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Abstract

Mirror neurons are recognized as a crucial aspect of motor and social learning yet
we know little about their origins and development. Two competing hypotheses are
highlighted in the literature. One suggests that mirror neurons may be innate and
are an adaptation for action understanding. The alternative, proposes that mirror
neurons develop through sensorimotor experience. To date, there has been little
direct evidence from infant studies to support either argument. In the present study,
we explored the temporal dynamics and spatial distribution of electroencephalo-
graphy (EEG) brain responses in young infants during the observation of three dis-
tinct types of actions: (a) actions that are within the motor repertoire of infants,
(b) actions that are not within the motor repertoire of infants, and (c) object
motion. We show that young infants had significant motor resonance to all types
of actions in the sensorimotor regions. Only observation of human goal-directed
actions led to significant responses in the parietal regions. Importantly, there was
no significant mu desychronization observed in the temporal regions under any
observation condition. In addition, the onset of mu desychronization occurred
earliest in response to object motion, followed by reaching, and finally walking.
Our results suggest that the infants may have a basic, experience-independent
sensorimotor mechanism optimized to detect all coherent motion that is modulated
by experience.

Introduction
The recognition of action is a fundamental prerequisite for
the development of imitation, motor learning, and social de-
velopment (Rizzolatti and Arbib 1998). In humans, mirror
neurons, which respond to both the observation and execu-
tion of an action, have been found in the ventral premotor
cortex, inferior parietal lobe (Rizzolatti and Craighero 2004),
and the superior temporal sulcus (STS) (Iacoboni et al. 2005)
suggesting a common coding between perception and ac-
tion. These regions form a complex network in which the
visual representation of motion activates an appropriate mo-
tor representation. Numerous electrophysiological and brain
imaging studies now support the existence of a mirror neu-
ron system in adults (Gallese et al. 1996; Nitashani and Hari
2000; Rizzolatti and Craighero 2004; Iacoboni et al. 2005;
Keysers et al. 2006; Virji-Babul et al. 2010), children (Lepage
and Théoret 2006) and infants (Shimada and Hiraki 2006;

Nystrom 2008; Southgate et al. 2009; Marshall et al. 2011).
There are, however, a number of questions not accounted for
by the current mirror neuron system interpretation. For ex-
ample, how does the mirror neuron system develop and how
is this development related to the infant’s own abilities and
experiences? Are mirror neurons the result of sensorimotor
learning processes or genetic prewiring?

Heyes and colleagues (Heyes et al. 2005; Heyes 2010) have
proposed an associative sequence learning (ASL) model that
states that mirror neurons develop as a result of the correlated
experience of observing and executing the same action. Sup-
port for this model comes primarily from adult studies show-
ing that activity in the mirror neuron system is modulated
by previous motor experience. For example, pianists showed
stronger activations within a fronto–parietal–temporal net-
work while observing piano playing compared to controls
(Haslinger et al. 2005). In addition, dancers showed stronger
responses in the premotor, parietal cortices, and STS when
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they observed dance movements that they had previous ex-
perience with (Calvo-Merino et al. 2005).

An alternative hypothesis is that mirror neurons may be
an adaptation for action understanding. From an evolution-
ary point of view, it seems reasonable that there may be
some innate mechanisms in place that would be facilitated
through sensorimotor learning (Del Giudice et al. 2009).
However, to date, there has not been any evidence show-
ing the existence of a mirror neuron system at birth. Another
approach is to investigate the influence of previous motor
experience on the perception of actions that are not within
the repertoire of young infants. Van elk et al. (2008) investi-
gated whether infants’ own motor experience (crawling and
walking) is related to the activation of their motor system
during the perception of these actions carried out by other
infants. They did not find significant differences between the
two actions in the sensorimotor areas suggesting perhaps,
that infants have a predisposition to perceiving all human
actions.

