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Abstract: The Sleep Number smart bed uses embedded ballistocardiography, together with network
connectivity, signal processing, and machine learning, to detect heart rate (HR), breathing rate
(BR), and sleep vs. wake states. This study evaluated the performance of the smart bed relative to
polysomnography (PSG) in estimating epoch-by-epoch HR, BR, sleep vs. wake, mean overnight HR
and BR, and summary sleep variables. Forty-five participants (aged 22–64 years; 55% women) slept
one night on the smart bed with standard PSG. Smart bed data were compared to PSG by Bland–
Altman analysis and Pearson correlation for epoch-by-epoch HR and epoch-by-epoch BR. Agreement
in sleep vs. wake classification was quantified using Cohen’s kappa, ROC analysis, sensitivity,
specificity, accuracy, and precision. Epoch-by-epoch HR and BR were highly correlated with PSG (HR:
r = 0.81, |bias| = 0.23 beats/min; BR: r = 0.71, |bias| = 0.08 breaths/min), as were estimations of mean
overnight HR and BR (HR: r = 0.94, |bias| = 0.15 beats/min; BR: r = 0.96, |bias| = 0.09 breaths/min).
Calculated agreement for sleep vs. wake detection included kappa (prevalence and bias-adjusted) =
0.74 ± 0.11, AUC = 0.86, sensitivity = 0.94 ± 0.05, specificity = 0.48 ± 0.18, accu- racy = 0.86 ± 0.11,
and precision = 0.90 ± 0.06. For all-night summary variables, agreement was moderate to strong.
Overall, the findings suggest that the Sleep Number smart bed may provide reliable metrics to
unobtrusively characterize human sleep under real life-conditions.

Keywords: ballistocardiography; breathing rate; heart rate

1. Introduction

Increased awareness of the importance of sleep, together with the advancement
of consumer electronics technology, has resulted in the emergence of consumer sleep-
tracking devices [1] that combine outputs from sensors with apps [2–4] and proprietary
software [3]. These products use one or a combination of physiological signals to evaluate
sleep: motion and movement (e.g., using wrist-worn accelerometers [3] or bedside radar
detection [5]), brain activity signals (e.g., using dry-electrode headbands [6,7]), heart rate
(HR; e.g., using chest belts [1]), breathing patterns (e.g., using chest patches [1,3]), cardiac
activity (e.g., using optical pulse sensors [3]), and skin temperature (e.g., using wearable
thermometers [1]).

The Sleep Number smart bed evaluates the sleeper’s bed presence, body movements,
heartbeat, and breathing patterns in real time to determine the duration and quality of
sleep. Similar to bed surfaces in sleep laboratories or specialized medical care units [8–11]
and to under-mattress monitoring devices used by consumers [8], the smart bed sensing
technology uses high-resolution full-body ballistocardiography (BCG) readings from an
inflatable air bladder within the bed mattress, underlying the entire body of a single sleeper.
The use of BCG as a passive-sensing technology enables the measurement of motion,
position changes, breathing, and small movements within the body such as those generated
by the ejection of blood with each heartbeat [12,13]. The smart bed sensors automatically
begin data collection as soon as the user enters the bed and stop once the user leaves. Smart
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bed users receive information about estimated sleep timing, duration, and quality via a
consumer smart phone app on a daily basis. Processed data are sent to the cloud and stored
for further analysis.

Most sleep-tracking products require the sleeper to carry, wear, or attach a device,
monitor battery charge, and/or manually mark “time in bed” to measure sleep behavior.
Movement alone has limited specificity in tracking sleep patterns [14]. Newer sleep-
tracking devices incorporate information from cardiovascular signals [15,16] in addition
to triaxial accelerometers, which have contributed to increased accuracy in sleep/wake
classification [17,18]. Despite these improvements, sleep-tracking devices have some dis-
advantages, including inaccuracy due to single location of signal sensing, inconvenience,
susceptibility to environmental disturbances (e.g., external vibrations), device misplace-
ment or displacement during sleep, sensor damage, limited battery life, and the need for
manual intervention to mark sleep-related events such as sleep intent or bedtime. For these
reasons, 34% of users abandon their device within 9 weeks [19]. In addition, a limited
number of wearables and nearables have been clinically validated against standard sleep
monitoring technologies [20].

Polysomnography (PSG) is the gold standard for sleep monitoring in clinical, field,
and home settings. PSG includes an electroencephalogram, electrocardiogram (ECG),
electromyogram, electrooculogram, and the measurement of breathing signals. PSG also
represents the gold standard by which consumer sleep technologies are validated. Although
its use in longitudinally monitoring sleep in real-life (ecologically valid) conditions is
possible, it is expensive, time consuming, and imposes a high burden on the user.

The smart bed platform offers a potential alternative for tracking sleep-dependent
cardiorespiratory function and sleep versus wake states without the need for a wearable
device or PSG. As a first step to validating the use of the smart bed platform in sleep
research, the present study performed three analyses evaluating the performance of the
smart bed against PSG. First, the smart bed was assessed for its ability to measure all-night
HR and breathing rate (BR). HR and BR data generated by the smart bed were compared
to HR and BR data measured by the PSG system’s ECG and flow channels, respectively.
Comparisons were made at the epoch-by-epoch level using the Bland–Altman method
and Pearson correlation. Second, epoch-by-epoch comparisons were made to assess the
smart bed’s sensitivity for detecting sleep, specificity of detecting wake, accuracy, precision,
Cohen’s kappa value, prevalence and bias-adjusted kappa, and area under the receiver
operating characteristic curve (AUC). Finally, all-night summary metrics including sleep
efficiency (SE), sleep onset latency (SOL), total sleep time (TST), and wake after sleep
onset (WASO) were compared between the smart bed estimates relative to PSG using
Bland–Altman metrics.

