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Abstract

Bismuth(III) oxybromide (BiOBr) is a typical photocatalyst with a unique layered structure.

However, the response of BiOBr to visible light is not strong enough for practical application.

Moreover, the charge separation efficiency of BiOBr still needs to be improved. In this study,

series of Au-doped BiOBr photocatalysts was prepared through a facile one-step hydrother-

mal method. The as-prepared Au0.3-BiOBr nanosheets exhibited an excellent electrochemi-

cal performance. The charge separation efficiency of Au0.3-BiOBr nanosheets was

enhanced by 18.5 times compared with that of BiOBr. The intrinsic photocatalytic activity of

Au0.3-BiOBr nanosheets in the degradation of tetracycline hydrochloride was approximately

twice higher than that of BiOBr under visible light irradiation. In addition, three pathways

were identified for the photocatalytic degradation and mineralization of tetracycline hydro-

chloride, which involve four reactions: hydroxylation, demethylation, ring opening and miner-

alization. Accordingly, this study proposes a feasible and effective Au-doped BiOBr

photocatalyst, and describes a promising strategy for the design and synthesis of high-per-

formance photocatalysts.

Introduction

Due to the rapid population and economic growth worldwide, energy shortages and environ-

mental pollution have become increasingly serious. Photocatalytic technology has a great

potential application in environmental protection and energy development. Photocatalytic

degradation of organic pollutants is an advanced oxidation technology, in which clean and sus-

tainable solar energy could be used as the driving force to completely mineralize organic pol-

lutants into CO2 and H2O [1–5]. Among various semiconductor photocatalysts, bismuth(III)

oxybromide (BiOBr) is a promising photocatalyst with a unique layered structure, composed

of stacked [Bi2O2]2+ layers and interlaced halogen ions [Br2]2- [6–9]. The layered structure has

a large internal space, which can effectively promote the polarization of related atoms and

orbitals. In addition, the electronic field between [Bi2O2]2+ and [Br2]2- layers can promote the

separation and transfer of photogenerated electron-hole pairs, and thus improve the
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photocatalytic effect [10–12]. Although BiOBr has a suitable band gap of 2.7 eV, its response to

visible light is not strong enough for practical applications [8]. Moreover, there is also a need

to further improve the charge separation efficiency of BiOBr.

In recent decades, many research efforts have been focused on how to improve the light

absorption of BiOBr. An effective strategy is to enhance the visible light photocatalytic activity

by developing a BiOBr-based heterojunction, such as ZnO/BiOBr [13], TiO2/BiOBr [14],

BiOBr/BiMoO6 [15] and Ag2CO3/BiOBr/CdS [16]. However, it is difficult to achieve a highly

homogeneous distribution of constituents when constructing a heterojunction, which makes

the preparation of a catalyst more complicated. In addition, introducing oxygen vacancies as

lattice defects and varying the morphology have been undertaken to improve the photocataly-

tic performance of BiOBr [17–20]. However, many shortcomings remain to be overcome. For

example, tailoring the morphology does not change the intrinsic light absorption property of

BiOBr, and oxygen vacancies might result in a long reaction times [21]. In addition, the

enhancement of the charge separation efficiency of BiOBr is also important for its photocataly-

tic activity.

Doping modification is a promising strategy to tailor the band structure of a semiconductor

without substantially changing the host crystal structure. Previous studies reported the suc-

cessful synthesis of Ag-doped BiOBr with flower-like microsphere structure by a simple sol-

vothermal method [22]. The doping modification of BiOBr with Ag improved light absorption

and charge separation efficiency of the catalyst, which resulted in a higher photocatalytic activ-

ity. Moreover, the doping modification of BiOBr with self-assembled hollow-microsphere

structure with Fe could also improve the photocatalytic ability [23]. Based on these studies,

and considering the excellent electrochemical performance of Au, it is theoretically possible

that doping modification with Au might improve the charge separation efficiency and photo-

catalytic performance of BiOBr.

