7); 
DMSO (n = 7); GWI (n = 6); GWI + sham VNS (n = 7); 
GWI + VNS (n = 5). Other animals from this study under-
went fresh dissections for analyses that were not included in 
this study.

Glial f ibrillary acidic protein (GFAP) Immunohistochemistry.  
Astrocytes can be identified by immunohistochemical staining 
with anti-GFAP, which labels intermediate filaments in the 
astrocytic cytoplasm. The size, shape and number of astrocytes 
can be indicative of their activation state and can provide 
information on neuroinflammation. Thus, the use of anti-
GFAP allows for the quantitative and morphological analysis 
of GFAP-labeled astrocytes in the hippocampus. GFAP-
immunohistochemistry was performed to label astrocytes in 
coronal sections containing hippocampi.64,66-68 Five tissue sec-
tions per mouse were incubated in CY3 fluorescently tagged 
GFAP antibody (1:1000, Sigma) for 24 hours at room tem-
perature in the dark. These sections were then washed with 
0.01 M PBS for 3 times. Slides were mounted and coverslips 
were applied using Vectashield hard set (Vector labs, Burl-
ingame, CA). To eliminate potential rater bias, slides were 
coded and all image capture and analysis was performed by 
raters blind to the condition of the mouse. Sections were visu-
alized on an Olympus IX81 (Olympus Inc.) laser-scanning 
confocal microscope.

Astrocyte quantif ication. Quantitative analysis of GFAP-
labeled astrocytes was performed using a modified optical dis-
sector method by raters blind to the condition of the mice, as 
previously described.64,66-68 Briefly, slides were coded and over-
lain with a numbered grid. Regions of analysis within each 
numbered grid were selected via a random number generator. 
The dentate gyrus hilus and molecular layers, as well as stratum 
radiatum of hippocampal areas CA1 and CA3 were delineated 
in 5 sections per animal, ranging from bregma −1.45 mm to 
−2.46 mm.69 The sections were equally sampled within this 
range to ensure equal representation of the counting areas 
between the groups. A counting frame of 40 μm × 40 μm was 
randomly positioned in a lattice of 150 μm × 150 μm. Results 
were statistically analyzed using ANOVA with Bonferroni’s 
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multiple comparison post hoc tests. Radial glial like astrocytes 
were quantified in the infra and supra pyramidal blades of the 
dentate gyrus, as previously described.67

Statistical Analysis
We employed one-way ANOVA with Dunnett’s multiple 
comparison post hoc tests for comparison of behavior data 
across all groups. Immunohistochemistry data were statistically 
analyzed using one-way ANOVA with Bonferroni’s multiple 
comparison post hoc tests. All data are presented as mean ± 
SEM. All statistical analysis was performed using Graph Pad 
Prism. The statistical difference was considered significant for 
P values <.05.

Results
Deficits in the object location task are improved by 
VNS

Maintenance of cognitive function depends on the hippocam-
pal trisynaptic pathway.70 OLT is based on the role of the 

hippocampus in providing spatial memory information 
between objects and places in the environment.71 Accordingly, 
the relocation of an object in OLT assesses the animal’s capa-
bility to recognize changes in the object location within its 
immediate environment. Animals in the GWI (P = .02) and 
GWI + VNS sham (P = .01) groups displayed significantly 
reduced total novel object location exploration time (Fig. 1a). 
Examination of the frequency of visits to the object in the 
novel location was also significantly impaired in the GWI 
group relative to the naïve group (P = .02, Figure 1b). The 
GWI + VNS sham group showed a trend (P = .07, NS) 
toward a reduced frequency of visits to the novel place object. 
In both the total exploration time and the frequency, the GWI 
+ VNS group did not show the impairment that was observed 
in the GWI and the GWI + VNS sham group, indicating that 
the VNS improved the outcome of this behavioral test. The 
total distance traveled, and mean velocity were also analyzed in 
the test phase and there were no significant differences between 
the groups (P > .05, Figure 1c and d). These results suggest 
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Figure 1. GWI chemical exposure induces deficits in the object location task that are improved by VNS. In (a), the total time (in seconds) spent exploring 