2. Materials and Methods
2.1. Participants

Forty-five adults who were self-described ‘normal sleepers’ volunteered for the study
and participated in an overnight laboratory PSG at the Lakeland Sleep Center, Minneapolis,
MN, between February 2016 and March 2016. Demographic data are provided in Table 1.
All participants were over 18 years of age and provided written consent to participate
in product research with the Sleep Number Corporation. To be included in the study,
each participant was required to spend one full night in the sleep laboratory between
21 February 2016, and 31 March 2016, and to provide their body mass index (BMI). No
exclusion criteria were applied for participant recruitment, and the participants were free
of medical, neurological, or psychiatric illnesses based on a health status questionnaire.
The study was designed for product research by the Sleep Number Corporation, and it was
reviewed by the University of Chicago Institutional Review Board (IRB) for the analysis of
de-identified smart bed and PSG data. The IRB gave the study exempt status.
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Table 1. Demographics of the study cohort and PSG-derived summary measures.

Variable All Participants (N = 45)

Male sex, n (%) 20 (44.4)
Mean age, years (SD) 41.2 (10.5)
Mean BMI, kg/m2 (SD) 25.9 (4.4)
Mean lights out, hh:mm (SD) 22:16 (00:29)
Mean lights on, hh:mm (SD) 05:55 (00:32)
Mean TST, min (SD) 388.7 (46.3)
Mean WASO, min (SD) 54.2 (33.9)
Mean SE, % (SD) 87 (7)
Mean SOL, min (SD) 16.4 (13.6)
Mean BR, bpm * (SD) 14.9 (2.2)
Mean HR, bpm * (SD) 66.4 (9.9)
Mean AHI, events/h (SD) 6.53 (15.1)

AHI, apnea-hypopnea index; BMI, body mass index; bpm, breaths per minute or beats per minute; BR, breathing
rate; HR, heart rate; SD, standard deviation; SE, sleep efficiency; SOL, sleep onset latency; TST, total sleep time;
WASO, wake after sleep onset. * bpm refers to breaths per minute for BR and beats per minute for HR.

Before participant recruitment, the target sample size was calculated using confidence
interval analysis for correlations, as outlined by Moinester and Gottfried [21]. For this
analysis, confidence intervals for the correlations between smart bed-measured HR or
BR versus PSG were used. This approach showed that the sample size needed for a
correlation of 0.85 and confidence interval width of 0.1 was 36. This figure was rounded
up to 40, which became the target threshold for participant recruitment. As described in
the Participants section, no exclusion criteria were applied, and there was no bias in the
selection of participants; hence, all 45 participants were included for further analysis.

2.2. Protocol

Participants underwent one night of simultaneous PSG and smart bed recordings in a
laboratory setting. All studies were performed while the participants were sleeping alone
on the same model of queen-size (60 in × 80 in) smart bed. Smart bed data were collected
every second and uploaded in real time to a secure cloud database. At the end of each
recording, PSG data from lights out to lights on were extracted and uploaded to a secure
database for further processing. Timing of lights off and lights on were based on each
participant’s usual sleep schedule; thus, time in bed varied from one participant to the next.
All participants’ data were anonymized.

2.3. Overnight Polysomnography

A standard montage was used for the PSG recordings, including 6-lead electroen-
cephalogram signals (F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, O2-A1), electrooculogram,
electromyogram, electrocardiogram, thoraco-abdominal effort via respiratory impedance
plethysmography, oronasal airflow using thermistor and nasal pressure base flow mea-
surement, SpO2 with pulse oximetry, and body position (SomnoStar Sleep System, Vyaire
Medical, Mettawa, IL, USA). PSG sleep stages were independently scored by three inde-
pendent, registered sleep technicians based on the American Academy of Sleep Medicine
guidelines, and the final sleep stage for each epoch was chosen as the stage scored by at
least two of the three technicians. In the case of disagreement among the three scorers, a
sleep-staging expert (G.G.M.) made the final determination. The resulting consensus scores
were used in the evaluation of the smart bed sleep/wake detection.

2.4. Sleep Monitoring with Smart Bed Technology

Smart bed technology is built on an advanced Internet of Things [22] architecture that
incorporates devices embedded with sensors, software, network connectivity, and other
necessary electronics, enabling the collection and exchange of data in real-time. The bed’s
embedded software employs advanced biomedical signal processing and machine-learning
algorithms to determine physiological biomarkers. Processed data are sent to the cloud
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every second via WiFi, where they are stored and further analyzed to generate summary
data for the night and sleep metrics. In the event of Wi-Fi or network failure, the device can
store up to 4 h of data and send it once the connection is re-established.

The Sleep Number smart bed uses high-resolution, full-body BCG sensing that collects
data at a rate of 1000 samples/second. Figure 1 shows an example of a BCG recording
from the smart bed during a motionless, 16 s-long, sleep segment. This figure illustrates
the decomposed breathing and cardiac components of the BCG signal. The smart bed
algorithms determine the instantaneous HR and BR, which can track changes in HR and
BR over time, creating longitudinal profiles of HR and BR. The data captured by the
smart bed detect changes in HR and BR as the body progresses from wakefulness through
stages of sleep [23–26]. The smart bed’s deep neural network (DNN) was developed in a
separate study on over 1000 h of synchronized high-resolution BCG and PSG data to score
30 s epochs as wake vs. sleep. The smart bed DNN was trained to map the cardiac and
respiratory signals and motion data embedded within the high-resolution BCG signal to
PSG-derived sleep/wake states. These states were determined for each PSG-defined epoch.
The overall approach is similar to that of other DNNs that have successfully detected
different sleep stages using PSG signals [27–34].

2.5. Data Curation and Cleaning and PSG-Smart Bed Synchronization

No data from any given participant were excluded due to the identification by PSG
of an undiagnosed sleep disorder. Any epoch with PSG artifacts that led to missing HR
or BR detection was excluded from the analysis. From the remaining epochs, any epoch
for which the smart bed system did not produce a HR or BR reading was noted as a “not
covered” epoch. All remaining epochs were included in the analysis. Details on epoch
coverage are provided in Appendix A.