One index of mirror neuron activity that has been exten-
sively studied in humans is mu (8–13 Hz) suppression. At
rest, neurons in the sensorimotor area fire synchronously re-
sulting in large amplitude EEG oscillations in mu frequency
band. When subjects perform an action, imagine, or observe
movements, these neurons fire asynchronously decreasing
the power of the mu band (Pfurtscheller and Neuper 1997;
Muthukumaraswamy et al. 2006). It has been hypothesized
that the mu rhythms reflect downstream modulation of pri-
mary sensorimotor areas by mirror neuron activity, repre-
senting a critical information processing function, translat-
ing perception into action (Pineda 2005). To date, studies
on infants have studied motor resonance to human actions
(i.e., reaching/grasping or walking/crawling) but have not in-
cluded a condition of object motion to determine whether
infants show a general motor resonance to all motion or
whether motor resonance is specific to human actions. In the
present study, the questions we asked were: (a) do infants
show motor resonance only during observation of human
actions or to both human and object motion and (b) to what
extent does previous motor experience influence the network
of brain regions activated during action observation? We used
high-density EEG to investigate the pattern of mu rhythm
modulation and study the latencies of activation of the sen-
sorimotor regions in infants during observation of three types
of actions: actions that are developmentally within the motor
repertoire of infants (i.e., reaching), actions that are devel-
opmentally not within the motor repertoire of infants (i.e.,
walking), and object motion (i.e., toy car, ball) to distinguish
the responses between human and object motion. We exam-
ined the spectral power changes in the sensorimotor, parietal,
and temporal regions as well the time–frequency responses
to observation of the three actions in the sensorimotor
region.

Methods

Participants

A total of 14 infants between the ages of 4 and 11 months
(mean age: 7.08 months, eight males, six females) participated
in this experiment. Four infants were excluded from analysis
due to movement or insufficient artifact free trials per con-
dition. Parents provided information about the reaching and
ambulatory experience of their infant. All infants were able
to perform a reaching motion but none had started to walk
at the time of the experiment according to parent reports.
Parents provided written consent according to the guidelines
specified by the Human Ethics Review Board at the University
of British Columbia.

Stimuli

Videos of 1.5-sec duration depicting three different actions:
human walking, hand reaching for objects, and object motion
(toy car, rolling ball) were prepared. Adult actors were used
for the reaching and walking videos. Videos were recorded
against a neutral background. Unlike previous studies, we did
not show the face of the actors in any of the displays. A total
of 60 videos (20 walking, 20 reaching, and 20 object motion)
were included.

Experimental setup and procedure

Infants were seated on their parent’s lap in front of a 90-cm
projector screen at a viewing distance of approximately 190
cm. A camera was placed below the projection screen to mon-
itor the infants’ eye and limb movements. Only trials with no
limb movement and during which the infant observed the
video displayed were included in the analysis.

EEG recording and analysis

EEG was recorded using an infant-sized 64-channel HydroCel
Geodesic Sensor Nets (EGI, Eugene, OR). EEG was recorded
with a Net Amps 300 amplifier at a sampling rate of 250 Hz.
Scalp electrode impedances were usually less than 50 kΩ. The
signal was collected referenced to the vertex (Cz). The signal
was then filtered from 4 to 40 Hz, and a notch filter of 60 Hz
was included.

Since our primary interest was in understanding the loca-
tion and sources of brain activity, we used source modeling
rather than analysis of specific sensors/electrodes. Activity in
every brain region is associated with a widespread topology
and thus a source montage was used to transform the EEG
activity obtained from all the 151 channels into estimated
contributions of a set of 15 separate brain regions using Brain
Electrical Source Analysis (BESA) (MEGIS Software GmbH).
Fast Fourier transforms were performed on single trials (1024
points Hanning window) and averaged for each condition.
The EEG data for the central, parietal, and temporal regions
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were group averaged across all infants. Power values from the
left and right sensorimotor, parietal, and temporal regions for
the mu rhythm (6–9 Hz) were used for statistical analyses.

