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Abstract: It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes
were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium
carbonate, which represents an experimentally convenient, atom-economic process for this anionic
trifluoromethylation of non-enolisable aldehydes and ketones.
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1. Introduction

The challenge to generate organofluorine molecules featuring a trifluoromethyl motif at a carbon
center has increasingly stimulated high interest both in academic and chemical industry research [1,2].
In the past decades, trifluoromethylated compounds have received much attention because of
their significant applications as important synthons, biologically active agents, and functional
materials that exhibit specific and unique biological and physical features [3–8]. Recent reports
on the direct introduction of a trifluoromethyl group by electrophilic, nucleophilic, or radical
processes have revealed the equally challenging approach of exploiting prochiral trifluoromethylated
substrates [4,9–20]. In addition, the chemoselective construction of trifluomethylated tertiary alcohols
is undoubtedly one of the most fundamental topics in organofluorine chemistry and remains
a highly useful process in organic transformations. For this purpose, a direct trifluoromethylation
of carbonyl compounds, such as ketones, could be easily completed by nucleophilic addition of
TMSCF3 to give trifluomethylated alcohols in the presence of a fluoride catalyst or other Lewis bases,
including phosphines, amines, TBD, sodium or lithium acetates, etc., which mediate the silicon-carbon
cleavage of TMSCF3 [21–47]. Notably, since the first report of Prakash and Olah [23] concerning
the trifluoromethylation of benzaldehyde to give organofluorine compounds bearing secondary
hydroxyl groups in the presence of fluoride ion reagent there has been a lot of effort devoted to
the development of this type of trifluoromethylation reaction, including asymmetric versions of
such transformations [22–35]. In this regard, despite the fact that there are several successful synthetic
methods in the case of the trifluoromethlytion reactions with TMSCF3, the introduction of commercially
available, simple and cheap bases as catalyst precursors for the establishment of a highly efficient and
practical trifluomethylation reaction and corresponding one-pot synthesis of trifluoromethylated silyl
ethers is still a highly desirable synthetic methodology target.
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As part of our continuing interest in the catalytic construction of organofluorine molecules [48–51],
we wanted to investigate trifluomethylation reactions of structurally diverse ketones. To evaluate
the feasibility of a simple and cheap base-promoted trifluoromethylation in the absence of fluoride
reagents, such as tetrabutylammonium fluoride (TBAF), we conducted preliminary experiments
on the trifluoromethylation of chalcone 1a with TMSCF3 as a model reaction. In theory, there are
two possible pathway for the trifluoromethylation of chalcone with TMSCF3: 1,2-addition and
1,4-conjugate addition [52,53], respectively, in which the chalcone could be converted into two different
organofluorine compounds bearing trifluoromethylated groups (Scheme 1).
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Scheme 1. The development of new reaction conditions for the trifluoromethylation of chalcone: 
1,2-addition versus 1,4-addition. 

2. Results and Discussion 

Initially, we thought that cupric subcarbonate could be an effective catalyst in the 
trifluoromethylation of chalcone 1a with TMSCF3 because of the similarity of its copper center and 
basic carbonate, which could possibly lead to an asymmetric transformation. Unfortunately, cupric 
subcarbonate has no activity in DCM in this reaction (Table 1, entry 1). Then we optimized the reaction 
conditions employing various bases to establish a possible copper-catalyzed trifluoro-methylation of 
chalcone with TMSCF3. After screening a variety of inorganic bases (Table 1, entries 2–12), we found 
the use of KHF2, KOH, t-BuOK, or Cs2CO3 led to the formation of only product 2a in moderate yield 
(52–60%) without the formation of 1,4-adduct 3a. Interestingly, the trifluoro-methylated silyl ether 2a 
was obtained in high yield (94%) in the absence of cupric subcarbonate, which revealed Cs2CO3 was a 
highly active catalyst in this reaction (Entry 13). Under similar conditions, we found that fluorides and 
KOAc did not work well in term of the direct synthesis of trifluoromethylated silyl ethers (Entries 
14–16 and 18). In addition, we found that K2CO3 gave an inferior yield (only 72% isolated yield of 2a) 
in this reaction, in comparison to that obtained with Cs2CO3 (Entry 17). Other catalysts, such as KOH 
and tBuOK, provided the desired product in 83% and 71% yield, respectively (Entries 19 and 20). 

