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Comparison of methods for calculating
conditional expectations of sufficient statistics for
continuous time Markov chains
Paula Tataru* and Asger Hobolth

Abstract

Background: Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA
sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a
state and the number of changes between any two states. In applications past evolutionary events (exact times
and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the
present.

Results: We describe and implement three algorithms for computing linear combinations of expected values of
the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to
accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD),
the second on uniformization (UNI), and the third on integrals of matrix exponentials (EXPM). The implementation
in R of the algorithms is available at http://www.birc.au.dk/~paula/.

Conclusions: We use two different models to analyze the accuracy and eight experiments to investigate the
speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method.
Furthermore we find that UNI is usually faster than EVD.

Background
In this paper we consider the problem of calculating the
expected time spent in a state and the expected number
of jumps between any two states in discretely observed
continuous time Markov chains (CTMCs). The case
where the CTMC is only recorded at discretely observed
time points arises in molecular evolution where DNA
sequence data is extracted at present day and past evo-
lutionary events are missing. In this situation, efficient
methods for calculating these types of expectations are
needed. In particular, two classes of applications can be
identified.
The first class of applications is concerned with rate

matrix estimation. [1] describes how the expectation-
maximization (EM) algorithm can be applied to estimate
the rate matrix from DNA sequence data observed in
the leaves of an evolutionary tree. The EM algorithm is
implemented in the software XRate [2] and has been

applied in [3] for estimating empirical codon rate
matrices. [1] uses the eigenvalue decomposition of the
rate matrix to calculate the expected time spent in a
state and the expected number of jumps between states.
The second class of applications is concerned with

understanding and testing various aspects of evolution-
ary trajectories. In [4] it is emphasized that analytical
results for jump numbers are superior to simulation
approaches and various applications of jump number
statistics are provided, including a test for the hypoth-
esis that a trait changed its state no more than once in
its evolutionary history and a diagnostic tool to measure
discrepancies between the data and the model. [4]
assumes that the rate matrix is diagonalizable and that
the eigenvalues are real, and applies a spectral represen-
tation of the transition probability matrix to obtain the
expected number of state changes.
[5] and [6] describe a method, termed substitution

mapping, for detecting coevolution of evolutionary traits,
and a similar method is described in [7]. The substitu-
tion mapping method is based on the expected number* Correspondence: paula@birc.au.dk
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of substitutions while [7] base their statistics on the
expected time spent in a state. Furthermore [7]
describes an application concerned with mapping synon-
ymous and non-synonymous mutations on branches of a
phylogenetic tree and employs the expected number of
changes between any two states for this purpose. [8]
uses the expected number of state changes to calculate
certain labeled evolutionary distances. A labeled evolu-
tionary distance could for example be the number of
state changes from or to a specific nucleotide. In [9]
substitution mapping is invoked for identifying bio-
chemically constrained sites. In [7] and [8] the summary
statistics are calculated using the eigenvalue decomposi-
tion method suggested by [1]. In [5,6] and [9] the sub-
stitution mapping is achieved using a more direct
formula for calculating the number of state changes. In
this direct approach an infinite sum must be truncated
and it is difficult to control the error associated with the
truncation. An alternative is described in [10] where
uniformization is applied to obtain the expected number
of jumps. [10] uses the expected number of jumps on a
branch to detect lineages in a phylogenetic tree that are
under selection.
A third algorithm for obtaining the number of

changes or time spent in a state is outlined in [11]. The
algorithm is based on [12] where a method for calculat-
ing integrals of matrix exponentials is described. A nat-
ural question arises: which of the three methods
(eigenvalue decomposition, uniformization or matrix
exponentiation) for calculating conditional expectations
of summary statistics for a discretely observed CTMC
should be preferred? The aim of this paper is to provide
an answer to this question. We describe and compare
the three methods. Our implementations in R [13] are
available at http://www.birc.au.dk/~paula/. (Furthermore
the eigenvalue decomposition and uniformization meth-
ods are also available as a C++ class in the bio++ library
at http://biopp.univ-montp2.fr/.) The performance and
discussion of the algorithms are centered around two
applications. The first application is concerned with rate
matrix estimation; we estimate the Goldman-Yang
codon model [14] using the expectation-maximization
algorithm. The second application is based on the
labeled distance estimation presented in [8].
Consider a stochastic process {X(s): 0 ≤ s ≤ t} which

can be described by a CTMC with n states and an n × n
rate matrix Q = (qcd). The off-diagonal entries in Q are
non-negative and rows sum to zero, i.e. qcc = - Σd≠c qcd
= -qc. Maximum likelihood estimation of the rate matrix
from a complete observation of the process is straight
forward. The likelihood of the process, conditional on
the beginning state X(0), is given by (e.g. [15])

L(Q; {X(s) : 0 ≤ s ≤ t}) = exp

(
−
∑

c

qcTc

)⎛⎝ n∏
c=1

∏
d�=c

qNcd
cd

⎞⎠ , (1)

where Tc is the total time spent in state c and Ncd is
the number of jumps from c to d. The necessary suffi-
cient statistics for a CTMC are thus the time spent in
each state and the number of jumps between any two
states. In applications, however, access is limited to
DNA data from extant species. The CTMC is discretely
observed and we must estimate the mean values of Tc

and Ncd conditional on the end-points X(0) = a and X(t)
= b. From [15] we have that