Smart bed data were synchronized with PSG data using the time stamps associated
with the two processor clocks. However, an additional manual alignment step was per-
formed to correct for any possible drift between the internal clocks of the PSG and smart
bed systems. In this manual step, large-amplitude movements were used as the basis for de-
termining the time shift between PSG and smart bed data collection, since these movements
were clearly visible in both the PSG and smart bed outputs. Movement was detectable in
both systems because the BCG sensor output from the smart bed was electronically forked,
with one line serving as an input to the PSG via a DC channel.

Lastly, an exploratory analysis using cross-correlation calculations was conducted
on the overnight temporal profiles of HR and BR assessed from PSG as compared to the
corresponding smart bed signals. After applying a 15 min smoothing window, these
profiles were aligned to the PSG-based hypnogram to determine whether the expected
physiological changes in HR and BR occurred in parallel in the PSG-based profile versus in
the smart-bed-based profile. An individual example is illustrated in Figure 2. In the case of
this representative subject, the cross correlation between PSG HR and smart bed HR was
0.6195 (p < 0.0001), and the cross correlation between PSG HR and smart bed HR was 0.490
(p < 0.0001), consistent with the visual concordance apparent in Figure 2. This exploratory
analysis was used to identify conditions where dissociations between PSG and smart bed
signals may be more likely to occur.

2.6. Epoch-by-Epoch Analysis

Following data alignment and exclusion of epoch with PSG artefact or/and with no
coverage from the smart bed technology, epoch-by-epoch comparisons were made between
the smart bed and PSG to assess the ability of the smart bed to detect HR and BR and
consequently sleep/wake states. Epoch values for HR and BR were obtained by computing
the mean of the instantaneous HR or BR values detected within each 30 s epoch.
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ment decomposed into the respiratory pattern (blue, second row of middle panel) and heart activity 
(red, bottom row of middle panel). The dots denote detected individual heartbeats. Vertical axes are 
pressure readings in pascal units scaled for better visualization. BCG, ballistocardiography; SE, 
sleep efficiency; SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep onset. 
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Figure 1. The smart bed setup, ballistocardiograph, and subsequent output. A BCG recording using
the smart bed technology (black, top row of middle panel) during a motionless, 16 s recording
segment decomposed into the respiratory pattern (blue, second row of middle panel) and heart
activity (red, bottom row of middle panel). The dots denote detected individual heartbeats. Vertical
axes are pressure readings in pascal units scaled for better visualization. BCG, ballistocardiography;
SE, sleep efficiency; SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep onset.

2.7. Analysis of All-Night Summary Variables

All-night summary variables, including mean HR, mean BR, sleep onset latency (SOL),
wake after sleep onset (WASO), total sleep time (TST), and sleep efficiency (SE) were
compared between the smart bed and PSG. The reference BR was calculated from the PSG’s
flow and effort signals. The channel with the dominant physiological pattern was visually
examined and manually selected. Afterward, local maxima for every breathing cycle were
detected using a peak detection algorithm. The reference HR was calculated from the
PSG ECG signal by applying a QRS peak detection algorithm [35]. Detected R peaks were
visually inspected and manually removed or adjusted as needed. After artifact removal,



Sensors 2022, 22, 2605 6 of 17

mean overnight values for PSG-based HR and BR were calculated by averaging the HR and
BR values across all epochs that were scored. Additionally, HR and BR were characterized
for each PSG-defined sleep stage, as described in Appendix A (Table A1).
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Figure 2. Example hypnogram from PSG and concurrent physiological data from PSG and the smart
bed. Hypnogram data from a 36-year-old woman with BMI = 21.6 kg/m2 (A) and simultaneous
profiles of PSG HR (B), smart bed HR (C), PSG BR (D), smart bed BR (E), and smart bed movement
(F). Variability in overnight HR and BR was calculated at each time point as the standard deviation of
values recorded over a running 15 min window (shaded grey bands). A 15 min smoothing window
was applied to the HR and BR profiles to remove sporadic spikes and highlight the overall trends.
BMI, body mass index; bpm, beats/breaths per minute; BR, breathing rate; HR, heart rate; PSG,
polysomnography.

SOL was defined as the time (in minutes) from lights off to the first epoch scored
as any stage other than wake. WASO was computed as the total wake time (in minutes)
between sleep onset and sleep offset. TST was computed as the total number of minutes
scored as sleep. SE was computed as the ratio between TST and total time in bed (PSG
lights off to lights on).

2.8. Statistical Analysis

HR and BR analyses were performed using Matlab version R2020 (MathWorks, Natick,
MA, USA), and generalized linear model analyses were performed using Matlab version
2019b. All other analyses were performed using Python version 3.8 (Scikit-learn 0.22,
NumPy 1.13) and R, version 4.1.1. For each participant, epoch-by-epoch and summary
all-night PSG and smart bed measures for HR and BR were matched and compared us-
ing the Bland–Altman method. The Bland–Altman method was also used to compare
PSG and smart bed values for epoch-by-epoch sleep/wake detection and for all-night
summary variables.
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Proportional bias and heteroscedasticity were tested visually and using linear regres-
sion, as outlined by Menghini et al. [36]. Additionally, the differences in measurement
between the smart bed and PSG were tested for normality using the Shapiro–Wilk test.