With the rapid development of photocatalysts, an important problem has been studied, that

is, the separation of catalysts from the treated system after reaction, and this problem greatly

restricts their wide application. It has been reported in the past that introducing magnetic

materials into the photocatalyst will facilitate recovery using an external magnetic field [24,

25]. Therefore, the non-magnetic Au-doped BiOBr photocatalyst in this work needs to be

combined with magnetic materials in future studies to improve the application of BiOBr-

based photocatalytic nanomaterials.

In this study, a series of Au-doped BiOBr nanosheets were synthesized through a simple

hydrothermal route. The morphology, crystal structure and energy band structure of Au-

doped BiOBr were systematically characterized by various physicochemical techniques. Then,

the photoelectric characteristics of Au-doped BiOBr were systematically analyzed. In addition,

the photocatalytic performance without dye-sensitization was investigated using tetracycline

hydrochloride (TH), a typical non-dye antibiotic pollutant, as the target pollutant. Also, the

photocatalytic activity of Au-doped BiOBr under visible light irradiation was investigated.

Additionally, the main active species in the degradation process were identified. Furthermore,

the intermediates of TH degradation were also identified, and the degradation pathway of TH

was elucidated. Based on these results, an effective strategy for the design and synthesis of

high-performance visible photosensitive catalysts is proposed.

Materials and methods

Materials

Ethylene glycol and gold(III) chloride trihydrate (HAuCl4�3H2O) were purchased from Sino-

pharm Chemical Reagent Co., Ltd. (Shanghai, China) and Shanghai Macklin Biochemical Co.,
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Ltd. (Shanghai, China), respectively, Bismuth nitrate pentahydrate (Bi(NO3)3�5H2O), ammo-

nium bromide (NH4Br), distilled water, and other reagents were obtained from Aladdin

Reagent Co., Ltd. (Shanghai, China). The purchased chlorauric acid solids (HAuCl4�3H2O)

were formulated into a reserve solution at a concentration of 30 g/ L. All chemicals used in this

study were of analytical-grade and were used directly without any further purification.

Synthesis of Au-doped BiOBr photocatalyst

The Au-doped BiOBr nanomaterial was synthesized by a typical hydrothermal procedure, as

follows. First, 0.970 g (2 mmol) of Bi(NO3)3�5H2O was added into 5 mL ethylene glycol, and

mixed by continuous ultrasonication until a homogeneous solution was obtained. Addition-

ally, 0.196 g (2 mmol) of NH4Br was dissolved into 30 mL of distilled water, and the mixture

was continuously stirred for 5 min to obtain a clear suspension. Then, different amounts of

HAuCl4 reserve solution (2.65×10−2, 5.3×10−2 and 7.95×10−2 mmol) were added into the

above-mentioned suspension, and the obtained solutions were designated as Au0.3-BiOBr,

Au0.6-BiOBr and Au0.9-BiOBr, respectively. Afterwards, the mixture was transferred into a

50-mL Teflon-lined reactor, and heated at 160˚C for 12 h. Subsequently, after cooling to room

temperature naturally, the product powder was collected by centrifugation and each samples

was washed three times with distilled water and anhydrous ethanol to remove the residuals

and impurities. Eventually, the samples were dried in vacuum at 80˚C for 10 h. For pure

BiOBr, the synthetic procedure was the same as that for Au-doped BiOBr, but without adding

HAuCl4 solution.

Characterization

The crystallinity of the samples was determined by X-ray diffraction (XRD) using a Bruker D8

Advance diffractometer (Bruker AXS GmbH, Karlsruhe, German) equipped with a monochro-

matized Cu Kα radiation (λ = 1.541874 Å) source. The morphology of the samples was mexa-

mined by (SEM), using a JSM-700F scanning electron microscope (JEOL Ltd., Tokyo, Japan)

and the elements were confirmed by energy-dispersive X-ray spectroscopy (EDS). The micro-

scopic morphology of the product was characterized by transmission electron microscopy

(TEM), using a JEM 2100F transmission electron microscope (JEOL Ltd.). X-ray photoelec-

tron spectroscopy (XPS) was performed on a Thermo Scientific K-Alpha X-ray Photoelectron