In order to investigate or optimize the reactions, other solvents were examined. It seems that the 
trifluoromethylation of chalcone has a strong solvent effect. DCM was found to be suitable and the 
best solvent for this transformation in comparison with others (Table 2, entries 2–9). Notably, when THF 
was used, although the trifluoromethylation of chalcone occurs smoothly to give high conversion, the 
chemoselectivity is not good because of the low ratio of silyl ethers 2a and desilylated 4a (Table 2, entry 3, 
2a/4a = 36/51). While DMF and DMA was used as solvent, the desilylated trifluoromethylcarbinol could 
be obtained as the solely product in good yields (Entries 10–11). Notably, the use of Cs2CO3 in CH2Cl2 
gave the desired trifluoromethlyated silyl ether 2a without the formation of desilylated product 4a, 
which exhibited superior chemoselectivity than that in DMF/DMAc for this reaction. 

With the optimized reaction conditions in hand (Table 2, entry 1), we further examined the scope of 
the reaction, and the experimental results are summarized in Schemes 2 and 3, respectively. In the first 
part, we demonstrated the general applicability of the Cs2CO3 catalyst in the trifluoromethylation of 
more than 22 different chalcones (Scheme 2). The results showed that chalcones, including alkyl, aryl, 
halogen or other substituents on the phenyl moiety showed good to excellent conversion, affording 
the corresponding trifluoromethylated silyl ethers in high yields (Scheme 2). Moreover, heterocylic 
enones and alkyl enones were also suitable substrates in this reaction (Scheme 3). 
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2. Results and Discussion

Initially, we thought that cupric subcarbonate could be an effective catalyst in the
trifluoromethylation of chalcone 1a with TMSCF3 because of the similarity of its copper center and
basic carbonate, which could possibly lead to an asymmetric transformation. Unfortunately, cupric
subcarbonate has no activity in DCM in this reaction (Table 1, entry 1). Then we optimized the reaction
conditions employing various bases to establish a possible copper-catalyzed trifluoro-methylation of
chalcone with TMSCF3. After screening a variety of inorganic bases (Table 1, entries 2–12), we found
the use of KHF2, KOH, t-BuOK, or Cs2CO3 led to the formation of only product 2a in moderate
yield (52–60%) without the formation of 1,4-adduct 3a. Interestingly, the trifluoro-methylated silyl
ether 2a was obtained in high yield (94%) in the absence of cupric subcarbonate, which revealed
Cs2CO3 was a highly active catalyst in this reaction (Entry 13). Under similar conditions, we found that
fluorides and KOAc did not work well in term of the direct synthesis of trifluoromethylated silyl ethers
(Entries 14–16 and 18). In addition, we found that K2CO3 gave an inferior yield (only 72% isolated yield
of 2a) in this reaction, in comparison to that obtained with Cs2CO3 (Entry 17). Other catalysts, such as
KOH and tBuOK, provided the desired product in 83% and 71% yield, respectively (Entries 19 and 20).

In order to investigate or optimize the reactions, other solvents were examined. It seems that the
trifluoromethylation of chalcone has a strong solvent effect. DCM was found to be suitable and the
best solvent for this transformation in comparison with others (Table 2, entries 2–9). Notably, when
THF was used, although the trifluoromethylation of chalcone occurs smoothly to give high conversion,
the chemoselectivity is not good because of the low ratio of silyl ethers 2a and desilylated 4a
(Table 2, entry 3, 2a/4a = 36/51). While DMF and DMA was used as solvent, the desilylated
trifluoromethylcarbinol could be obtained as the solely product in good yields (Entries 10–11). Notably,
the use of Cs2CO3 in CH2Cl2 gave the desired trifluoromethlyated silyl ether 2a without the formation
of desilylated product 4a, which exhibited superior chemoselectivity than that in DMF/DMAc for
this reaction.

With the optimized reaction conditions in hand (Table 2, entry 1), we further examined the scope
of the reaction, and the experimental results are summarized in Schemes 2 and 3, respectively. In the
first part, we demonstrated the general applicability of the Cs2CO3 catalyst in the trifluoromethylation
of more than 22 different chalcones (Scheme 2). The results showed that chalcones, including alkyl, aryl,
halogen or other substituents on the phenyl moiety showed good to excellent conversion, affording
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the corresponding trifluoromethylated silyl ethers in high yields (Scheme 2). Moreover, heterocylic
enones and alkyl enones were also suitable substrates in this reaction (Scheme 3).