Bland–Altman [37] plots were generated to assess the level of agreement (LOA) be-
tween PSG and equivalent smart bed measures using the guideline proposed by Haghay-
egh et al. [38]. In the case of negligible proportional bias and lack of heteroscedasticity,
comparisons of a single measurement per subject, mean difference (Bias), lower and upper
agreement limits (mean difference± 1.96× standard deviation [SD]) with their correspond-
ing 95% confidence intervals (CIs) between PSG and smart bed measures were calculated.
For repeated measures of epoch-by-epoch analyses, the within- and between-subject vari-
ance in measurement difference was obtained and used to compute the bias and LOA along
with their corresponding CI [38]. A positive bias indicated that the smart bed platform un-
derestimated the PSG-derived measure, and a negative bias indicated that it overestimated
the PSG-derived measure. Pearson correlation coefficients and 95% CI also were calculated.

For epoch-by-epoch sleep/wake detection, Cohen’s kappa, a chance-adjusted measure
of agreement [39], was computed for each subject, and the mean and standard deviation
were calculated for the entire sample. Because the high imbalance between sleep epochs
(74% of all epochs) and wake epochs (26% of all epochs) can result in the underestimation
of the true kappa value [39] for overnight profiles, we estimated an adjusted kappa value
that accounts for prevalence and bias, as previously described [39]. The following metrics
were computed: accuracy (percentage of epochs classified correctly); balanced accuracy
(average of the wake and sleep epochs classified correctly); sensitivity (percentage of sleep
epochs classified correctly); specificity (percentage of wake epochs classified correctly);
precision (proportion of correctly detected sleep epochs among all detected sleep epochs);
signal processing d′ (difference in SD between theoretical signal and noise distributions,
which is indicative of the model’s ability to detect signals); and AUC.

3. Results
3.1. Dataset Characteristics

The demographic characteristics of the participants and summary PSG variables are
shown in Table 1.

3.2. Analysis of Epoch-by-Epoch and All-Night BR and HR

A comparison of smart bed and PSG epoch-by-epoch HR and BR and mean HR and
BR measurements during the entire sleep period is presented in Figure 3. Epoch-by-epoch
and all-night average differences in HR, as measured by the smart bed and PSG, were
tested for the presence of a proportional bias or heteroscedasticity and for normality. No
significant dependency was observed, and the differences were normally distributed. After
the removal of epochs containing PSG-related artifacts, the smart bed had a coverage rate
of 93.6% for HR.

The Bland–Altman analysis for epoch-by-epoch HR (in beats per minute) showed
strong agreement between the smart bed and PSG (bias = −0.23 (95% CI: −1.26, 0.78);
lower LOA = −6.65 (95% CI: −8.33, −4.97); upper LOA = 6.19 (95% CI: 4.48, 7.85); Figure 3;
Table A2) and a strong correlation (r = 0.81 (95% CI: 0.81, 0.82)). The smart bed’s accuracy for
detecting HR was comparable to PSG over different sleep stages (see Appendix A). For all-
night HR, the Bland–Altman analysis showed a clinically insignificant bias between mean
HR from the smart bed versus PSG (bias = −0.15 (95% CI: −1.08, 0.77); lower LOA = −6.21
(95% CI: −7.85, −4.57); upper LOA = 5.90 (95% CI: 4.26, 7.54); Table A2), and a strong
correlation was observed between the mean smart bed- and PSG-derived HR (r = 0.94
(95% CI: 0.91, 0.96)).
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Figure 3. Bland–Altman comparison of all-night and epoch-by-epoch mean BR and HR measurements
by smart bed versus PSG. Panels (A,B): Bland–Altman analysis of mean all-night measurements of
BR and HR. The difference in biosignal measurement was plotted as a function of the reference PSG
measurement. These analyses indicated a strong agreement of measurements (insignificant bias and
narrow LOA) between the smart bed and PSG for both BR and HR. Panels (C,D): Bland–Altman
comparison of epoch-by-epoch BR and HR from the smart bed and PSG. Epoch-by-epoch graphs
plot the difference between simultaneously measured values for 30 s epochs from all 45 participants
where there were measurements from both systems as a function of the reference (PSG) measurement.
In this epoch-by-epoch analysis (minimum of 686 epochs to maximum of 1036 epochs per subject),
calculations of bias and LOA were performed as previously described [38]. Epoch-by-epoch analysis
indicated a strong agreement on instantaneous biosignals captured by smart bed and PSG. Solid
and dotted red lines represent the bias and the upper and lower LOA; shaded areas represent the
respective 95% confidence intervals. BR, breathing rate; HR, heart rate; LOA, level of agreement; PSG,
polysomnography.

Epoch-by-epoch and all-night average differences in BR (in breaths per minute) as
measured by the smart bed or PSG were similarly tested for the presence of a proportional
bias or heteroscedasticity, and for normality. No significant dependency was observed, and
the differences were normally distributed. The smart bed had a BR reading for 99.4% of the
epochs for which there was also a PSG BR reading (i.e., a 99.4% coverage rate). Comparisons
of the smart bed and PSG epoch-by-epoch and all-night average BR measurements in all
participants are presented in Figure 3. Bland–Altman comparison of epoch-by-epoch BR
between the smart bed and PSG showed insignificant bias, with narrow upper and lower
LOAs (bias = 0.08 (95% CI: −0.25, 0.41); lower LOA = −2.02 (95% CI: −2.36, −1.68); upper
LOA = 2.19 (95% CI: 1.85, 2.53; Table A3). Likewise, Bland–Altman comparison of all-night
BR between the smart bed and PSG showed insignificant bias, with narrow upper and
lower LOAs in mean BR (bias = 0.09 (95% CI: −0.03, 0.21); lower LOA = −0.69 (95% CI:
−0.90, −0.48); upper LOA = 0.87 (95% CI: 0.66, 1.08; Table A3). Additionally, a strong
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correlation was observed between the mean smart bed- and PSG-derived BR over the entire
night (r = 0.96 (95% CI: 0.94, 0.98)).

3.3. Analysis of Epoch-by-Epoch and All-Night Sleep/Wake Detection

The entire analysis included 39,855 epochs after data curation and cleaning. Per-
formance measures for the smart bed’s ability to predict sleep and wake states correctly
are provided in Table 2. The receiver operating characteristic curve (ROC) for smart bed
prediction of sleep and wake states is shown in Figure 4.