Spectrometer system (Thermo Fisher Scientific Inc., Waltham, MA, USA) to determine the

chemical composition and the valence potential of the as-prepared samples. The optical band

gap of the samples was measured by diffuse reflectance spectroscopy (DRS) using a Shimadzu

UV-3600i Plus ultraviolet/visible/near infrared (UV/Vis/NIR) spectrometer (Shimadzu Cor-

poration, Kyoto, Japan). The Au content in the sample was analyzed by inductively coupled

plasma emission spectroscopy (ICP-MS), Agilent 7800 ICP-MS system (Agilent Technologies

Inc., Santa Clara, CA, USA). The surface area was measured by gas absorption on a Micro-

meritics APSP 2460 surface area and porosity analyzer (Micromeritics Corporation, Norcross,

GA, USA), using the Brunauer-Emmett-Teller (BET) method. TH degradation products were

identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) using

the UltimateTM 3000 HPLC—Q Exactive System (Thermo Fisher Scientific Inc.).

Electrochemical measurements

All electrochemical characterizations were performed on a CHI760E electrochemical worksta-

tion (CH Instrument Co., Shanghai, China) using a three-electrode system. A Pt wire and an

Ag/AgCl (KCl, 3 M) electrode were used as the counter electrode and the reference electrode,

respectively. Quartz glass was used in the photocurrent experiment, and other parts were
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ordinary glass products. The working electrodes used in the Electrochemical impedance spec-

troscopy (EIS) measurements, Mott-Schottky plots and photocurrent responses tests were pre-

pared as follows: 5 mg of catalyst was ultrasonically dispersed in 1 mL of methanol, and 10 μL

of Nafion solution was added, mixed well and dripped onto both the glassy carbon electrode

and F-doped SnO2 (FTO) glass. The EIS measurements were performed in 0.05 M K3[Fe

(CN)6] and K4[Fe(CN)6] electrolyte solution at an alternating current frequency of 1~106 Hz

and a voltage amplitude of 5 mV. Mott-Schottky plots were performed in 0.1 M Na2SO4 elec-

trolyte solution at a frequency of 1,000 Hz and an alternating current voltage amplitude of 5

mV. Photocurrent measurements were performed in 0.1 M Na2SO4 electrolyte solution with a

bias voltage of 0.5 V.

Photocatalytic activity evaluation

The photocatalytic degradation activity of the samples was measured using a CHF-XM500,

500 W Xenon light source (PerfectLight, Beijing, China) with a 420 nm cutoff filter at room

temperature. The target pollutant was 50 mg/L of TH solution. In a typical degradation process

for each experiment, 10 mg of photocatalyst powder was added into 50 mL of the TH solution,

and the mixture was continuously stirred for 20 min in the dark to achieve adsorption-desorp-

tion equilibrium. At a specific time interval, 0.5 mL of the solution was taken out from the

reaction system and immediately centrifuged. After that, the TH concentration of the obtained

samples was measured by HPLC using a Hitachi Primaide HPLC system (Hitachi Ltd.). The

temperature of the chromatographic column was 30˚C. The mobile phase was composed of

deionized water (containing 0.1% formic acid) and acetonitrile with a volume ratio of 2:3, and

the flow rate was set at 0.5 mL/min. All experiments were performed in duplicate.

Results and discussion

Characterizations

The phase of the as-prepared products was determined by XRD analysis. All the diffraction

peaks in the XRD spectra (Fig 1) could be indexed to BiOBr (JCPDS No. 09–0393). The sharp

diffraction peaks and absence of unknown peaks in the XRD spectrum of BiOBr demonstrate

its high crystallinity and purity. Moreover, the diffraction peaks of Au-BiOBr are also similar

to those of pure BiOBr, and only a weak peak, at 38.2˚, found in the spectrum of the Au0.9-

sample, belongs to the (111) facet of Au (S1 Fig). This finding indicates that the doped Au ele-

ment does not affect the crystal phase of BiOBr frame, and Au might be highly dispersed in the

host crystal. The peak of (001) facet at 10.9˚ is attributed to the periodic stacking structure

among [Br-Bi-O-Bi-Br] layers along the c-axis, and the peak at 32.2˚ belongs to the (110) facet,

which is perpendicular to (001) plane. For Au-doped BiOBr, the peak intensity of (001) facet

increases while that of (110) facet decreases, indicating that the (110) facets were suppressed by

Au doping.