E[Tc|X(0) = a, X(t) = b] = E[Tc|t, a, b] =
Iab
cc (t)

pab(t)
(2)

E[Ncd|X(0) = a, X(t) = b] = E[Ncd|t, a, b] =
qcdIab

cd(t)

pab(t)
(3)

where P(t) = (pij(t)) = eQt is the transition probability
matrix and

Iab
cd(t) =

t
∫
0

pac(u)pdb(t − u)du. (4)

Many applications require a linear combination of cer-
tain substitutions or times. Examples include the number
of transitions, transversions, synonymous and non-synon-
ymous substitutions. In the two applications described
below the statistics of interest is a linear combination of
certain substitutions and times. Let therefore C be an n ×
n matrix and denote by Σ(C; t) the matrix with entries∑

(C; a, b, t) =
∑
c,d

CcdIab
cd(t). (5)

We describe, compare and discuss three methods for
calculating Σ(C; t). The evaluation of the integrals (4)
takes O(n3) time and therefore a naive calculation,
assuming that C contains just one entry different from
zero has a O(n5) running time. Even worse, if C contains
O(n2) entries different from zero, then the naive imple-
mentation has a O(n7) running time. For all three meth-
ods our implementations of Σ(C; t) run in O(n3) time.

Results
Applications
Application 1: Rate matrix estimation
Our first application is the problem of estimating the
parameters in a CTMC for evolution of coding DNA
sequences which we describe using the 61 × 61 rate
matrix (excluding stop codons) given by Goldman and
Yang [14]:
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qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if there is more than one difference between codons i and j
ακπj if j is obtained from i by a synonymous transition
απj if j is obtained from i by a synonymous transversion
αωκπj if j is obtained from i by a non - synonymous transition
αωπj if j is obtained from i by a non - synonymous transversion

(6)

where π is the stationary distribution, � is the transi-
tion/transversion rate ratio, ω is the non-synonymous/
synonymous ratio and a is a scaling factor. The station-
ary distribution π is determined directly from the data
using the codon frequencies. We estimate the remaining
parameters θ = (a, �, ω) using the expectation-maximi-
zation (EM) algorithm [16] as described below.
Suppose the complete data x is available, consisting of

times and types of substitutions in all sites and in all
branches of the tree. The complete data log likelihood
is, using (1) and (6),

�(α, κ, ω; x) = −αLs,tv − αωLns,tv − ακLs,ts − ακωLns,ts

+ N log α + Nts log κ + Nns log ω,
(7)

where we use the notation

Ls,ts =
∑

i

Ti

∑
j

πi1((i, j) ∈ Ls,ts) and Nts =
∑

i,j

Nij1((i, j) ∈ Lts) (8)

where e.g.

Ls,ts = {(i, j) : i and j differ at one position and the substitution of i with j is a synonymous transition}.

A similar notation applies for Ls,tv, Lns,ts, Lns,tv, Nns

and N, where the last statistic is the sum of substitu-
tions between all states (i, j) that differ at one position
and s, ns, ts and tv subscripts stand for synonymous,
non-synonymous, transition and transversion.
The complete data log likelihood can be maximized

easily by making the re-parametrization b = a�. We
find that

α̂ =
Ntv

Ls,tv + ω̂Lns,tv
, β̂ =

Nts

Ls,ts + ω̂Lns,ts
and ω̂ =

−b +
√

b2 − 4ac

2a
, (9)

where a = -Lns,tvLns,tsNs, b = Lns,tvLs,ts(Nns - Ntv) + Lns,
tsLs,tv(Nns - Nts) and c = Ls,tvLs,tsNns.
In reality the data y is only available in the leaves and

the times and types of substitutions in all sites and all
branches of the tree are unaccessible. The EM algorithm
is an efficient tool for maximum likelihood estimation
in problems where the complete data log likelihood is
analytically tractable but full information about the data
is missing.
The EM algorithm is an iterative procedure consisting

of two steps. In the E-step the expected complete log
likelihood

G(θ ; θ0, y) = Eθ0 [�(θ ; x)|y] (10)

conditional on the data y and the current estimate of
the parameters θ0 is calculated. In the M-step the

parameters are updated by maximizing G(θ; θ0,y). The
parameters converge to a local maximum of the likeli-
hood for the observed data.
The expected log likelihood conditional on the data y

and under the three parameters a, � and ω is

E[�(α, κ, ω; x)|y] = −αE[Ls,tv|y] − αωE[Lns,tv|y]

− ακE[Ls,ts|y] − ακωE[Lns,ts|y]

+ E[N|y]logα + E[Nts|y]logκ + E[Nns|y]logω.