Table 1. The optimization of reaction conditions for trifluoromethylation of chalcone 1a with TMSCF3.
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In addition, we found that a broad range of aldehydes and ketones bearing alkynyl and sterically
demanding bulky substituents were fully converted into the trifluoromethylated silyl ethers without
any evidence of the undesired desilylated byproducts, which illustrated the superior selectivity of
this procedure in comparison with fluoride ion-promoted trifluoromethylation. Notably, we recently
found that the alkylidenecyclobutenone 1k [54] was a highly reactive compound and could be easily
used in ring-opening and ring expansion with Grignard reagents, organolithium species, primary
amines, and water [55], in which the four-membered ring was easily broken by the nucleophilic
reagent. Interestingly, we found that the four-membered ring was stable in the trifluoromethylation
reaction [56] and the desired products 5j or 5k were isolated in promising yields. The structure of the
novel compound 5k was unambiguously confirmed by X-ray diffraction analysis (Figure 1). Therefore,
this Cs2CO3–initiated trifluoromethylation described can be performed successfully without the need
for harsh reaction conditions.
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From a mechanistic standpoint, as shown in Scheme 4, it is reasonable to consider that the
initiation by carbonate anion of Cs2CO3 leads to the formation of the possible hypervalent silicon
complex [3,23,57–62] to give trifluoromethylated nucleophilic reagent II, which then reacted with
the ketone to give the reactive, and more nucleophilic alkoxide III, and the reaction between III and
TMSCF3 leads to the pentavalent complex IV, then IV readily gives the product through CF3 transfer
and O-silylation in the presence of ketone with regeneration of the catalyst III.
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3. Materials and Methods

3.1. General Information

All solvents were purified by standard method. All reagents were received from commercial
sources (Aldrich, Shanghai, China; Alfa Aesar, Shanghai, China; TCI, Shanghai, China). NMR spectra
were recorded on 500 MHz or 400 MHz spectrometers (Bruker, Shanghai, China). Chemical shifts
(δ) are reported in ppm relative to the signal of an internal TMS standard (δ 0.0) Coupling constants
(J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, Flash column chromatograph was carried
out at medium pressure using 300–400 mesh silica gel (Qingdao Haiyang Chemical Co., Ltd., Qingdao,
China). High-resolution mass spectrometry was performed on a JMS-700 MStation (FAB-MS and
EI-MS, JEOL, Shanghai, China), 6520 Accurate Mass Q-TOFLC/MS (ESI-MS, Agilent, Shanghai, China)
or EXACTIVE Plus (ESI-MS, Thermo Fisher Scientific, Shanghai, China) instrument.

3.2. Experimental Procedures

3.2.1. General Procedure for Cs2CO3-Catalyzed Addition of TMSCF3 and Chalcone 1a (Scheme 5)

A solution of chalcone (1a, 0.1040 g, 0.5 mmol) and TMSCF3 (0.1420 g, 1.0 mmol) in CH2Cl2
(2.0 mL) and Cs2CO3 (0.0325 g, 0.1 mmol) in a reaction tube were mixed. After stirring at r.t. overnight,
once starting material was consumed (monitored by TLC), the mixture was purified by column
chromatography (silica gel, petroleum ether/EtOAc = 50:1).
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3.2.2. Characterization of Compounds 2a–2w

(1,3-Diphenyl-1-trifluoromethyl-allyloxy)trimethylsilane (2a). 1H-NMR (400 MHz, CDCl3) δ = 7.67–7.56
(m, 2H), 7.44–7.23 (m, 8H), 6.70 (d, J = 16.3 Hz, 1H), 6.56 (d, J = 16.4 Hz, 1H), 0.15 (s, 9H). 13C-NMR
(100 MHz, CDCl3) δ = 136.1, 133.7, 133.3, 126.9, 126.4, 125.9, 124.9, 121.7, 78.2 (q, JC-C-F = 28 Hz), 0.0.
19F-NMR (470 MHz, CDCl3) δ = −77.5 (s, 3F), HRMS (ESI) calcd for C19H21F3NaOSi [M + Na]+:
373.1206; found 373.1215.

[3-(4-Methoxyphenyl)-1-phenyl-1-trifluoromethyl-allyloxy]trimethylsilane (2b). 1H-NMR (400 MHz, CDCl3)
δ = 7.60 (d, J = 7.3 Hz, 2H), 7.41–7.29 (m, 5H), 6.88 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 16.3 Hz, 1H),
6.42 (d, J = 16.3 Hz, 1H), 3.81 (s, 3H), 0.11 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 160.5, 138.1, 134.8,
128.0, 127.8, 124.6, 123.6, 114.2, 80.1 (q, JC-C-F = 29 Hz), 55.2, 1.9. 19F-NMR (470 MHz, CDCl3) δ = −77.6
(s, 3F), HRMS (ESI) calcd for C20H23F3NaO2Si [M + Na]+: 403.1312; found 403.1325.