The morphology of the samples was observed by SEM and TEM (Fig 2). BiOBr and Au-

doped BiOBr display a large-scale sheet-like structure. No impurities were observed in the

images, indicating the high purity of the product, which is consistent with the conclusion from

the XRD analysis. The products before and after modification by doping with Au had a mean

size of 1 μm and a thickness of approximately 50 nm. This result implied that the doping of Au

does not substantially alter the morphology of the products. Moreover, Au particles were not

observed on the surface of the sheets in SEM and TEM images, which also indicated that Au

might be doped into BiOBr crystal.

The crystal structure of the as-prepared Au-doped BiOBr sheets was further characterized

by high-resolution TEM (HRTEM) as shown in Fig 3. The image in Fig 3A shows the clear
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and continuous lattice fringes of the Au0.9-BiOBr sample. Also, as indicated in Fig 3B, the lat-

tice fringes with an interplanar lattice spacing of 0.28 nm match well with the (110) atomic

plane of BiOBr, whose diffraction peak in the XRD pattern occurred at 32.2˚. In addition, the

corresponding selected area electron diffraction (SAED) pattern (insert in Fig 3B) reveals the

single-crystalline nature of BiOBr sheets and orthogonal to (110) and (1�10) planes.

Fig 1. XRD patterns of BiOBr and Au-modified BiOBr, respectively.

https://doi.org/10.1371/journal.pone.0273169.g001

Fig 2. SEM and TEM images of (a1, a2) BiOBr, (b1, b2) Au0.3-BiOBr, (c1, c2) Au0.6-BiOBr and (d1, d2) Au0.9-BiOBr, respectively.

https://doi.org/10.1371/journal.pone.0273169.g002
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Furthermore, the EDS mapping images (Fig 3C) revealed the highly homogeneous distribution

of Bi, O, Br and Au elements in the as-prepared product, and the prsence of a very small

amount of Au element in the crystal of BiOBr. Further analysis of the content of Au element in

the product was by ICP-MS showed that the molar ratio of Au:Bi was approximately 0.01, 0.02

and 0.03 in Au0.3-BiOBr, Au0.6-BiOBr and Au0.9-BiOBr sheets, respectively. Thus, according

to the above results, Au element was successfully introduced into the host crystal of BiOBr

through the aforementioned one-pot hydrothermal procedure.

Characterization of the elemental composition and chemical states of the sample surface by

XPS analysis, using the standard value of the C 1s peak (284.60 eV) to calibrate all samples,

revealed that the spectra (Fig 4A) included the XPS peaks of Bi, O, Br and Au. The fine spec-

trum of Bi 4f (Fig 4B) contains two main peaks with binding energies of 158.5 and 163.8 eV,

and with the splitting energy of 5.3 eV, which are consistent with the theoretical values of 4f7/2

and 4f5/2 of Bi3+ [9, 26, 27]. The XPS spectrum of O 1s (Fig 4C) shows that the strong peak

position is at 529.3 eV, which corresponds to that of O2
- from the Bi-O bond [6, 28, 29]. Two

peaks in the Br 3d XPS spectrum (Fig 4D) could be assigned to Br 3d5/2 (67.6 eV) and Br 3d3/2

(68.6 eV) of Br- [9, 30]. The high-resolution Au 4f spectra are displayed in Fig 5. The two dou-

blets at 83.2 and 86.8 eV are consistent with the binding energies of metallic Au 4f7/2 and Au

4f5/2, respectively, which are caused by metallic Au0 [31–33]. Therefore, all the aforementioned

results demonstrate that the as-prepared product was an Au-doped BiOBr nanosheet with

highly exposed (001) facet, and the amount of doped Au element in the host crystal was

tunable.