(11)

Therefore the E-step requires expectations of linear
combinations of waiting times in a set of states and
number of jumps between certain states. Because of the
Markov property this calculation can be divided in two
parts. First we use the peeling algorithm [17,18] to
obtain the probability P(γk = a, βk = b|y, tk) that a branch
k of length tk with nodes gk and bk above and below the
branch, respectively, has end-points a and b. Second, we
calculate the desired summary statistic by summing over
all branches. For example we have

E[Ls,ts|y] =
∑

branch k

∑
a,b

P(γk = a, βk = b|y, tk)E[Ls,ts|tk, a, b](12)

E[Nts|y] =
∑

branch k

∑
a,b

P(γk = a, βk = b|y, tk)E[Nts|tk, a, b].(13)

The E-step thus consists of calculating conditional
expectations of linear combinations of times such as
E[Ls,ts|tk, a, b] and substitutions such as E[Nts|tk, a, b]
where Ls,ts and Nts are given by (8). In our application n
= 61 and the first type of statistics E[Ls,ts|t, a, b] is (up to
a factor pab(t)) on the form (5) with diagonal entries

Cii =
∑

j

πj1((i, j) ∈ Ls,ts) and all off diagonal entries

equal to zero. The second type of statistics E[Nts|t, a, b]
is also on the form (5) with off-diagonal entries
Cij = qij1((i, j) ∈ Lts) and zeros on the diagonal.
Application 2: Robust distance estimation
The second application is a new approach for estimating
labeled evolutionary distance, entitled robust counting
and introduced in [8]. The purpose is to calculate a dis-
tance that is robust to model misspecification. The
method is applied to labeled distances, for example, the
synonymous distance between two coding DNA
sequences. As it is believed that selection mainly acts at
the protein level, synonymous substitutions are neutral
and phylogenies built on these type of distances are
more likely to reveal the true evolutionary history. The
distance is calculated using the mean numbers of
labeled substitutions conditioned on pairwise site pat-
terns averaged over the empirical distribution of site
patterns observed in the data. In the conventional
method the average is done over the theoretical distri-
bution of site patterns. The robustness is therefore
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achieved through the usage of more information from
the data and less from the model.
Let Q be the rate matrix of the assumed model, P(t) =

eQt, the labeling be given through a set of pairs L and
the data be represented by a pairwise alignment y = (y1,
y2) of length m. As data only contains information
about the product Qt, where t is the time distance
between the sequences, we can set t = 1.
Suppose we observe the complete data consisting of

the types of substitutions that occurred in all sites and

let NL =
∑

i,j

Nij1((i, j) ∈ L) be the labeled number of

substitutions. A natural labeled distance is given by
dL = E(NL). The labeled distance is estimated as the
average across all sites of the expected number of
labeled substitutions conditioned on the observed end
points:

d̂L =
1
m

s=1∑
m

E[NL|X(0) = y1s, X(1) = y2s]

=
1
m

s=1∑
m

E

⎡⎣∑
i,j

Ni,j1((i, j) ∈ L)|1, y1s, y2s

⎤⎦ .

(14)

Therefore this application requires evaluating a sum
on the form (5) with off-diagonal entries
Cij = qij1((i, j) ∈ L) and zeros on the diagonal.

Algorithms

The calculation of Σ(C; t) is based on the integrals Iab
cd(t).

In this section we present three existing methods for
obtaining the integrals and extend them to obtain Σ(C;
t).
Eigenvalue decomposition (EVD)
When the rate matrix Q is diagonalizable, the computa-
tion of transition probabilities pab(t) and integrals Iab

cd(t)
can be done via the eigenvalue decomposition (EVD).
EVD is a widely used method for calculating matrix
exponentials. Let Q = UΛU-1 be the eigenvalue decom-
position, with Λ = diag(l1, ..., ln). It follows that

P(t) = eQt = e(U
U−1)t = Ue
tU−1. (15)

Because Λ is diagonal, eΛt is also diagonal with
(e
t)ii = eλi t.
The integral (4) becomes

Iab
cd(t) =

∑
i

Uai(U−1)ic

∑
j

Udj(U−1)jbJij(t) (16)

where Jij(t) =

⎧⎨⎩
teλi t if λi = λj

eλi t − eλj t

λi − λj
if λi �= λj.

(17)

Replacing Iab
cd(t) with (16) in (5), rearranging the sums

and using
Acj =

∑
d

CcdUdj, Bij = Jij(t)
∑

c
(U−1)icAcj, Dib =

∑
j
Bij(U−1)jb

and �(C; a, b, t) =
∑

i UaiDib we find

�(C; t) = U[J(t) ◦ (U−1CU)]U−1 (18)

where ○ represents the entry-wise product.
The eigenvalues and eigenvectors might be complex,

but they come in complex conjugate pairs and the final
result is always real; for more information we refer to
the Supplementary Information in [2]. If the CTMC is
reversible, the decomposition can be done on a sym-
metric matrix obtained from Q (e.g. [15]), which is fas-
ter and tends to be more robust. Let π be the stationary
distribution. Due to reversibility, πaqab = πbqba, which
can be written as ΠQ = Q*Π where Π = diag(π). Let S =
Π1/2QΠ-1/2.
We have that

S∗ = −1/2Q∗1/2 = −1/2(Q∗)−1/2

= −1/2(Q)−1/2 = 1/2Q−1/2 = S
(19)

where S* is the transpose of S. Then S is symmetric.
Let Λ, V be its eigenvalues and eigenvectors, respec-
tively. Then VΛV-1 = S = Π1/2QΠ-1/2, which implies Q =
(Π-1/2V)Λ(V-1Π1/2) and it follows that Q has the same
eigenvalues as S and Π-1/2V for eigenvectors.
The results can be summarized in the following algo-

rithm:

Algorithm 1: EVD
Input: Q, C, t
Output: Σ(C; t)
Step 1: Determine eigenvalues li.