the object in the novel location is significantly decreased in the GWI mice and GWI + VNS sham mice, relative to the naïve mice. No such deficit is 

observed in the DMSO or GWI + VNS mice. In (b), the frequency of visits to the object in the novel location is significantly decreased in the GWI mice 

relative to the naïve mice, and there was a trend toward a significant decrease in the GWI + VNS sham mice. No such deficit was observed for the DMSO 

or the GWI + VNS mice. Analysis of the total distance traveled (c), and the mean velocity (d) revealed no significant differences between the groups. Data 

are represented as mean ± SEM.
*P < .05. **P < .005.
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that the VNS improved the performance of the hippocampal-
dependent spatial learning task.

Chronic astrocytosis in GWI model is ameliorated 
by VNS

To examine the glial response following GWI in mice, we per-
formed immunohistochemistry for astrocytes in the hippocam-
pus using fluorescent-tagged anti-GFAP. The results show that 
at approximately 9 months after exposure to the Gulf War 
chemicals PB and PER, there is an increased number of 
GFAP-labeled astrocytes in stratum radiatum of hippocampal 
areas CA1 and CA3, and in the hilus and molecular layer of the 
dentate gyrus (Figure 2a–d). Mice in the GWI + VNS sham 
group also showed these increased astrocytes in the hippocam-
pal CA1 (P = .05), CA3 (P = .05), dentate gyrus hilus (P = 
.01), and molecular layer (P = .005), suggesting that GWI 
chemical exposure results in a chronic increase in hippocampal 
astrocytes. Examination of the effects of VNS revealed that it 
significantly reduced the number astrocytes in the hippocam-
pal CA1 (P = .05), CA3 (P = .05), dentate gyrus hilus (P = 
.01), and molecular layer (P = .005). This is consistent with 
previous studies in other disease models in which VNS reduces 
astrocytes.56,72

Discussion
This study expands on the available evidence showing that 
exposure to PB + PER chemicals for 10 days is sufficient 
to induce chronic cognitive deficits and shows a potentially 

beneficial effect of VNS. In the current study, deficits were 
observed at approximately 9 months after GWIR chemical 
exposure that is accompanied by a concomitant hippocampal 
astrocytosis. It is pertinent to note that the VNS seemed to be 
effective in improving OLT performance, suggesting that VNS 
may target hippocampal-dependent tasks. This result is sup-
ported by the reduction in hippocampal astrocytosis in response 
to the VNS and further supports a role for astrocytosis in the 
cognitive deficits observed in GWI and GWI models. The 
behavioral test performed in the current study is associated 
with intact hippocampal function and persisted until approxi-
mately 9 months after GWI-related chemical exposure. This 
finding is analogous to some of the cognitive deficits that are 
observed in veterans with chronic GWI.73,74 Previous studies 
have estimated that 8 to 9 mouse months is roughly equivalent 
to 30 to 40 human years,75-78 and these findings are extremely 
important because as of writing, it has been approximately 30 
years since the Gulf War. Therefore, this model of GWI relia-
bly reproduces the chronic cognitive deficits that are often 
observed in GWI patients, in addition to chronic hippocampal 
astrocytosis.