In order to account for individual variability in overall
power, a ratio of the power during observation relative to the
baseline condition for bilateral central regions was computed
for each subject. A log transform was then calculated for
each ratio. A value of zero indicates no signal power change
and a negative value indicates attenuation of the signal. We
focused on analysis of the mu rhythm (6–9 Hz) activity for
infants. Mean mu desychronization was calculated for each
condition in the central, parietal, and temporal brain regions.
One sample t-tests were used to determine if the values were
significantly different from zero.

Time–frequency responses were analyzed using Field-
Trip (open source software, developed at the FC Don-
ders Centre for Cognitive Neuroimaging; http://www.ru.nl/
fcdonders/fieldtrip/). The data were imported into Matlab
for preprocessing and group averaging. Power values were
computed on all frequency and time bins of the group aver-
age. These event-related power changes were plotted for the
regions of interest (i.e., frontal, central, and parietal).

Results

Mu desynchronization (6–9 Hz)

Figure 1 shows the log ratios for each of the three conditions
for the sensorimotor, parietal, and temporal regions. Mean
mu desynchronization was significantly different from zero
for the sensorimotor regions for all three conditions (reach-
ing: t(9) = −2.3, P = .02; walking: t(9) = −1.7, P = .05;
object: t(9) = −2.2; P = .03), but only significantly differ-
ent from zero for the reaching and walking conditions in
the parietal regions (reaching: t(9) = −2.4, P = .01; walk-
ing: t(9) = −2.1, P = .03; object: t(9) = −1.7, P > .05).
In addition, mean mu desychronization was not significantly
different from zero for any of the three conditions for the

Figure 1. Mu power as a function of condition.

temporal regions (reaching: t(9) = −.5, P = .1; walking:
t(9) = −1.1, P = .01; object: t(9) = −.07, P = .1).

Time–frequency distributions

Grand averaged time–frequency plots for the sensori-
motor regions are presented in Figure 2. Source power
decreases/event-related desynchronization (ERD) and power
increase/event-related synchronizations (ERS) are shown in
for each of the three conditions. Enhanced ERD was observed
in the mu band during all three conditions. For the object
motion, ERD was also observed in the beta band (15–35 Hz).
Interestingly, ERS was observed in the beta band in the walk-
ing condition. There was no significant ERS noted in the
reaching condition.

Latencies of mu activation

The differences in onset latencies for the mu band in the
sensorimotor regions for all three conditions are shown in
Figure 3. Note that the onset of mu desynchronization during
observation of object motion started at 50 msec, reaching at
113 msec, and walking at 175 msec following the start of the
video display.

Discussion

In the present study, we investigated the brain regions in-
volved in the perception of object and human motion and
the influence of previous motor experience. One of the main
unresolved issues in the study of the mirror neuron system
is whether this system is innate or acquired through senso-
rimotor experience (see Hayes 2010 for review). Specifically,
developmental studies have not yet been able to clearly ex-
plain the role of sensorimotor experience and the extent to
which this experience facilitates the development of the mir-
ror neuron system.

In the present study, we first showed that infants show
strong desynchronization to human motion in the mu fre-
quency band in the sensorimotor regions, irrespective of their
own motor experience. Infants, who had not yet started to
walk, responded equally to motion depicting walking and
reaching. In addition, infants showed similar mu desynchro-
nization in the sensorimotor regions to observation of co-
herent object motion in the form of movement of toy cars
or balls. These results extend previous work in infants (e.g.,
Nystrom 2008; Marshall et al. 2011) to show the presence of
a fundamental motor resonance mechanism in infants that
responds to all coherent motion.

Interestingly, although our results indicate the presence
of a basic perceptual-motor mechanism early in infancy,
we also observed two striking differences—first in terms
of the pattern of activity in traditional mirror neuron re-
gions, and second in relation to the latencies of activation.
These two task specific patterns point to the emergence of an

c© 2012 The Authors. Published by Wiley Periodicals, Inc. 239
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Figure 2. Grand average time–frequency plots during action observation under each of the three conditions: (a) object motion, (b) reaching,
(c) walking. The time–frequency plots reflect changes in power over the sensorimotor region time locked to the presentation of the video (t = 0 sec).
Strong modulation was observed in the mu band for all conditions.