Determine the eigenvectors Ui for Q and
compute U-1.
Step 2: Determine matrix J(t) from (17).
Step 3: Determine matrix Σ(C;t) from (18).

Uniformization (UNI)
The uniformization method was first introduced in [19]
for computing the matrix exponential P(t) = eQt. In [11]
it was shown how this method can be used for calculat-
ing summary statistics, even for statistics that cannot be
written in integral form. Let μ = maxi (qi) and

R =
1
μ

Q + I, where I is the identity matrix.

Then

P(t) = eμ(R−I)t =
∞∑

m=0

Rm (μt)m

m!
e−μt =

∞∑
m=0

RmPois(m; μt) (20)
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where Pois(m; l) is the probability of m occurrences
from a Poisson distribution with mean l. Using (20) we
also have

Iab
cd(t) =

∫ t

0
pac(u)pdb(t − u)du

=
∫ t

0

[ ∞∑
i=0

(Ri)ac
(μu)i

i!
e−μu

]⎡⎣ ∞∑
j=0

(Rj)db
(μ(t − u))j

j!
e−μ(t−u)

⎤⎦ du

=
∞∑
i=0

∞∑
j=0

(Ri)ac(R
j)db

μi+j

i!j!
e−μt

∫ t

0
ui(t − u)jdu

=
∞∑
i=0

∞∑
j=0

(Ri)ac(R
j)db

μi+j

i!j!
e−μt i!j!

(i + j + 1)!
ti+j+1

=
1
μ

∞∑
i=0

∞∑
j=0

(Ri)ac(R
j)db

(μt)i+j+1

(i + j + 1)!
e−μt

=
1
μ

∞∑
m=0

Pois(m + 1; μt)
m∑

l=0

(Rl)ac(R
m−l)db.

(21)

Replacing (21) in (5), rearranging the sums and using
that

∑
d Ccd(Rm−l)db = (CRm−l)cb and∑

c (Rl)ac(CRm−l)cb = (RlCRm−l)ab we derive

�(C; t) =
1
μ

∞∑
m=0

Pois(m + 1; μt)
m∑

l=0

RlCRm−l. (22)

The main challenge with this method is the infinite
sum and we use (20) to determine a truncation point.
In particular if we let l = μt and truncate at s(l) we
can bound the error using the tail of the Poisson dis-
tribution:

∣∣∣∣∣∣pab(t) −
s(λ)∑
m=0

(Rm)abPois(m; μt)

∣∣∣∣∣∣ =
∞∑

m=s(λ)+1

(Rm)abPois(m; μt) ≤
∞∑

m=s(λ)

Pois(m; μt).

We have that, for large values of l, Pois(λ) ≈ N(λ, λ),
where N(μ, σ 2) is the normal distribution with mean μ
and variance s2. Therefore, for large l, the error bound

b =
∞∑

m=s(λ)

Pois(m; μt) ≈ 1 − �

(
s(λ) − λ√

λ

)
,

where F(·) is the cumulative distribution function for
the standard normal distribution. Consequently we can
approximate the truncation point s(l) with√

λ�−1(1 − b) + λ. If b = 10-8 we obtain F-1 (1 - b) =
5.6.
Another way to determine s(l) is to use R to evaluate

Pois(m; l) for values of m that gradually increase, until
the tail is at most b = 10-8. Combining these two
approaches, we performed a linear regression, approxi-
mating the tails from R by c1 + c2

√
λ + c3λ. We obtained

c1 = 4.0731, c2 = 5.6469, c3 = 0.9963 but, in order to be

conservative, we use s(λ) =
⌈

4 + 6
√

λ + λ
⌉
where ⌈x⌉ is

the smallest integer greater than or equal to x. In Figure
1 we compare the exact truncation value and the linear
regression approximation.
The linear regression provides an excellent fit to the

tail of the distribution.
In summary we have the following algorithm:

Algorithm 2: UNI
Input: Q, C, t
Output: Σ(C; t)
Step 1: Determine μ, s(μt) and R.
Step 2: Calculate Rm for 2 ≤ m ≤ s(μt).

Step 3: Calculate A(m) =
∑m

l=0
RlCRm−l for 0 ≤ m ≤

s(μt).
using the recursion A(m + 1) = A(m)R + Rm+1C.

Step 4: Determine Σ(C; t) from (22).