Table 2. Performance of the smart bed’s machine learning algorithm for sleep/wake detection.

Performance Measure Smart Bed Machine Learning Algorithm

AUC 0.86
Accuracy (mean ± SD) 0.86 ± 0.11
Balanced accuracy (mean ± SD) 0.75 ± 0.12
d′ (mean ± SD) 1.47 ± 0.38
Kappa 0.45 ± 0.17
Adjusted kappa (mean ± SD) 0.74 ± 0.11
Precision (mean ± SD) 0.90 ± 0.06
Sensitivity (mean ± SD) 0.94 ± 0.05
Specificity (mean ± SD) 0.48 ± 0.18

AUC, area under the receiver operating curve; SD, standard deviation.
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polysomnography; ROC, receiver operating characteristic curve.

3.4. Analysis of All-Night Summary Variables

Smart bed-collected physiological and motion signals were processed with the DNN
to derive sleep/wake epochs and subsequently sleep metrics such as SOL, WASO, TST,
and SE. These variables were compared to consensus PSG sleep metrics. A comparison of
smart bed and PSG measurements for SOL, WASO, TST, and SE is reported in Table 3, and
Bland–Altman analysis plots are shown in Figure 5.
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Table 3. Comparison of smart bed- and PSG-derived overnight sleep variables.

SOL (min) WASO (min) TST (min) SE (%)

Smart bed (SD) 13.4 (11.4) 76.8 (43.8) 369.1 (52.7) 0.8 (0.1)
PSG (SD) 16.4 (13.7) 54.2 (33.9) 388.7 (46.4) 0.9 (0.1)
Bias 3.0 (16.8) 15.3 − 0.5 × ref 150.6 − 0.4 × ref 0.5 − 0.5 × ref

Bias CI [−1.9, 7.7] b0 = [1.1, 27.6],
b1 = [−0.7, −0.3]

b0 = [63.0, 213.9],
b1 = [−0.5, −0.1]

b0 = [0.3, 0.6],
b1 = [−0.6, −0.3]

Lower LOA bias − 2.5 (−3.4 + 0.9 × ref) bias − 2.5 (16.3 + 0.1 × ref) bias − 61.8 bias − 0.1
Upper LOA bias + 2.5 (−3.4 + 0.9 × ref) bias + 2.5 (16.3 + 0.1 × ref) bias + 61.8 bias + 0.1

LOA CI c0 = [−22.9, −10.8],
c1 = [1.4, 2.2]

c0 = [4.2, 19.4],
c1 = [0.0, 0.2] bias ± [52.8, 74.1] bias ± [0.1, 0.1]

Sleep metrics were tested for the proportional bias and heteroscedasticity with respect to the reference (PSG)
measurement. In the case of proportional bias, the bias coefficients were provided as bias = b0 + b1 × (ref). In the
case of heteroscedasticity, the LOA was provided as coefficients of the linear regression model under normality
assumption as 95% LOA = bias ± 2.46 (c0 + c1 × (ref)). CI, confidence interval; LOA, level of agreement; PSG,
polysomnography; ref, reference measurement; SD, standard deviation; SE, sleep efficiency; SOL, sleep onset
latency; TST, total sleep time; WASO; wake after sleep onset.
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Figure 5. Bland–Altman comparisons of smart bed- versus PSG-derived WASO (A); TST (B); SOL
(C); and SE (D). The density diagram on the right side of each plot represents the distribution of the
differences for each variable. The solid lines are the bias and LOA. The dotted lines represent the cor-
responding confidence intervals for bias and LOA. LOA, level of agreement; PSG, polysomnography;
SE, sleep efficiency; SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep onset.

The Bland–Altman analysis of SOL (in minutes) showed proportional bias and het-
eroscedasticity, where the difference between the measurements increased as the PSG SOL
value increased. In addition, the differences were not normally distributed (Shapiro–Wilk
test, p < 0.05); consequently, they were log-transformed for further analysis. We used basic
bootstrapping methods to calculate confidence intervals and linear regression for modeling
both the bias and LOAs for plotting and reporting of the Bland–Altman metrics [36]. There
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was strong agreement between SOL measurements from the smart bed and PSG (bias = 3.0
(95% CI: −1.9 to 7.7); LOAs = bias ± 2.5 [−3.4 + 0.9 × ref]).

The Bland–Altman analysis for WASO (in minutes) showed moderate heteroscedas-
ticity, and the differences were normally distributed. There was moderate agreement
between WASO measurements from the smart bed and PSG (bias = 15.28 − 0.49 × ref;
LOAs = bias ± 2.46 [16.26 + 0.06 × ref]). Differences in TST (in minutes) were normally
distributed and proportional to the size of measurement (r = −0.35 (95% CI: −0.52 to
−0.13)). The bias (150.61 − 0.35 × ref) and LOAs (bias ± 61.78) were represented as a
function of the size of measurement. Differences in SE (expressed as a percentage) were
normally distributed, and the Bland–Altman analysis showed moderate heteroscedasticity
and agreement between SE (%) measurements from the smart bed and PSG (bias = 0.48–0.51
× ref; LOAs = bias ± 0.12; Figure 5).

3.5. Influence of Demographic and Health Factors on PSG vs. Smart Bed Temporal Concordance

We further examined the role of BMI, sex, age, and AHI on the overall temporal con-
cordance between PSG and smart bed estimations using the coefficient of cross correlation
between the corresponding profiles. For HR, the mean ± SD of the cross-correlation was
0.4498 ± 0.2371 (p < 0.001), a positive but low correlation. For BR, the mean ± SD of the
cross correlation was significantly lower than for HR (0.3629 ± 0.2033; p = 0.0312).