Band structures and electrochemical properties

The optical properties of the samples were characterized using UV-Vis diffuse reflectance

spectroscopy (UV-Vis DRS), as shown in Fig 6A. The materials exhibit very similar absorption

spectra. The absorption edges of BiOBr, Au0.3-BiOBr, Au0.6-BiOBr and Au0.9-BiOBr samples

were 434, 439, 445 and 445 nm, respectively. The absorption edge of Au-doped BiOBr

Fig 3. (a, b) HRTEM and (c) EDS mapping images of Au0.9-BiOBr. The insert in (b) is the corresponding SAED pattern.

https://doi.org/10.1371/journal.pone.0273169.g003
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redshifted slightly compared to that of BiOBr, demonstrating their narrowed band gaps after

Au-doping modification and higher absorption efficiency of visible light. Additionally, in the

UV-Vis DRS spectra, no trailing were observed at about 550 nm, which indicates that the

doped Au did not produce localized surface plasmon resonance (LSPR) effect. Specifically, the

doped Au was highly dispersed in the BiOBr crystal, rather than forming heterojunctions on

the surface of the BiOBr nanosheets.

The Tauc plot was used to determine the band gap energy of the semiconductor (Fig 6B),

which was calculated by plotting the Tauc curve based on the relationship between light absor-

bance and band gap energy describe by Eq (1) [9]:

ahu ¼ Aðhu � EgÞ
n=2

ð1Þ

where α, hυ, A and Eg are the absorption coefficient, incident photon energy, a constant and

the energy of the band gap, respectively. Considering that BiOBr is a typical indirect band gap

semiconductor, the n value is 4. The band gap energy of BiOBr, Au0.3-BiOBr, Au0.6-BiOBr and

Au0.9-BiOBr were 2.73, 2.69, 2.56 and 2.53 eV, respectively. These findings indicate that after

doping with Au the band gap of BiOBr became narrower, which is more suitable to harvest vis-

ible light.

Fig 4. (a) XPS survey spectra, (b) Bi 4f, (c) O 1s, (d) Br 4f of BiOBr and Au-doped BiOBr.

https://doi.org/10.1371/journal.pone.0273169.g004
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The valance band (VB) top potential energy of the sample was measured using the XPS VB

spectra (Fig 6C). The VB top of BiOBr was determined to be 1.32 eV. Coincidentally, samples

doped with Au shared the same VB value of 1.26 eV. According to the semiconductor band

gap energy and VB top potential energy, the CB bottom (ECB) of each sample was calculated

using Eq (2) [26]:

Eg ¼ EVB � ECB ð2Þ

where Eg, EVB and ECB are the band gap energy, the VB top energy and the CB bottom energy,

respectively. The band structure of each sample was determined, and the results are shown in

Fig 6D. Clearly, after doping with Au, the band gap of the semiconductor was slightly nar-

rowed. Also, the CB bottom energy would become less negative when more Au element was

doped into the BiOBr crystal.

Fig 5. XPS spectra of Au 4f in (a) BiOBr, (b) Au0.3-BiOBr, (c) Au0.6-BiOBr and (d) Au0.9-BiOBr, respectively.

https://doi.org/10.1371/journal.pone.0273169.g005
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The electrochemical property is considered as another important factor that determine the

performance of semiconductor photocatalysts. The EIS tests were performed to measure the

efficiency of charge carrier separation and the transportation of the samples. As shown in Fig

7A, the curvature radius of the curves of the samples had the following order: Au0.9-

BiOBr> Au0.6-BiOBr > Au0.3-BiOBr> BiOBr. These results showed that the curvature radius

increases with the increase of the Au doping concentration. Specifically, modification by dop-

ing with Au enhanced the resistance of BiOBr.