Exponentiation (EXPM)
This method for calculating the integral (4) was devel-
oped in [12] and emphasized in [11]. Suppose we want
to evaluate

∫ t
0 eQuBeQ(t−u)du, where Q and B are n × n

matrices. To calculate this integral, we use an auxiliary

matrix A =
[

Q B
0 Q

]
and the desired integral can be

λ

tr
u
n
ca

ti
o
n
v
a
lu
e

0 5 10 15 20 25 30

10

35

60

λ

tr
u
n
ca

ti
o
n
v
a
lu
e

0.0 0.1 0.2 0.3 0.4 0.5

2

5

8

approximation exact

Figure 1 Poisson truncation. Comparison between the exact truncation value and the
⌈

4 + 6
√

λ + λ
⌉
approximation. In the plot on the left,

l ranges from 0 to 30, while the plot on the right is a zoom-in for values between 0 to 0.5. The plot shows that the approximation is a
conservative fit of the Poission tail.
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found in the upper right corner of the matrix exponen-
tial of A:∫ t

0
eQuBeQ(t−u)du = (eAt)1:n,(n+1):2n. (23)

We are interested in

Iab
cd(t) =

∫ t

0
pac(u)pdb(t − u)du =

∫ t

0
(eQu)ac(e

Q(t−u))dbdu

=
(∫ t

0
eQu1{(c,d)}eQ(t−u)du

)
ab

(24)

where 1{(c,d)} is a matrix with 1 in entry (c, d) and zero
otherwise. We can use this method to determine Iab

cd(t)
by simply setting B = 1{(c,d)}, construct the auxiliary
matrix A, calculate the matrix exponential of At, and
finally read off the integral in entry (a, b) in the upper
right corner of the matrix exponential.
Replacing (24) in (5) and rearranging the terms we

have

�(C; t) =
∫ t

0
eQu
∑
c,d

Ccd1{(c,d)}eQ(t−u)du and
∑
c,d

Ccd1{(c,d)} = C. (25)

Therefore by setting B = C in the auxiliary matrix we
obtain Σ(C;t).
The EXPM algorithm is as follows:

Algorithm 3: EXPM
Input: Q, C, t
Output: Σ(C; t)

Step 1: Construct A =
[

Q C
0 Q

]
.

Step 2: Calculate the matrix exponential eAt.
Step 3: Σ(C; t) is the upper right corner of the
matrix exponential.

Testing
We implemented the presented algorithms in R and
tested them with respect to accuracy and speed.
Accuracy
The accuracy of the methods depends on the size of the
rate matrix and the time t. To investigate how these fac-
tors influence the result, we used two different CTMCs
that allow an analytical expression for (4). The first
investigation is based on the Jukes-Cantor model where
the rate matrix has uniform rates and variable size n:

qij =

⎧⎨⎩ −1 if i = j
1

n − 1
if i �= j.

Q has two unique eigenvalues: 0 with multiplicity 1

and − n

n − 1
with multiplicity n-1. We obtain

pij(t) =

⎧⎪⎪⎨⎪⎪⎩
1
n

+
n − 1

n
exp

(
− nt

n − 1

)
if i = j

1
n

− 1
n

exp
(

− nt
n − 1

)
if i �= j

and Iab
cd(t) =

1
n2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t + t exp
(

− nt
n − 1

)
− 2(n − 1)

n

(
1 − exp

(
− nt

n − 1

))
if a �= c, d �= b

t + (n − 1)2t exp
(

− nt
n − 1

)
+

2(n − 1)2

n

(
1 − exp

(
− nt

n − 1

))
if a = c, d = b

t − (n − 1)t exp
(

− nt

n − 1

)
+

(n − 2)(n − 1)
n

(
1 − exp

(
− nt

n − 1

))
otherwise.

We compared the result from all three methods
against the true value of (5) for size n ranging from 5 to
100, t = 0.1 and random binary matrices C. Entries in C

are 1 with probability
1
2
. For each fixed size, we gener-

ated 5 different matrices C. The average normalized
deviation is shown in Figure 2.
The second CTMC is the HKY model:

Q =

⎛⎜⎜⎝
· κπG πC πT

κπA · πC πT

πA πG · κπT

πA πG κπC ·

⎞⎟⎟⎠
where π = (0.2,0.2,0.3,0.3) is the stationary distribution

and � = 2.15 is the transition/transversion rate ratio.
This rate matrix has an analytical result for (4) which
can be obtained through the eigenvalue decomposition.
The eigenvalues and eigenvectors of Q are