[1-(4-Methoxyphenyl)-3-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2c). 1H-NMR (400 MHz, CDCl3)
δ = 7.50 (d, J = 8.8 Hz, 2H), 7.44–7.27 (m, 5H), 6.95–6.85 (m, 2H), 6.69 (d, J = 16.3 Hz, 1H),
6.53 (d, J = 16.3 Hz, 1H), 3.83 (s, 3H), 0.13 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 159.8, 135.8, 135.0,
130.0, 129.3, 128.8, 128.5, 127.1, 126.8, 126.5, 123.6, 113.3, 79.9 (q, JC-C-F = 29 Hz), 55.2, 2.0. 19F-NMR
(470 MHz, CDCl3) δ = −77.5 (s, 3F), HRMS (ESI) calcd for C20H23F3NaO2Si [M + Na]+: 403.1312;
found 403.1320.

[3-(4-Chlorophenyl)-1-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2d). 1H-NMR (400 MHz, CDCl3)
δ = 7.62–7.52 (m, 2H), 7.45–7.28 (m, 7H), 6.65 (d, J = 16.3 Hz, 1H), 6.51 (d, J = 16.3 Hz, 1H), 0.18 (s, 9H).
13C-NMR (100 MHz, CDCl3) δ = 137.8, 136.2, 134.3, 134.2, 134.0, 133.7, 127.9, 127.6, 127.2, 126.1, 119.5,



Molecules 2017, 22, 769 7 of 13

80.0 (q, JC-C-F = 28 Hz), 3.7, 3.4. 19F-NMR (470 MHz, CDCl3) δ = −77.2 (s, 3F), HRMS (ESI) calcd for
C19H20ClF3NaOSi [M + Na]+: 407.0816; found 407.0832.

[1-(4-Chlorophenyl)-3-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2e). 1H-NMR (400 MHz, CDCl3)
δ = 7.53 (d, J = 8.6 Hz, 2H), 7.45–7.28 (m, 7H), 6.65 (d, J = 16.4 Hz, 1H), 6.53 (d, J = 16.4 Hz, 1H),
0.19 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 136.8, 135.8, 135.7, 135.1, 134.8, 128.9, 128.6, 128.2, 127.7,
126.9, 126.7, 126.5, 126.4, 124.4, 79.9 (q, JC-C-F = 28 Hz), 2.1. 19F-NMR (470 MHz, CDCl3) δ = −77.7
(s, 3F), HRMS (ESI) calcd for C19H20ClF3NaOSi [M + Na]+: 407.0816; found 407.0820.

[3-(4-Fluorophenyl)-1-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2f). 1H-NMR (400 MHz, CDCl3)
δ = 7.64–7.54 (m, 2H), 7.44–7.33 (m, 5H), 7.04 (dd, J = 12.0, 5.2 Hz, 2H), 6.65 (d, J = 16.3 Hz, 1H),
6.46 (d, J = 16.3 Hz, 1H), 0.14 (s, 9H). 13C-NMR (100MHz, CDCl3) δ = 164.1, 162.0, 161.7, 137.9, 137.1,
133.9, 128.3, 127.8, 126.1, 115.8 (d, JC-F = 88 Hz), 80.1 (q, JC-C-F = 29 Hz), 1.9. 19F-NMR (470 MHz,
CDCl3) δ = −77.3 (s, 3F), −112.7 (s, 1F), HRMS (ESI) calcd for C19H20F4NaOSi [M + Na]+: 391.1112;
found 391.1121.

[1-(4-Fluorophenyl)-3-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2g). 1H-NMR (400 MHz, CDCl3)
δ = 7.57 (dd, J = 8.6, 5.5 Hz, 2H), 7.45–7.27 (m, 5H), 7.07 (t, J = 8.7 Hz, 2H), 6.67 (d, J = 16.4 Hz, 1H),
6.54 (d, J = 16.4 Hz, 1H), 0.15 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 164.3, 163.6, 161.8, 135.7, 130.0,
128.9, 126.9, 115.0 (d, JC-F = 88 Hz), 79.9 (q, JC-C-F = 29 Hz), 2.1. 19F-NMR (470 MHz, CDCl3) δ = −77.8
(s, 3F), −113.7 (s, 1F), HRMS (ESI) calcd for C19H20F4NaOSi [M + Na]+: 391.1112; found 391.1131.