Figure 3. Latencies of mu desynchronization for each of the three ob-
servation conditions.

experience-dependent modulation of the basic mechanism
early in infancy.

In the adult literature, three key brain regions are thought
to comprise the mirror neuron system: the premotor cortex,
inferior parietal cortex (Rizzolatti and Craighero 2004), and
the STS. The parietal cortex is thought to have a central role
in representing and interpreting the goals of observed ac-
tions (Hamilton and Grafton 2006). The STS is thought to be

critical in cognitive processing related to perspective taking
(Schulte-Rüther et al. 2007) and is involved in discriminating
self-produced actions from the actions of others (Keysers and
Perrett 2004). We have shown recently that during the obser-
vation of a goal-directed reaching movement in a live model,
the first brain area to be activated was the right temporal
region (Virji-Babul et al. 2010), followed by activity in the
sensorimotor and parietal regions suggesting that this dis-
crimination between self and other may be mediated by early
interactions between the temporal regions and the sensori-
motor regions. Thus, the premotor cortex, parietal region,
and the STS are considered to be a functional circuit with
reciprocal connections that facilitates social understanding
(Keysers and Perrett 2004).

Within the context of the adult mirror neuron system,
our results indicate that the infant mirror neuron system is
characterized by an emerging network circuit, encompass-
ing only the sensorimotor and parietal regions. In our study,
both goal-directed human actions were associated with ac-
tivity in the sensorimotor and parietal regions. In contrast,
object motion was associated with activity only in the motor
regions, suggesting that infants may be capable at a very fun-
damental level to distinguish between human goal-directed
actions and object motion—a function associated with the
parietal region.
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This discrimination may be reflected in the timing of mu
desynchronization in which the earliest onset of activity oc-
curred in response to object motion. We have shown previ-
ously that observation of coherent object motion results in
earlier activation of occipital, parietal, and sensory-motor re-
gions in comparison with the observation of human motion
(Virji-Babul et al. 2008). The processing of human motion re-
quires higher level processing that may require more complex
interactions between different brain regions.

Overall, these data suggest that infants may be predis-
posed early in life to understand coherent human and object
action. These data corroborate with recent results demon-
strating that newborn babies have an inborn, experience-
independent perceptual mechanism in place to detect biolog-
ical motion (Simion et al. 2008). Our data add to this finding
by demonstrating that this perceptual mechanism extends to
both human and object motion. This basic mechanism may
be crucial for developing imitation skills (Meltzoff and Decety
2003).

Several researchers have suggested that early in life, in-
fants may display a broadband response to human motion
and coherent motion in the form of moving objects (Shi-
mada and Hiraki 2006). This response may be refined with
experience through a process of Hebbian learning (Del Giu-
dice et al. 2009), providing a mechanism for the integration
of perceptual-motor learning with a genetic predisposition
to motion resulting in the emergence of the mirror neuron
system. Nagai et al. (2011) have recently proposed a com-
putational model of the development on the mirror neuron
system in which they propose that there may be a correlation
between the development of visual perception and sensori-
motor development. In their model, they show that in the
early stages of development, all motion is perceived and pro-
cessed at a very basic level; as the spatiotemporal resolution
of vision develops, the robot model can begin to discriminate
between its own motions and the motions of others. Through
feedback and sensorimotor learning, an association is created
between the motor commands of the self and the motions of
others. These modeling results provide a theoretical basis of
how perceptual-motor coupling may develop in the infant
and provides directions for future research.

One limitation of our study is that we did not have an
action execution condition to compare our results with pre-
vious studies. A direct comparison of action execution with
action observation using a source level analysis of brain re-
sponses will significantly advance our understanding of the
fundamental mechanisms underlying the development of the
perceptual-motor system.
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