λ = (0, −1, −πYκ − πR, −πRκ − πY) where πR = πA + πG and πY = πC + πT ,

U =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −πY

πR
0 −πG

πA

1 −πY

πR
0 1

1 1 −πT

πC
0

1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
πA πG πC πT

−πA −πG
πCπR

πY

πTπR

πY

0 0 −πC

πY

πC

πY

−πA

πR

πA

πR
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

From this, using the symbolic operations in Matlab
[20], we obtained the final analytic expression for (4).
Using this model we compared for all three methods
the true value of (5) for various values of t and ran-
domly generated binary matrices C. For each t we gen-
erated 5 different matrices C. The average normalized
deviation is shown in Figure 2.
In both cases, all methods showed good accuracy as

the normalized deviation was no bigger than 3 × 10-9.
We also note that EXPM tended to be the most precise
while UNI provided the worst approximation. To
further investigate the accuracy, we performed calcula-
tions on randomly generated reversible rate matrices: we
first obtained the stationary distribution from the
Dirichlet distribution with shape parameters equal to 1,
then all entries qij with i ≥ j from the exponential distri-
bution with parameter 1 and finally calculated the
remaining entries using the reversibility property. In all
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the runs the relative difference between EVD, UNI and
EXPM was less than 10-5. This indicated that all three
methods have a similar performance in a wide range of
applications.
Speed
Partition of computation Assume we need to evaluate
Σ(C; t) for a fixed matrix C and multiple time points t Î
{t1,...tk}. In each iteration of the EM-algorithm in Applica-
tion 1 we need this type of calculation while in order to
calculate the labeled distance in Application 2 just one
time point is required. Using EVD (Algorithm 1) we do
the eigenvalue decomposition (Step 1) once and then, for
each time point ti, we apply Step 2 and Step 3. The eigen-
value decomposition, achieved through the R function
eigen, has a running time of O(n3). In Step 2 we deter-
mine J(t) and this takes O(n2) time. Step 3 has a running
time of O(n3) due to the matrix multiplications.
If instead we apply UNI (Algorithm 2), we run Steps

1-3 for the largest time point max(ti) and then, for each
time point ti, we apply Step 4. Steps 1-3 take O (s(μmax
(ti)) n

3) time, and Step 4 takes O(s(μti)n
2) time for each

i Î {1,..., k}. Therefore, even though the total time for
both methods is O(n3), the addition of one time point
contributes with O(n3) for EVD, but only O(s(μt)n2) for
UNI. Recall that the constant s(μt) is the truncation
point for the infinite sum in the uniformization method.
In the case of EXPM (Algorithm 3) we need to calcu-

late the matrix exponential at every single time point.
We used the expm R package [21] with the Higham08
method. This is a Padé approximation combined with
an improved scaling and squaring [22] and balancing
[23]. The running time is O(n3).
Table 1 provides an overview of the running times for

each of the methods. The algorithms are divided into
precomputation and main computation where the pre-
computation consists of steps that must be executed
only once, while in the main computation we calculate
the value of Σ(C;t) for every time point under
consideration.
Experiments We tested the speed of the algorithms in
six experiments based on the presented applications and
two more experiments using a non-reversible matrix.
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Figure 2 Accuracy results. Accuracy has been tested using JC and HKY models. For each run, the normalized deviation is calculated:(
�̂(C; a, b, t) − �(C; a, b, t)

)
/�(C; a, b, t) where Σ is the correct value and �̂ is the calculated one. Each plotted point represents the

average over a, b and 5 different randomly generated matrices C as described in the main text.
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GY The first experiment corresponded to running the
EM algorithm on real data consisting of DNA sequences
from the HIV pol gene described in [24]. HIV has been
extensively studied with respect to selection pressure
and drug resistance and in [24] the authors document
convergent evolution in pol gene caused by drug resis-
tance mutations. The observed data y was a multiple
codon alignment of the sequences. For simplicity, we
did not consider the columns with gaps or ambiguous
nucleotides. To compare the performance of the meth-
ods as a function of the size of the data set, we applied
the EM algorithm for 15 data sets containing from 2 up
to 16 sequences each, extracted from the HIV pol gene
data. For each set we assumed the sequences were
related according to a fixed tree; we have reconstructed
the phylogenies in Mega [25] using the Jukes-Cantor
model and Neighbor-Joining. We ran the EM algorithm
until all three parameters converged. Experiments two
and three used the previously estimated matrix Q given
by (6) with a = 10.5, � = 4.27 and ω = 0.6. We let Cij =
qij and Cii = 0, corresponding to calculating the total
number of expected substitutions E[N|t, a, b], and com-
puted the value of Σ(C; tk) for 10 equidistant sorted
time points tk with 1 ≤ k ≤ 10 (Table 2).
GTR In the fourth experiment we estimated the robust
labeled distance of two sequences, using the same set-
up as in [8]. For each considered evolutionary distance t
between 0.1 and 1, we generated 50 pairwise sequence
data sets of length 2000 which have evolved for time t
under the general time reversible (GTR) model with

Q =

⎛⎜⎜⎝
· r1πG r2πC r3πT

r1πA · r4πC r5πT

r2πA r4πG · r6πT

r3πA r5πG r6πC ·

⎞⎟⎟⎠
where r = (0.5, 0.3,0.6, 0.2,0.3, 0.2) and π = (0.2,

0.2,0.3, 0.3). For labeling, we considered the jumps to
and from nucleotide A, leading to Cij = qij if i or j
represents nucleotide A. For each data set, we esti-
mated the GTR parameters as described in [8] and cal-
culated the robust distance. Experiments 5 and 6 used
the same GTR matrix and Cij = qij if i or j represents
nucleotide A and zero otherwise, and computed the

value of Σ(C;tk) for 10 equidistant sorted time points tk
with 1 ≤ k ≤ 10 (Table 2).
UNR In the last two experiments we used the same set-
up as in experiments 5 and 6 but with a different matrix