Trimethyl-[1-phenyl-1-trifluoromethyl-3-(4-trifluoromethylphenyl)allyloxy]silane (2h). 1H-NMR (400 MHz,
CDCl3) δ = 7.65–7.47 (m, 6H), 7.39 (dt, J = 7.2, 2.2 Hz, 3H), 6.76 (d, J = 16.3 Hz, 1H),
6.63 (d, J = 16.3 Hz, 1H), 0.14 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 139.0, 138.9, 137.5, 137.4,
133.0, 126.8, 126.7, 125.6, 125.4, 123.1 (q, JC-F = 312 Hz), 122.3, 79.9 (q, JC-C-F = 27 Hz), 1.7. 19F-NMR
(470 MHz, CDCl3) δ = −62.6 (s, 3F), −76.9 (s, 3F), HRMS (ESI) calcd for C20H20F6NaOSi [M + Na]+:
441.1080; found 441.1088.

Trimethyl-[3-phenyl-1-trifluoromethyl-1-(4-trifluoromethylphenyl)allyloxy]silane (2i). 1H-NMR (400 MHz,
CDCl3) δ = 7.74 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.43–7.29 (m, 5H), 6.64 (d, J = 16.4 Hz, 1H),
6.55 (d, J = 16.4 Hz, 1H), 0.17 (s, 9H). 13C-NMR (100MHz, CDCl3) δ = 142.1, 135.9, 135.1, 128.9, 128.6,
126.9, 126.42, 124.8, 124.1, 122.9, 80.0 (q, JC-C-F = 28 Hz), 2.0. 19F-NMR (470 MHz, CDCl3) δ = −62.6
(s, 3F), −77.6 (s, 3F), HRMS (ESI) calcd for C20H20F6NaOSi [M + Na]+: 441.1080; found 441.1069.

[1,3-Bis-(4-bromophenyl)-1-trifluoromethylallyloxy]trimethylsilane (2j). 1H-NMR (400 MHz, CDCl3)
δ = 7.56–7.42 (m, 6H), 7.28–7.22 (m, 2H), 6.59 (d, J = 16.4 Hz, 1H), 6.50 (d, J = 16.4 Hz, 1H),
0.14 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 137.0, 136.9, 134.4, 132.1, 131.2, 129.7, 128.3, 127.2,
123.1 (q, JC-F = 108 Hz), 79.9 (q, JC-C-F = 29 Hz), 2.0. 19F-NMR (470 MHz, CDCl3) δ = −77.6 (s, 3F),
HRMS (ESI) calcd for C19H19Br2F3NaOSi [M + Na]+: 528.9416; found 528.9438.

[3-(4-Bromophenyl)-1-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2k). 1H-NMR (400 MHz, CDCl3)
δ = 7.62–7.54 (m, 2H), 7.51–7.45 (m, 2H), 7.43–7.35 (m, 3H), 7.29–7.24 (m, 2H), 6.64 (d, J = 16.3 Hz, 1H),
6.53 (d, J = 16.3 Hz, 1H), 0.13 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 137.7, 133.7, 131.8, 130.0, 127.7,
126.3 126.1, 126.0, 125.7, 125.9, 120.6, 80.0 (q, JC-C-F = 31 Hz), 1.8. 19F-NMR (470 MHz, CDCl3) δ = −77.2
(s, 3F), HRMS (ESI) calcd for C19H20BrF3NaOSi [M + Na]+: 451.0311; found 451.0322.

[1-(4-Bromophenyl)-3-phenyl-1-trifluoromethylallyloxy]trimethylsilane (2l). 1H-NMR (400 MHz, CDCl3)
δ = 7.58–7.44 (m, 4H), 7.36 (dt, J = 12.1, 7.5 Hz, 5H), 6.64 (d, J = 16.4 Hz, 1H), 6.52 (d, J = 16.4 Hz, 1H),
0.15 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 137.1, 135.6, 133.4, 129.1, 127.7, 126.8, 124.8, 124.3, 122.8,
79.8 (q, JC-C-F = 27 Hz), 1.9. 19F-NMR (470 MHz, CDCl3) δ = −77.7 (s, 3F), HRMS (ESI) calcd for
C19H20BrF3NaOSi [M + Na]+: 451.0311; found 451.0330.

(3-Biphenyl-4-yl-1-phenyl-1-trifluoromethylallyloxy)trimethylsilane (2m). 1H-NMR (400 MHz, CDCl3)
δ = 7.65–7.56 (m, 6H), 7.51–7.33 (m, 8H), 6.73 (d, J = 16.3 Hz, 1H), 6.60 (d, J = 16.4 Hz, 1H), 0.17 (s, 9H).
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13C-NMR (100 MHz, CDCl3) δ = 139.5, 138.4, 136.0, 132.7, 126.7, 126.5, 125.9, 125.5, 125.2, 124.9,
78.1 (q, JC-C-F = 22 Hz), 0.1. 19F-NMR (470 MHz, CDCl3) δ = −77.3 (s, 3F), HRMS (ESI) calcd for
C25H25F3NaOSi [M + Na]+: 449.1519; found 449.1528.