Furthermore, Mott-Schottky plots (Fig 7B) were used to determine the density of charge

carriers of the samples using Eq (3) [6]:

Nd ¼
2

e0εε0

� �
dðC2Þ

dV

� �� 1

ð3Þ

where e0, ε and ε0 are the electron charge, the dielectric constant of the sample and the permit-

tivity of the vacuum, respectively; [d(C2)/dV]-1 is the slope of the Mott-Schottky plots. Clearly,

Fig 6. (a) UV-Vis DRS, (b) Tauc plots, (c) valence band and (d) band structure diagrams of BiOBr and Au-doped BiOBr, respectively.

https://doi.org/10.1371/journal.pone.0273169.g006
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the linear part of the Mott-Schottky curve had a positive slope, revealing that all the as-pre-

pared products were n-type semiconductors. The slopes of these samples were in the following

order: Au0.3-BiOBr > BiOBr > Au0.6-BiOBr > Au0.9-BiOBr. Given that the carrier concentra-

tion is inversely proportional to the slope of the linear part of the Mott-Schottky curve, the car-

rier concentration of Au0.3-BiOBr slightly decreased by 7% compared with that of BiOBr.

When more Au element was introduced, the carrier concentration of the semiconductor was

substantially increased.

In addition, transient photocurrent response measurements (Fig 7C) were performed to

investigate the charge injection properties of the as-prepared photocatalysts. Considering that

BiOBr only weakly absorbs visible light, UV light was used in this experiment to compare the

charge injection characteristics of Au-doped BiOBr and BiOBr. The order of the photocurrent

response intensity of these photocatalysts was as follows: Au0.3-BiOBr> Au0.6-BiOBr > Au0.9-

BiOBr> BiOBr. This order reveals that Au0.3-BiOBr nanosheets showed the highest photo-

current, which was 2.2 times higher than that of BiOBr. Therefore, according to the results of

carrier concentration, the charge separation efficiency of Au0.3-BiOBr was 2.3 times higher

than that of BiOBr, demonstrating that modification by doping with Au could substantially

improve the charge separation efficiency of the catalyst.

Photocatalytic degradation of TH

The degradation efficiency of TH was investigated to evaluate the photocatalytic performance

of various catalysts under visible light irradiation. The degradation trend of TH in the presence

of different catalysts during 90 min of irradiation is shown in Fig 8A. To achieve the adsorp-

tion/resolution equilibrium of the photocatalyst, the reaction system was stirred in the dark for

20 minutes. In the absence of photocatalyst, the decomposition of TH was negligible, indicat-

ing that TH is very stable under visible light irradiation. The degradation efficiency of TH by

TiO2 and BiOBr was only 21.5 and 44.8%, respectively, indicating that the photocatalytic deg-

radation of TH by TiO2 and BiOBr under visible light irradiation were limited. However, after

modification by doping with Au, the TH degradation efficiency for Au0.3-BiOBr, Au0.6-BiOBr

and Au0.9-BiOBr was 88, 67.5 and 62.4%, respectively. It is evident that Au0.3-BiOBr exhibited

the highest rate of degradation of TH under visible light irradiation and thus had the best per-

formance among these photocatalysts. A table is presented to compare organics removal over

different systems and makes a comparison with this work (S1 Table) [9, 34–36]. Combined

with the electrochemical characteristics of these samples, these results revealed that modifica-

tion by doping with Au mainly reduces the band gap of the semiconductor and increases the

carrier concentration, but it also increases the impedance, which is not conducive to carrier

Fig 7. (a) EIS spectrum, (b) Mott-Schottky plots and (c) photocurrent response test plots of BiOBr and Au-doped BiOBr.

https://doi.org/10.1371/journal.pone.0273169.g007
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migration. As a result, the Au0.9-BiOBr nanosheets with the narrowest band gap did not have

the highest photocatalytic efficiency due to its low charge separation efficiency. However, in

the case of Au0.3-BiOBr nanosheets, the highest photocatalytic degradation efficiency was

achieved due to the substantially enhanced visible light absorption efficiency and charge sepa-

ration efficiency of Au0.3-BiOBr compared to those of BiOBr.