Table 1 Running time complexity

Method EVD UNI EXPM

Precomputation

Steps 1 1-3 none

Order O(n3) O(s(μt)n3)

Main Computation

Steps 2-3 4 1-3

Order O(n3) O(s(μt)n2) O(n3)

Table 2 Experimental design

GY

Experiment 2 3

k tk μtk s(μtk) tk μtk s(μtk)

1 0.0017 0.0045 5 0.1 0.2668 8

2 0.0032 0.0085 5 0.2 0.5337 9

3 0.0046 0.0124 5 0.3 0.8005 11

4 0.0061 0.0163 5 0.4 1.0674 12

5 0.0076 0.0202 5 0.5 1.3342 13

6 0.0090 0.0241 5 0.6 1.6010 14

7 0.0105 0.0281 6 0.7 1.8679 15

8 0.0120 0.0320 6 0.8 2.1347 15

9 0.0135 0.0359 6 0.9 2.4015 16

10 0.0150 0.0398 6 1.0 2.6684 17

GTR

Experiment 5 6

k tk μtk s(μtk) tk μtk s(μtk)

1 0.1760 0.2668 8 0.1 0.1516 7

2 0.3520 0.5337 9 0.6 0.9098 11

3 0.5280 0.8005 11 1.1 1.6680 14

4 0.7039 1.0674 12 1.6 2.4262 16

5 0.8798 1.3342 13 2.1 3.1844 18

6 1.0558 1.6010 14 2.6 3.9426 20

7 1.2318 1.8679 15 3.1 4.7008 22

8 1.4077 2.1347 15 3.6 5.4590 24

9 1.5837 2.4015 16 4.1 6.2172 26

10 1.7597 2.6684 17 4.6 6.9754 27

UNR

Experiment 7 8

k tk μtk s(μtk) tk μtk s(μtk)

1 0.0379 0.1516 7 0.1 0.4 9

2 0.2275 0.9098 11 0.6 2.4 16

3 0.4170 1.6680 14 1.1 4.4 21

4 0.6066 2.4262 16 1.6 6.4 26

5 0.7961 3.1844 18 2.1 8.4 30

6 0.9857 3.9426 20 2.6 10.4 34

7 1.1752 4.7008 22 3.1 12.4 38

8 1.3648 5.4590 24 3.6 14.4 42

9 1.5543 6.2172 26 4.1 16.4 45

10 1.7439 6.9754 27 4.6 18.4 49

The table shows the time points tk, μtk and the approximation of the Poission
tail s(μtk). For experiment 2, tk spanned the interval that contains the 10
longest branch lengths from the phylogeny of the 16 HIV pol sequences. In
experiment 3 we started at 0.1 and ended at 1. We wished to design
experiment 5 such that the corresponding s(μtk) was the same as s(μtk) from
experiment 3. This allowed us to illustrate the relative performance of the
methods when running on different sizes of the rate matrix. Experiment 6 was
done on time points starting from 0.1 and ending at 4.6. As before, we
wished to design experiment 7 such s(μtk) corresponded to experiment 6.
Experiment 8 used the same tk as experiment 6.
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and time points (Table 2). As the speed of EVD is influ-
enced by the type of the model, we decided to employ a
non-reversible matrix. We chose the unrestricted model
and carefully set the rates such that the matrix has a
complex decomposition:

Q =

⎛⎜⎜⎝
−4 2 1 1
0 −3 2 1
1 0 −3 2
2 1 1 −4

⎞⎟⎟⎠ .

Figure 3 shows the results. For experiments 1 and 4,
the plots show the recorded running time under each
set-up (different number of sequences or different evo-
lutionary distance). For the remaining experiments each
plot starts with the running time of the precomputation
which, for UNI, is done on the largest time point t10.
Then, at position k, we plot the cumulative running
time for precomputation and the evaluation of Σ(C;ti)
for all i ≤ k. Since EVD and EXPM have running times
that are independent of tk, the running times for these
two algorithms are the same in experiments 2 and 3, 5
and 6, and 7 and 8. Even more, as EXPM is dependent
only on the size of the matrix, the running times in
experiments 5-8 are the same. We observe that in all
our experiments EXPM is the slowest method. Deciding
if EVD or UNI is faster depends on the size and type of
the matrix, the number of time points and the values of
s(μt). As the main computation for UNI has a running
time of O(n2) as opposed to O(n3) for EVD (Table 1),
this method should have an increased advantage when
the rate matrix is bigger. This means that if many time
points are considered, then UNI is generally the faster
method. Importantly, we note that the EVD precompu-
tation tends to be faster than the UNI precomputation.
We remark that, in the first experiment, UNI proved to
be the fastest method while, in the fourth experiment,
UNI became slower with the increase of the evolution-
ary distance between the sequences and it was only fas-
ter than EVD for small distances (< 0.2). By setting tk in
an appropriate manner (Table 2), we have the same run-
ning time for UNI and EXPM for experiment 7 com-
pared to experiment 6. Due to the fact that in
experiment 7 we used the UNR matrix, EVD is slower
as opposed to experiment 6. In this case, the difference
is observable but not very big, but as the size of the
matrix increases, this discrepancy increases too. We also
note that the difference between the reversible and non-
reversible cases is enough to make UNI faster than EVD
in the latter case.