[1-(4-Fluorophenyl)-1-trifluoromethyl-3-(4-trifluoromethylphenyl)allyloxy]trimethylsilane (2n). 1H-NMR
(400 MHz, CDCl3) δ = 7.62 (d, J = 8.2 Hz, 2H), 7.58–7.48 (m, 4H), 7.13–7.04 (m, 2H),
6.73 (d, J = 16.4 Hz, 1H), 6.61 (d, J = 16.3 Hz, 1H), 0.14 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 162.2,
159.7, 137.0, 137.0, 131.7, 128.8, 128.6, 128.0, 127.9, 125.0, 123.9 (q, JC-F = 16 Hz), 113.1, 113.0, 112.9, 77.7
(q, JC-C-F = 29 Hz), 0.0. 19F-NMR (470 MHz, CDCl3) δ = −62.7 (s, 3F), −77.4 (s, 3F), −113.3 (s, 1F),
HRMS (ESI) calcd for C20H19F7NaOSi [M + Na]+: 459.0986; found 459.0989.

(1,3-Di-p-tolyl-1-trifluoromethylallyloxy)trimethylsilane (2o). 1H-NMR (400 MHz, CDCl3) δ = 7.47
(d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.17 (dd, J = 13.2, 8.1 Hz, 4H), 6.65 (d, J = 16.3 Hz, 1H),
6.49 (d, J = 16.3 Hz, 1H), 2.36 (d, J = 10.7 Hz, 6H), 0.13 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 136.5,
136.2, 133.1, 131.0, 127.4, 126.5, 125.9, 124.7, 123.9, 78.0 (q, JC-C-F = 24 Hz), 19.1, 0.0. 19F-NMR (470 MHz,
CDCl3) δ = −77.8 (s, 3F), HRMS (ESI) calcd for C21H25F3NaOSi [M + Na]+: 401.1519; found 401.1525.

[1-(4-Fluorophenyl)-3-(4-methoxyphenyl)-1-trifluoromethylallyloxy]trimethylsilane (2p). 1H-NMR (400 MHz,
CDCl3) δ = 7.57 (dd, J = 8.5, 5.5 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 7.13–7.02 (m, 2H), 6.89 (d, J = 8.7 Hz, 2H),
6.57 (d, J = 16.4 Hz, 1H), 6.40 (d, J = 16.4 Hz, 1H), 3.82 (s, 3H), 0.14 (s, 9H). 13C-NMR (100 MHz, CDCl3)
δ = 162.0, 159.6, 158.2, 133.2, 132.0 (d, J = 3.1 Hz), 127.9, 126.19, 122.3, 112.7 (d, J = 84 Hz), 112.6,
112.3, 77.8 (q, JC-C-F = 29 Hz), 53.3, 0.0. 19F-NMR (470 MHz, CDCl3) δ = −78.1 (s, 3F), −113.9 (s, 1F),
HRMS (ESI) calcd for C20H22F4NaO2Si [M + Na]+: 421.1217; found 421.1227.

Trimethyl-(1-methyl-3-phenyl-1-trifluoromethylallyloxy)silane (2q) [23]. 1H-NMR (400 MHz, CDCl3)
δ = 7.39–7.13 (m, 5H), 6.67(dd, J = 16.1, 2.1 Hz, 1H), 6.18 (d, J = 16.0 Hz, 1H), 1.51 (s, 3H), 0.12 (s, 9H).
13C-NMR (100 MHz, CDCl3) δ = 136.0, 132.6, 128.7, 128.3, 127.6, 126.8, 73.9 (q, JC-C-F = 29 Hz), 21.7, 2.1.
19F-NMR (470 MHz, CDCl3) δ = −82.1 (s, 3F), HRMS (ESI) calcd for C14H19F3NaOSi [M + Na]+:
311.1049; found 311.1040.

Trimethyl-(1-methyl-3-p-tolyl-1-trifluoromethylallyloxy)silane (2r). 1H-NMR (500 MHz, CDCl3) δ = 7.37–7.29
(m, 2H), 6.90–6.81 (m, 2H), 6.67 (dd, J = 16.0, 7.1 Hz, 1H), 6.11 (dd, J = 16.0, 6.9 Hz, 1H),
3.81 (d, J = 7.2 Hz, 3H), 1.58 (s, 3H), 0.18 (s, 9H). 13C-NMR (125 MHz, CDCl3) δ = 159.7, 131.9,
128.6, 128.0, 126.5, 125.3, 124.2, 114.1, 76.0 (q, JC-C-F = 24 Hz), 55.3, 21.6, 2.1. 19F-NMR (470 MHz, CDCl3)
δ = −77.3 (s, 3F), HRMS (ESI) calcd for C15H21F3OSi [M + H]+: 303.1225; found 303.1229.