The following pseudo first-order kinetics Eq (Eq 4) was used to quantitatively describe the

photocatalytic efficiency of these samples [9]:

� lnðCt=C0Þ ¼ kt ð4Þ

where Ct, C0, k and t are the concentration at the given time t, initial concentration, the kinetic

constant and time, respectively. The corresponding first order dynamics diagram is shown in

Fig 8B. The k values for TiO2, BiOBr, Au0.3-BiOBr, Au0.6-BiOBr and Au0.9-BiOBr were 0.0025,

0.0055, 0.0216, 0.0116 and 0.0109 min-1, respectively. The photocatalytic efficiency of Au0.3-

BiOBr was 3.9 times higher than that of BiOBr. In addition, the specific values of the BET sur-

face area for BiOBr, Au0.3-BiOBr, Au0.6-BiOBr and Au0.9-BiOBr were 2.15, 4.31, 2.65 and 2.65

m2 g-1, respectively (S2 Fig). Additionally, the surface-area-normalized kinetic constant (k/

SBET) was calculated to eliminate differences in the exposure of active sites. The k/SBET values

of BiOBr, Au0.3-BiOBr, Au0.6-BiOBr and Au0.9-BiOBr were 2.56, 5.01, 4.38 and 4.11 mg m-2

min-1, respectively. Thus, the intrinsic photocatalytic efficiency of Au0.3-BiOBr was approxi-

mately twice higher than that of BiOBr, indicating that modification by doping with Au could

enhance the intrinsic photocatalytic activity of BiOBr by improving the charge separation effi-

ciency under visible light irradiation. Furthermore, S3 Fig shows the stability of Au0.3-BiOBr

nanosheets in the photocatalytic degradation of TH under visible light irradiation. After 4 cir-

culations of TH degradation, the photocatalytic activity of Au0.3-BiOBr nanosheets retained

about 95.2%, confirming the high stability of the photocatalytic activity. Moreover, to further

demonstrate the stability of the catalyst itself, the XRD and SEM were used to analyze the

phase and morphology of the Au0.3-BiOBr nanosheets after reaction (S4 Fig). The XRD pattern

of sample after reaction was almost unchanged compared to the unused Au0.3-BiOBr

nanosheets, which indicates the high stability of crystal structure.

Fig 8. (a) Photocatalytic degradation curves and (b) corresponding kinetic curves of the BiOBr and Au-doped BiOBr, respectively.

https://doi.org/10.1371/journal.pone.0273169.g008
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Mechanism of TH photocatalytic degradation

Due to the strong oxidation capacity of reactive oxygen species (ROS) such as �O2
-, they usually

play an important role in the photocatalytic degradation process. Therefore, to verify the pres-

ence of �O2
-, nitroblue tetrazolium (NBT) was chosen to trap the �O2

- generated in the visible

light irradiation over the Au0.3-BiOBr nanosheets, and the result was shown in S5 Fig. The

maximum absorbance of NBT declined prominently, indicating that abundant �O2
- has been

generated rapidly under visible light [29]. Furthermore, electron paramagnetic resonance

(EPR) spectroscopy analysis was performed to investigate the active substances produced dur-

ing the photocatalytic degradation of TH. The corresponding EPR spectra, shown in Fig 9,

reveal that, under visible light irradiation, �O2
- was generated in samples with Au0.3-BiOBr and

BiOBr. The signal of �O2
- generated with Au0.3-BiOBr was slightly stronger than that with

BiOBr, indicating that more �O2
- was generated with Au0.3-BiOBr during the photocatalytic

degradation process.

The difference of the effects of the main active substances on the photocatalytic degradation

of TH was investigated through a series of free radical quenching experiments using the scav-

engers N2, ascorbic acid, Na2C2O4 and tert-butyl alcohol (TBA), to remove dissolved O2, �O2
-,

h+ and �OH, respectively. As is shown in Fig 10A, these four scavengers inhibited the degrada-

tion of TH to different degrees. In particular, N2 purging and ascorbic acid had a strong effect

on the degradation of TH. The kinetic constants of TH degradation with the scavengers N2,

ascorbic acid, Na2C2O4 and TBA were 0.005, 0.0056, 0.009 and 0.0101, respectively (Fig 10B).