In a multiple linear regression with the cross-correlation value for HR as the de-
pendent variable and sex, age, and BMI as covariates, the association with age was not
significant (p = 0.4628). There was a significant impact of sex, with women having lower
concordance between PSG and smart bed estimations (mean ± SE: 0.3945 ± 0.0460 versus
0.5393 ± 0.0507 in men, p = 0.0471). Further, increasing BMI was significantly associated
with lower cross correlation (p = 0.0436). For BR, there were no significant impacts of sex,
age, or BMI.

Six of the 45 participants had a negative cross correlation between PSG-based and
smart bed-based HR or/and BR, suggestive of substantial discrepancy between temporal
variations of PSG versus smart bed signals. Four of these six participants had undiagnosed
but clinically significant sleep disorders (obstructive sleep apnea with AHI > 15; periodic
leg movement with PLM > 10): subject 6—AHI of 23.9 and PLM of 17.3; subject 11—AHI of
68.9; subject 15—PLM of 46.5; subject 30—PLM of 80.9. This would have excluded them
from the study if reported.

4. Discussion

We evaluated the performance of the Sleep Number smart bed system in measuring
cardiorespiratory endpoints characteristic of sleep and wakefulness, sleep vs. wake status,
and summary sleep variables using PSG as the gold standard for comparison. Our dedi-
cated study conformed with multiple recommendations of the guidelines for validation
of wearables for sleep outcomes proposed by Depner et al. [20], including recordings
obtained under laboratory conditions, manual PSG scoring according to AASM rules,
careful synchronization of PSG versus smart bed signals, use of epoch-by-epoch data, use
of Bland–Altmann metrics, and use of sensitivity and specificity measures.

The results showed that the measurements of overnight HR and BR generated by the
smart bed had biases of <1 beat per minute and <1 breath per minute, respectively. These
biases are sufficiently small that they are unlikely to have clinical significance.

With an AUC value of 0.86, the smart bed platform differentiated sleep and wake
states reasonably well. The smart bed’s performance was comparable to that of actigraphy
found in studies comparing actigraphy to PSG. For example, the smart bed’s accuracy for
sleep/wake detection was 0.86 ± 0.11, similar to the accuracy reported for the ActiGraph
Link using the Cole-Kripke algorithm (0.891 ± 0.046), the Sadeh algorithm (0.880 ± 0.054),
or the Spectrum Plus algorithm (0.904± 0.050) [31]. The smart bed’s balanced accuracy was
0.75 ± 0.12, comparable to the ActiGraph Link with Cole-Kripke algorithm (0.752 ± 0.070),
ActiGraph Link with Sadeh algorithm (0.779 ± 0.071), and Actiwatch Spectrum Plus
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algorithm (0.674 ± 0.065) [31]. The kappa value for the smart bed was 0.45 ± 0.17, similar
to the kappa values reported for the ActiGraph Link using the Cole–Kripke algorithm
(0.482 ± 0.120), the Sadeh algorithm (0.487 ± 0.146), or the Spectrum Plus algorithm
(0.424 ± 0.121) [31].

Adjusting for the higher prevalence of sleep compared to wake during overnight
measurements, the bias- and prevalence-adjusted kappa value was 0.74 ± 0.11, showing a
marked improvement in agreement. Similar to typical actigraphy, due to the prevalence
of sleep epochs (of which approximately 74% were sleep in this study), the machine
learning model tended to have higher sensitivity for detecting sleep and lower specificity
for detecting wake. Specifically, the smart bed’s sensitivity was 0.94 ± 0.05, similar to the
sensitivities reported for ActiGraph Link using the Cole–Kripke algorithm (0.936 ± 0.050),
the Sadeh algorithm (0.912 ± 0.064), or the Spectrum Plus algorithm (0.982 ± 0.012; [31]).
Likewise, its specificity for detecting wake was 0.48 ± 0.18, similar to the specificities
reported for ActiGraph Link using the Cole–Kripke algorithm (0.568 ± 0.163), the Sadeh
algorithm (0.647 ± 0.163), and the Spectrum Plus algorithm (0.366 ± 0.136) [31].

The performance of the smart bed was also comparable to that of a bed sensor using
BCG via pressure-sensitive foil electrodes that detects heartbeat intervals compared with
PSG-derived ECG [40–42]. For all-night HR, the smart bed’s bias (in beats per minute) was
−0.15 (95% CI: −1.08, 0.77), with a lower LOA of −6.21 (95% CI: −7.85, −4.57) and an
upper LOA of 5.90 (95% CI: 4.26, 7.54), comparable to the Emfit QS, which had a bias of
0.03 (95% CI: −0.77, 0.83), a lower LOA of −4.37 (95% CI: −5.82, −4.19), and an upper LOA
of 4.43 (95% CI: 4.25, 5.88) [8]. Similarly, the smart bed’s bias for all-night BR (in breaths per
minute) was 0.09 (95% CI: −0.03, 0.21), with a lower LOA of −0.69 (95% CI: −0.90, −0.48)
and an upper LOA of 0.87 (95% CI: 0.66, 1.08). By comparison, the Emfit QS system’s bias
for BR was −0.14 (95% CI: −0.57, 0.29), with a lower LOA of −2.49 (95% CI: −2.81, −2.40)
and an upper LOA of 2.22 (95% CI: 2.12, 2.53) [8].

All-night-level summary data permit comparison of all-night sleep metrics between
the smart bed platform and PSG. Bland–Altman comparisons for an SOL of less than
20 min indicate that the smart bed provided a relatively accurate estimate; however, as
SOL increased, the accuracy of detecting SOL decreased. Given that the smart bed does
not have direct access to brain activity (which is the gold standard signal to track sleep
onset [43]), this is a reasonable level of agreement with PSG.