[3-(2-Methoxyphenyl)-1-methyl-1-trifluoromethylallyloxy]trimethylsilane (2s). 1H-NMR (500 MHz, CDCl3)
δ= 7.43 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 16.3 Hz, 1H), 6.99–6.84 (m, 2H),
6.30 (d, J = 16.2 Hz, 1H), 3.84 (d, J = 2.9 Hz, 3H), 1.60 (s, 3H), 0.19 (s, 9H). 13C-NMR (125 MHz, CDCl3)
δ = 157.1, 129.3, 127.7, 127.1, 126.5, 124.9, 124.3, 120.7, 111.0, 76.3 (q, JC-C-F = 24 Hz), 55.4, 21.6, 2.1.
19F-NMR (470 MHz, CDCl3) δ = −82.2 (s, 3F), HRMS (ESI) calcd for C15H21F3NaO2Si [M + Na]+:
341.1155; found 341.1158.

Trimethyl-[1-methyl-1-trifluoromethyl-3-(3,4,5-trimethoxyphenyl)allyloxy]silane (2t). 1H-NMR (500 MHz,
CDCl3) δ = 6.68 (d, J = 15.9 Hz, 1H), 6.64 (s, 2H), 6.16 (d, J = 15.9 Hz, 1H), 3.90 (s, 9H), 1.60 (s, 3H),
0.21 (s, 9H). 13C-NMR (125 MHz, CDCl3) δ = 153.4, 138.4, 132.5, 131.5, 127.0, 126.4, 124.1, 105.4, 103.9,
75.9 (q, JC-C-F = 23 Hz), 60.8, 56.1, 21.6, 2.1. 19F-NMR (470 MHz, CDCl3) δ = −82.2 (s, 3F), HRMS (ESI)
calcd for C17H26F3O4Si [M + H]+: 379.1547; found 379.1556.

[1-(4-Chlorophenyl)-3-furan-2-yl-1-trifluoromethylallyloxy]trimethylsilane (2u). 1H-NMR (400 MHz, CDCl3)
δ = 7.51 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 1.5 Hz, 1H), 7.39–7.33 (m, 2H), 6.45 (d, J = 7.1 Hz, 2H),
6.41 (dd, J = 3.3, 1.8 Hz, 1H), 6.33 (d, J = 3.3 Hz, 1H), 0.15 (s, 9H). 13C-NMR (100 MHz, CDCl3)
δ = 149.2, 141.2, 134.5, 132.7, 127.4, 126.2, 122.7, 121.5, 109.6, 108.6, 77.5 (q, JC-C-F = 29 Hz), 0.0. 19F-NMR
(470 MHz, CDCl3) δ = −77.7 (s, 3F), HRMS (ESI) calcd for C17H18ClF3NaO2Si [M + Na]+: 397.0609;
found 397.0627.
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[1-(4-Fluorophenyl)-3-furan-2-yl-1-trifluoromethylallyloxy]trimethylsilane (2v). 1H-NMR (400 MHz, CDCl3)
δ = 7.56 (dd, J = 8.5, 5.4 Hz, 2H), 7.39 (d, J = 1.6 Hz, 1H), 7.09–7.01 (m, 2H), 6.48 (d, J = 5.9 Hz, 2H),
6.39 (dd, J = 3.3, 1.8 Hz, 1H), 6.32 (d, J = 3.3 Hz, 1H), 0.15 (s, 9H). 13C-NMR (100 MHz, CDCl3)
δ = 162.2, 159.7, 149.4, 141.2, 131.7, 127.9, 123.0, 121.5, 112.9 (d, JC-F = 22 Hz), 109.6, 108.5,
77.6 (q, JC-C-F = 29 Hz), 0.0. 19F-NMR (470 MHz, CDCl3) δ = −77.9 (s, 3F), −113.8 (s, 1F), HRMS (ESI)
calcd for C17H18F4NaO2Si [M + Na]+: 381.0904; found 381.0915.