Neuroinflammation was shown in GWI patients and in 
GWI models.73,74,79-84 A recent study offers supporting evi-
dence for the presence of neuroinflammation by production of 
autoantibodies against astrocytes, oligodendrocytes, and neu-
rons in GWI patients.30 Therefore, it is possible that chronic 
neuroinflammation, including astrocyte activation in the hip-
pocampus, might contribute to the cognitive deficits observed 
in many GWI patients. In this study, astrocytes in the 
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hippocampus and dentate gyrus were examined. The results 
show that these astrocytes are significantly affected by GWI-
related chemical exposure. The fact that VNS in this study sig-
nificantly reduced the astrocytosis in the hippocampus and 
hippocampal dentate gyrus suggests a possible beneficial effect 
in the hippocampus. The hippocampus contributes to brain 
networks that enable engagement in successful and adaptive 
behavior.85 A study reported smaller hippocampi and reduced 
gray matter volumes in frontal, parietal, and occipital cortices 
in 1991 Gulf War veterans.27,86-88 The findings in the current 
study are consistent with previous studies that used VNS in 
other disease models and reported beneficial effects in the hip-
pocampus.49,89-93 Taken together, these findings suggest that 
reducing hippocampal astrocyte activation might be one of the 
therapeutic mechanisms of VNS.

The observation that VNS may improve cognitive and neu-
roinflammatory outcomes is supported by a vast experimental 
and clinical literature, in a number of disorders. Studies dem-
onstrate the beneficial effects of VNS in epilepsy patients by 
decreasing the seizure frequency and reducing the symptoms 
of depression.94 Another study showed reduced inflammation 
after VNS in cerebral ischemic rats by reducing glial activation 
and increasing anti-inflammatory molecules.75 Several other 
studies have demonstrated neuroprotective effects and 
improved behavior after VNS.95,96 The long-term beneficial 
effect of VNS in recurrent treatment-resistant depression has 
also been reported.97-100 Wu et al.,101 reported that transcuta-
neous auricular vagus nerve stimulation is a safe and effective 
method to treat major depressive disorder and it alleviates the 
depressive symptoms, demonstrating that non-invasive VNS is 
also available and shows therapeutic efficacy. Therefore, VNS is 
widely used in clinical populations, is well-established as a safe 
and effective treatment, and may be worth exploring as a viable 
treatment option for GWI patients. The beneficial effects of 
chronic VNS were also observed in patients with migraines, 
another symptom domain seen in some GWI patients. VNS 
reduced the frequency and severity of migraine headaches and 
antinociceptive effects were also observed.100,102,103 In a previ-
ous study, we reported that VNS treatment lowered the nocic-
eptive threshold in this GWI model.35

VNS administered by a surgically implanted stimulator 
has also been shown to be an effective tool in the treatment of 
human inflammatory diseases such as rheumatoid arthritis104 
and inflammatory bowel disease,105 the latter of which is also 
observed in some GWI patients. Therefore, both invasive and 
non- invasive VNS have a demonstrated efficacy in treating 
numerous clinical disorders that include neuroinflamma-
tion, astrogliosis, and symptom domains exhibited by GWI 
patients.

Conclusion
Our results show that administration of Gulf War agents can 
induce chronic neurobehavioral deficits and hippocampal 
astrocytosis at approximately 9 months after gulf war chemical 

exposures. These results support that notion that the chronic 
inflammation that is often observed in GWI Veterans, could 
involve astrocyte activation in the brain. This study is also the 
first to show that VNS can improve cognitive outcomes and 
reduce astrocytosis in a model of GWI. These findings are con-
sistent with previous studies that have observed beneficial 
effects of VNS in other disorders with a neuroinflammatory 
component. Considering the urgent need for therapeutic strat-
egies to treat the Veterans who served in the Gulf War, the 
well-established safety of VNS in humans and its demon-
strated efficacy at targeting symptom domains associated with 
GWI, it is tempting to consider this therapeutic avenue. The 
fact that more recent, minimally invasive, transcutaneous VNS 
devices are available for clinical use further supports the testing 
of this type of therapy in this patient population. It will be 
extremely interesting to learn the results of the recently com-
pleted clinical trial using transcutaneous VNS in 27 GWI 
patients to treat pain and migraines. Regardless of those results, 
the current study provides evidence that VNS might warrant 
further examination to treat other symptom domains in GWI 
and future studies are needed to further assess this potential.
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