Bland–Altman comparisons also showed that the smart bed had reasonable accuracy
at lower WASOs, but as wake time increased, the platform tended to overestimate WASO.
Thus, the smart bed estimated WASO with moderate bias and level of agreement with PSG
values. A similar phenomenon was observed for SE; the smart bed was less accurate for
estimating SE in studies with lower SE, but its accuracy improved in studies with higher
SE. Likewise, the smart bed estimation of sleep was less accurate for studies in which PSG
detected shorter sleep durations. Overall, this indicates that the smart bed platform was
able to generate a more reliable estimate of TST and other sleep metrics when participants
spent less time awake in bed.

In this validation study, we studied a sample of 45 participants who reported having
no acute health problems. Higher BMI appeared to negatively influence the accuracy of HR
smart bed estimation, which had better concordance with PSG in men than in women. AHI
did not significantly influence the accuracy of HR and BR measurements, mainly owing to
the small number of patients with AHI > 5.

The validation data presented in this study suggest that the smart bed may provide
reliable, longitudinal estimation of sleep quality in an ecologically valid environment,
enabling access to sleep metrics in a large population for longer periods of time than is
currently possible with PSG [44,45].

The study was limited by a relatively small sample size (N = 45) and a single night of
simultaneous PSG and smart bed recording in the laboratory. The sample was fairly ho-
mogenous in terms of age and degree of adiposity; individuals with previously diagnosed
sleep disorders were not included.
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Future studies are needed to better characterize the accuracy of the smart bed, with
particular regard to longitudinal repeatability and reliability, using data collected over
multiple nights for each participant. Further validation is also required to assess the smart
bed as a potential screening tool for sleep disorders. Importantly, more research is needed
to understand how AHI, periodic leg movement during sleep (PLMS), BMI, and gender
influence smart beds’ HR measurements.

5. Conclusions

Sleep-dependent changes in cardiorespiratory activity can be reliably detected by the
Sleep Number smart bed, and the smart bed platform differentiated between sleep and
wake states with performance similar to actigraphy or pressure-sensitive foil electrode bed
sensors. All-night summary data analyses indicated that the smart bed provided relatively
accurate detection of SOL, WASO, TST, and SE. Future work will build on these results by
focusing on sleep-stage detection using the smart bed platform.
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Appendix A

Profiles of HR and BR with Regard to Rapid Eye Movement (REM) and Non-REM (NREM)
Sleep Stages

We utilized data collected from a 36-year-old woman, with a BMI of 21.6 and AHI of
0.1 (indicating a lack of sleep-disordered breathing) to assess BR and HR during REM and
NREM sleep stages. Expected behavior was captured by both PSG and the smart bed. As
sleep progressed from onset through the stages of NREM sleep, BR increased slightly and
became more regular; these expected physiological changes were detected equally by PSG
and smart bed, as shown by the decreased average standard deviation of BR through stages
of N1, N2, and N3, irrespective of the method of recording (Table A1). Similar results were
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seen for HR, where the wake stage had the highest mean and standard deviation in HR
relative to all other sleep stages (Table A1).

Table A1. Mean epoch-by-epoch HR and BR during different sleep stages. The standard deviation of
instantaneous HR and BR were computed on a 15 min, centered, moving window and are grouped
and averaged based on PSG sleep stages, representing the 15 min HR and BR variability.

Heart Rate, bpm Breathing Rate, bpm

Mean (SD) Smart Bed PSG Smart Bed PSG

Wake 70.58 (2.52) 71.16 (3.78) 14.56 (1.48) 15.05 (1.10)
Light sleep 67.91 (2.16) 67.11 (2.87) 14.96 (0.98) 15.05 (0.90)
Deep sleep 68.11 (1.42) 67.24 (1.75) 15.76 (0.66) 15.66 (0.75)
REM 67.85 (2.51) 67.89 (2.94) 16.00 (1.34) 15.97 (1.12)
All epochs 67.96 (2.04) 67.72 (2.71) 15.22 (1.04) 15.31 (0.93)

bpm, beats per minute (HR) or breaths per minute (BR); BR, breathing rate; HR, heart rate; PSG, polysomnography;
REM, rapid eye movement; SD, standard deviation.

During REM sleep, the breathing pattern was more variable than in NREM, with
an overall increase in BR, as expected. REM sleep was characterized by a pronounced
increase in HR and HR variability; this increase was captured by both PSG and the smart
bed and was consistent with the mean data over the entire population (Table A1). These
results suggest an increase in variability in BR and HR during the transition to REM sleep.
Furthermore, both methods detected an increase in BR and HR variability through the
transition to wake.

The breakdown of the epoch-by-epoch Bland–Altman results for different sleep stages,
from lights off to lights on, are illustrated in Figure A1. A minor bias and lower correlation
are observed during the wake period, as would be expected due to less accurate measure-
ments of physiological signals expected during wake time due to movements. However, as
suggested by the low bias and LOA across different sleep stages (Table A1), the smart bed
was able to track BR variations throughout the night.
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Deep sleep −0.87 [−1.87, 0.13] −7.18 [−8.80, −5.56]–5.45 [3.83, 7.07] 0.83 [0.83–0.84] 5870 (0.40%) 
REM 0.06 [−0.98, 1.09] −6.48 [−8.16, −4.8]–6.59 [4.91, 8.28] 0.83 [0.82–0.84] 5934 (7.31%) 
All epochs −0.23 [−1.26, 0.78] −6.65 [−8.33, −4.97]–6.19 [4.48, 7.85] 0.81 [0.81–0.82] 37,250 (6.40%) 

bpm, beats per minute; HR, heart rate; PSG, polysomnography; REM, rapid eye movement. 