Compared with the kinetic constants of TH degradation without scavengers, these scavengers

Fig 9. EPR spectrum of �O2-.

https://doi.org/10.1371/journal.pone.0273169.g009
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reduced the kinetic constants by 77, 74, 58 and 53%, respectively, confirming that �O2
- was the

main active species in the TH degradation process. However, the contribution of h+ and �OH

during the TH degradation process should not be neglected. The generated �O2
- could be

transformed into �OH via the following reactions [4, 6, 9]:

O2 þ e� ! �O2� ð5Þ

�O2� þH2O! �OOHþOH� ð6Þ

�OOHþH2Oþ 2e� ! �OHþ 2OH� ð7Þ

The analysis of the intermediates formed in the degradation process by HPLC-MS revealed

the pathways for the photocatalytic degradation of TH. According to the results of the analysis

of intermediates, the TH degradation process could be divided into four stages, namely

hydroxylation, demethylation, ring opening and mineralization. Some functional groups in

the TH molecule, such as double bond, phenol group and amine group, have a high electron

density and are susceptible to ROS during the degradation process, resulting in a series of

intermediates [37, 38]. Therefore, as illustrated in Fig 11, three pathways for TH degradation

were identified. The initial m/z value of the original TH was 445. Through the hydroxylation

reaction, intermediates with m/z of 459 and 477 were generated. Then, due to the continuous

attack by ROS, demethylation occurs and breaks the amino, methyl and hydroxyl groups,

which result in the generation of intermediates with m/z of 340, 362 and 371. Through aro-

matic ring-opening reactions, the intermediates with m/z of 171, 227, 274 and 277 were gener-

ated followed by intermediate with m/z of 340, 362 and 371. As a result of the occurrence of

further aromatic ring-opening reactions and the absence of certain functional groups, some

intermediates were further degraded into small molecule compounds with m/z of 111, 149,

114, 118 and 102. Ultimately, these small compounds were continuously decomposed into

even smaller compounds until completely mineralized to CO2 and H2O.

Based on the above results, the elucidated mechanism of photocatalytic TH degradation by

Au-doped BiOBr nanosheets under visible light irradiation can be summarized as follows.

Fig 10. (a) photocatalytic degradation curves of TH with added scavengers and (b) the corresponding kinetic constants.

https://doi.org/10.1371/journal.pone.0273169.g010
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First, Au-doped BiOBr nanosheets absorb visible light and become excited to generate elec-

trons and holes. Then, the h+-e- pairs are efficiently separated in the crystal of Au0.3-BiOBr.

After that, free radicals including �O2
- and �OH are generated by the injection of e- into O2,

which are responsible for the degradation of TH. In this way, TH is excited by these free radi-

cals and degraded into intermediates, and eventually mineralized to CO2 and H2O.

Fig 11. Proposed degradation pathways of TH by the Au0.3-BiOBr under the visible light.

https://doi.org/10.1371/journal.pone.0273169.g011
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Conclusions

In this study, Au-doped BiOBr nanosheets were successfully synthesized through a simple

one-pot hydrothermal method, and the Au atoms were found to be highly dispersed in the

BiOBr host crystal. Au0.3-BiOBr nanosheets had a narrower band gap and a higher charge sep-

aration efficiency than those of BiOBr. Specifically, the charge separation efficiency of Au0.3-

BiOBr was 2.3 times higher than that of BiOBr. Therefore, Au0.3-BiOBr nanosheets exhibited

the highest efficiency in the degradation of TH under visible light irradiation, which was twice

higher than that of BiOBr. During the photocatalytic process, �O2
- was the main active species

while other ROS also contributed to the degradation of TH. Furthermore, the degradation

pathways of TH were elucidated, and shown to involve hydroxylation, demethylation, ring

opening and mineralization. Therefore, modification by doping with Au is proposed as a

promising strategy for the modification of BiOBr to improve the charge separation efficiency

and enhance the photocatalytic degradation efficiency for organic pollutants under visible

light irradiation.
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