Discussion
The EVD algorithm assumes that the rate matrix is
diagonalizable. However, a direct calculation of the

integral (4) in the non-diagonalizable case is actually
possible using the Jordan normal form for the rate
matrix. Let Q = PJP-1 where J is the Jordan normal form
of Q and P consists of the generalized eigenvectors (we
recognize that we used P and J for other quantities ear-
lier but for this discussion this should not cause any
confusion and we prefer to use standard notation), i.e. J
has a block diagonal form J = diag(J1,..., J�) where Jk =
lkI + N is a matrix with lk on the diagonal and 1 on
the superdiagonal. We have

eQt = Pdiag(eJ1t, . . . , eJK t)P−1, (26)

and noting that N is a nilpotent matrix with degree dk
(equal to the size of block Jk) we obtain

eJkt = etλk etN = eλkt
(

I + tN +
t2

2
N2 + . . . +

tdk−1

(dk − 1)!
Ndk−1

)
. (27)

In order to calculate the integral (4) the expressions
(26) and (27) are used. It is evident that this procedure
is feasible but also requires much bookkeeping.
In [26] an extension of uniformization, adaptive uni-

formization, is described for calculating transition prob-
abilities in a CTMC. The basic idea is to perform a local
uniformization instead of a global uniformization of the
rate matrix and thereby have fewer jumps in the jump
process. [26] considers a model with rate matrix

Q =

⎛⎜⎜⎝
−3v 3v 0 0
μ −(μ + 2v) 2v 0
0 μ −(μ + v) v
0 0 0 0

⎞⎟⎟⎠
(state 4 is an absorbing state). If this process starts in

state 1 then the first jump is to state 2 and the second
is from state 2 to either state 1 or state 3. This feature
can be taken into account by having a so-called adaptive
uniformized (AU) jump process where the rate for the
first jump is 3ν, for the second is μ + 2ν and, assuming
μ + ν > 3ν, the rate for the third jump is μ + ν. From
the third jump the rate in the AU jump process is μ +
2ν as in the standard uniformized jump process. The
AU jump process has a closed-form expression for the
jump probabilities (it is a pure birth process) but is of
course more complicated than a Poisson jump process.
The advantage is that the AU jump process exhibits
fewer jumps. This procedure could very well be useful
for codon models where the set of states that the pro-
cess can be in after one or two jumps are limited
because only one nucleotide change is allowed in each
state change.
In an application concerned with modeling among-site

rate variation, [27] applies the uniformization procedure
(20) to calculate the transition probabilities instead of
the eigenvalue decomposition method (15). [27] shows,

Tataru and Hobolth BMC Bioinformatics 2011, 12:465
http://www.biomedcentral.com/1471-2105/12/465

Page 9 of 11



in agreement with our results, that uniformization is a
faster computational method than eigenvalue
decomposition.
The presented methods are not the only ones for cal-

culating the desired summary statistics. For example, in
[5] it is suggested to determine the expected number of
jumps from the direct calculation

pab(t)E[Ncd|t, a, b] = ∫t
0 (eQs)acqcd(eQ(t−s))acds

=
i=0∑
∞

j=0∑
∞

(Qi)acqcd(Qj)db ∫t
0

si(t − s)j

i!j!
ds

=
k=1∑
∞

tk

k!

m=0∑
k−1

(Qm)acqcd(Qk−m−1)db,

where the infinite sum is truncated at k = 10. The
problem with this approach is that it is difficult to
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Figure 3 Experiments results. Running times for the eight experiments. Experiment 1: rate matrix estimation using EM. The plot shows the
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bound the error introduced by the truncation. In UNI a
similar type of calculation applies but the truncation
error can be controlled.

Conclusion
Recall that EVD assumes that the rate matrix is diagona-
lizable and this constraint means that EVD is less gen-
eral than the other two algorithms. We have shown in
the Discussion how a direct calculation of the integral
(4) is actually still possible but requires much bookkeep-
ing. On top of being less general, EVD is dependent on
the type of the matrix: reversible or non-reversible. We
have shown how this discrepancy can make EVD slower
than UNI even when the state space has size of only 4.
We found that the presented methods have similar

accuracy and EXPM is the most accurate one. With
respect to running time, it is not straightforward which
method is best. We found that both the eigenvalue
decomposition (EVD) and uniformization (UNI) are fas-
ter than the matrix exponentiation method (EXPM).
The main reason for EVD and UNI being faster is that
they can be decomposed into a precomputation and a
main computation. The precomputation only depends
on the rate matrix for EVD while for UNI it also
depends on the largest time point and the matrix C. We
also remark that EXPM involves the exponentiation of a
matrix double in size. UNI is particularly fast when the
product μt is small because in this case only a few
terms in the sum (22) are needed.
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