All-epoch Bland–Altman analysis for BR (bpm) showed a strong agreement between 
the smart bed and PSG (bias = 0.08) and a positive correlation (r = 0.71; Table A3). The 
light-sleep and deep-sleep stages had the highest correlation values with BR (r = 0.75 and 
r = 0.77, respectively), reflecting higher body quiescence (i.e., less motion) during these 

Figure A1. Comparison of the epoch-by-epoch BR and HR measurements by the smart bed versus
PSG during different sleep stages. The difference between the smart bed’s versus PSG’s simulta-
neously measured values for 30 s epochs from all 45 participants was plotted as a function of the
reference (PSG) measurement. Consistent insignificant bias and narrow LOA indicated that the
smart bed platform was able to track physiological variations during sleep. In these epoch-by-epoch
analyses (686–1036 epochs per subject), calculations of bias and LOA were performed as previously
described [38]. LOA, level of agreement; PSG, polysomnography; REM, rapid eye movement.
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The breakdown of the epoch-by-epoch Bland–Altman graphs for HR according to
the sleep stage from lights out to lights on are provided in Table A2. REM and deep
sleep stages have the highest correlation values (r = 0.83 (95% CI: 0.82–0.84) and r = 0.83
(95% CI: 0.83–0.84), respectively), reflecting higher body quiescence during these stages. In
contrast, the wake and light-sleep stages had the lowest correlation values (r = 0.79 (95%
CI: 0.78–0.80) and r = 0.81 (95% CI: 0.81–0.82), respectively), mostly reflecting movements
during the wake and light-sleep stages. Bland–Altman analysis of HR (bpm) across all
epochs showed strong agreement between smart bed and PSG (bias = −0.23 (95% CI: −1.26
to 0.78); lower LOA =−6.65 (95% CI:−8.33 to−4.97); upper LOA = 6.19 (95% CI: 4.48–7.85))
and a strong correlation (r = 0.81 (95% CI: 0.81–0.82)).

Table A2. Summary of correlation and Bland–Altman metrics for HR for all participants. The number
of epochs refers to epochs that were included in the analysis of each group. No coverage refers to
the percentages of epochs for which the smart bed did not produce a HR reading, but a PSG HR
reading was available. A positive (or negative) bias indicated that the smart bed underestimated (or
overestimated) the PSG-derived measure.

Differences Correlation

Mean [95% CI] ∆HR (bpm) Limits of Agreement (bpm) r Number of Epochs
(Percent No Coverage)

Over entire night −0.15 [−1.08, 0.77] −6.21 [−7.85, −4.57]–5.90 [4.26, 7.54] 0.94 [0.91–0.96] -
Wake 0.57 [−0.5, 1.65] −6.28 [−8.04, −4.53]–7.43 [5.68, 9.19] 0.79 [0.78–0.80] 5891 (5.9%)
Light sleep −0.36 [−1.52, 0.79] −7.76 [−9.67, −5.86]–7.03 [5.13, 8.94] 0.81 [0.81–0.82] 19,555 (7.1%)
Deep sleep −0.87 [−1.87, 0.13] −7.18 [−8.80, −5.56]–5.45 [3.83, 7.07] 0.83 [0.83–0.84] 5870 (0.40%)
REM 0.06 [−0.98, 1.09] −6.48 [−8.16, −4.8]–6.59 [4.91, 8.28] 0.83 [0.82–0.84] 5934 (7.31%)
All epochs −0.23 [−1.26, 0.78] −6.65 [−8.33, −4.97]–6.19 [4.48, 7.85] 0.81 [0.81–0.82] 37,250 (6.40%)

bpm, beats per minute; HR, heart rate; PSG, polysomnography; REM, rapid eye movement.

All-epoch Bland–Altman analysis for BR (bpm) showed a strong agreement between
the smart bed and PSG (bias = 0.08) and a positive correlation (r = 0.71; Table A3). The
light-sleep and deep-sleep stages had the highest correlation values with BR (r = 0.75 and
r = 0.77, respectively), reflecting higher body quiescence (i.e., less motion) during these
stages. In contrast, the wake and REM stages had the lowest correlation values (r = 0.5 and
r = 0.72, respectively), primarily due to movements during the wake and REM stages.

Table A3. Summary of correlation and Bland–Altman metrics for BR for all participants. The number
of epochs refers to epochs that were included in the analysis of each group. No coverage refers to
the percentages of epochs for which the smart bed did not produce a BR reading, but a PSG BR
reading was available. A positive (or negative) bias indicated that the smart bed underestimated (or
overestimated) the PSG-derived measure.

Differences Correlation

Mean [95% CI] ∆BR (bpm) Limits of Agreement (bpm) r Number of Epochs
(Percent No Coverage)

Over entire night 0.09 [−0.03, 0.21] −0.69 [−0.90, −0.48]–0.87 [0.66, 1.08] 0.96 [0.94–0.98] -
Wake 0.49 [0.11, 0.88] −1.97 [−2.45, −1.49]–2.96 [2.47, 3.44] 0.5 [0.48–0.52] 6238 (1.3%)
Light sleep 0.05 [−0.29, 0.4] −2.14 [−2.5, −1.78]–2.25 [1.89, 2.61] 0.75 [0.75–0.76] 20,919 (0.6%)
Deep sleep −0.10 [−0.47, 0.27] −2.46 [−2.87, −2.05]–2.26 [1.85, 2.67] 0.77 [0.75–0.78] 6105 (0.0%)
REM −0.02 [−0.41, 0.36] −2.45 [−2.9, −2.0]–2.4 [1.96, 2.85] 0.72 [0.71–0.73] 6368 (0.0%)
All epochs 0.08 [−0.25, 0.41] −2.02 [−2.36, −1.68]–2.19 [1.85, 2.53] 0.71 [0.70–0.71] 39,630 (0.6%)

bpm, breaths per minute; BR, breathing rate; PSG, polysomnography; REM, rapid eye movement.

During sleep, the smart bed showed noticeable increases in BR, HR variability, and
BR variability in REM sleep, and HR and BR variability decreases in deep NREM. The
capability of the smart bed in tracking physiological variations throughout different sleep
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stages suggest that smart bed technology could be used for detecting sleep stages; this will
be the focus of future studies.
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