(3-Furan-2-yl-1-p-tolyl-1-trifluoromethylallyloxy)trimethylsilane (2w). 1H-NMR (400 MHz, CDCl3) δ = 7.46
(d, J = 8.1 Hz, 2H), 7.38 (d, J = 1.5 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.49 (d, J = 2.7 Hz, 2H), 6.38 (dd, J = 3.3,
1.8 Hz, 1H), 6.30 (d, J = 3.3 Hz, 1H), 2.36 (s, 3H), 0.13 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 149.6,
141.0, 136.4, 132.8, 126.7, 125.89, 123.5, 121.1, 109.5, 108.1, 77.9 (q, JC-C-F = 29Hz), 19.0, 0.0. 19F-NMR
(470 MHz, CDCl3) δ = −77.5 (s, 3F), HRMS (ESI) calcd for C18H21F3NaO2Si [M + Na]+: 377.1155;
found 377.1169.

3.2.3. Characterization of Compounds 5a–5k

The spectral data of compounds 5a, 5b, 5c, 5d, 5e, 5g, 5h and 5i matched the reported data in all
respects [42,44,45,63].

Trimethyl-[2,2,2-trifluoro-1-(4-fluorophenyl)-1-methylethoxy]silane (5f). 1H-NMR (500 MHz, CDCl3)
δ = 7.56 (dd, J = 8.3, 5.5 Hz, 2H), 7.13–7.02 (m, 2H), 1.85 (s, 3H), 0.19 (s, 9H). 13C-NMR (125 MHz,
CDCl3) δ = 163.7, 161.8, 135.9, 128.6, 126.3, 124.0, 114.8, 114.7, 76.0 (q, JC-C-F = 24 Hz), 22.6, 1.8. 19F-NMR
(470 MHz, CDCl3) δ = −81.9 (s, 3F), −114.2 (s, 1F), HRMS (ESI) calcd for C12H17F4OSi [M + H]+:
281.0979; found 281.0983.

(2-Benzylidene-1-trifluoromethylcyclobutoxy)trimethylsilane (5j). 1H-NMR (500 MHz, CDCl3) δ = 7.30
(ddd, J = 26.9, 16.5, 6.9 Hz, 5H), 6.59 (d, J = 2.4 Hz, 1H), 2.89 (dt, J = 14.7, 5.9 Hz, 2H), 2.63 (ddd, J = 7.1,
5.8, 4.4 Hz, 1H), 2.37 (d, J = 10.5 Hz, 1H), 0.20 (s, 9H). 13C-NMR (125 MHz, CDCl3) δ = 140.0, 136.1,
128.6, 128.2, 127.5, 126.2, 126.0, 123.7, 79.5 (q, JC-C-F = 25 Hz), 30.73, 29.7, 25.9, 1.6. 19F-NMR (470 MHz,
CDCl3) δ = −82.9 (s, 3F), HRMS (ESI) calcd for C15H20F3OSi [M + H]+: 301.1230; found 301.1233.

(4-Benzhydrylidene-2,3-diphenyl-1-trifluoromethylcyclobut-2-enyloxy)trimethylsilane (5k). 1H-NMR (400 MHz,
CDCl3) δ = 7.47–7.39 (m, 4H), 7.28–7.18 (m, 7H), 7.08 (d, J = 7.3 Hz, 1H), 7.01 (t, J = 7.4 Hz, 2H),
6.85 (dd, J = 8.1, 5.2 Hz, 6H), 0.16 (s, 9H). 13C-NMR (100 MHz, CDCl3) δ = 145.3, 139.5, 133.0, 131.0,
130.4, 130.2, 128.6, 128.1, 127.9, 127.5, 126.9, 126.7, 1.6. 19F-NMR (470 MHz, CDCl3) δ = −73.2 (s, 3F),
HRMS (ESI) calcd for C33H30F3OSi [M + H]+: 527.2013; found 527.2017.

All the 1H-NMR and 13C-NMR spectra of compounds 2a–2w and 5a–5k can be found in
Supplementary Materials. CCDC 1487785 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.
html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail:
deposit@ccdc.cam.ac.uk).

4. Conclusions

In summary, we have developed a simple and very efficient method for the synthesis of
trifluoromethylated silyl ethers via the direct nucleophilic trifluoromethylation of ketones, enones,
and aldehydes with TMS-CF3 in the presence of catalytic amounts of Cs2CO3. The reaction features
an experimentally convenient and atom-economic process for this anionic 1,2-trifluoromethylation.
This work also provides a good example of carbonate ion as an active anion that can interact with
silicon to promote the chemoselective cleavage of the silicon-carbon bond in TMSCF3, but is not
effective in the desilylation of trifluoromethylated silyl ethers.

Supplementary Materials: Supplementary Materials are available online.
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