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Abstract: In the field of biomedical research, organoids
represent a remarkable advancement that has the potential to
revolutionize our approach to studying human diseases even
before clinical trials. Organoids are essentially miniature 3D
models of specific organs or tissues, enabling scientists to
investigate the causes of diseases, test new drugs, and explore
personalized medicine within a controlled laboratory setting.
Over the past decade, organoid technology has made sub-
stantial progress, allowing researchers to create highly

detailed environments that closely mimic the human body.
These organoids can be generated from various sources,
including pluripotent stem cells, specialized tissue cells,
and tumor tissue cells. This versatility enables scientists to
replicate a wide range of diseases affecting different organ
systems, effectively creating disease replicas in a laboratory
dish. This exciting capability has provided us with unprece-
dented insights into the progression of diseases and how
we can develop improved treatments. In this paper, we
will provide an overview of the progress made in utilizing
organoids as preclinical models, aiding our understanding
and providing a more effective approach to addressing
various human diseases.
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Introduction

Over the past half-century, there has been remarkable
progress in the field of stem cell research. In 1961, Professor
Ernest A. McCulloch made a groundbreaking discovery,
finding that cells from the bone marrow of mice could
differentiate into various cell types. He coined the term
“pluripotent stem cells (PSCs)” [1]. Professors Rheinwald and
Green described the first successful serial cultivation of
human epidermal cells [2]. It wasn’t until 1981 that scientists
successfully isolated karyotypically normal embryonic stem
cells from the inner cell mass of mouse blastocysts for the
first time [3] and co-cultivated them in vitrowith mitotically
arrested fibroblasts. This co-cultivation was hypothesized to
provide essential trophic factors for maintaining embryonic
stem cell pluripotency [4]. In 1998, James Thomson and his
colleagues established an embryonic stem cell line from
human in vitro fertilized blastocysts that could be stably
cultured in vitro with factors maintaining self-renewal and
inhibiting differentiation [5]. Stem cells are known for their
self-renewal and differentiation potential, allowing them to
develop into specific cell types under suitable environmental
conditions or through artificial induction [6]. For example, in
1980, Green and his colleagues successfully used autologous
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keratinocyte sheets to treat two patients with third-degree
burns at the Peter Bent Brigham Hospital [7]. These
advancements collectively have fostered the idea of using
human stem cells to culture three-dimensional (3D) organs,
holding great promise for disease treatment and drug
screening.

In 1907, Professor Wilson HV achieved the first in vi-
tro regeneration of isolated sponge cells into complete or-
ganisms through self-organization [8] (Figure 1).
Subsequently, scientists generated organ-like tissues from
isolated chicken embryos through dissociation-reaggregation
experiments [9]. In 1978, Li et al. found that mammary
epithelial cells cultured on EHS substrates can form 3D ducts
and lumens capable of synthesizing and secreting milk pro-
teins, compared to two-dimensional (2D) cultures [10]. In 2009,
scientists used adult stem cells for thefirst time to generate 3D
gut-like organs through self-organization in a matrix [11].
Organoids can bederived fromboth embryonic stemcells and
adult stem cells [11, 12]. Milestone achievements in somatic
cell reprogramming technology have significantly enriched
the sources of stem cells and organoids [13], facilitating the
establishment of in vitro 3D organ processes. In recent
decades, the field of organoids has made impressive strides.
The term “organoid” commonly refers to different 3D tissues
in vitro culture, ranging from cell aggregation to organ-on-
chip systems [14]. Organoids represent complex 3D tissues
that mimic the structure and function of organs in vivo
and are derived from stem cells specifically differentiated
through a self-organizing process [15].

In the past few decades, the field of organoids has
made remarkable progress (Tables 1 and 2). As an emerging

research platform, organoids have successfully addressed
the limitations of both 2D cell culture and animal
models [16]. Conventional monolayer cell cultures lack
essential cellular interactions, organization, and complexity,
and the immortalization of 2D cells can result in significant
genetic alterations. While genetically engineered animal
models have been widely used for disease modeling, they
cannot fully replicate the genetic background and physio-
logical conditions of humans. Human-derived organoids
have the capacity to faithfully replicate the intricate patho-
logical and physiological processes of in vivo organs. This
capability holds great promise for applications in organ
development, disease modeling, precision medicine, and
drug discovery. In this context, we will describe the current
development status of adult cells, stem cells, and tumor-
derived organoids, and discuss their diverse applications
in basic biology and preclinical research, covering the latest
advances in organoid research. Finally, we will emphasize
the key challenges that organoids face and their potential
prospects for various applications.

Advances in organoid culture
environments

Most organoids require a matrix gel to support the forma-
tion of 3D structures during development, and the most
traditional and commonly used substrate is Matrigel, also
called Cultrex or Engelbreth-Holm-Swarm (EHS) matrix.
Matrigel, an EHS mouse sarcoma extract [17], contains

Figure 1: Timeline for the development of different types of organoids. Summary of research on critical landmarks in the establishment of various
organoids. 3D, 3-dimensional; ASC, adult stem cells; hPSC, human pluripotent stem cells; mESC, embryonic stem cells.
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laminin and a number of growth factors, which are exten-
sively used in organoid cultures, such as gastric [18], mam-
mary glands [19], intestinal [11], and brain [20]. Due to the

uncertainty of the compositions of Matrigel and the limita-
tions of clinical applications, more types of matrix gels were
subsequently developed. One approach was to produce

Table : Summary of organoid models.

Organoid
models

Organoid
source

Species Applications References

Intestine AdSCs Human Modeling of SARS-CoV- infection, drug screening [, ]
iPSCs Human Drug screening, toxicology research [, , ]

Liver iPSCs Human Gene editing, transplantation, drug screening, modeling of HBV infection [, ]
ESCs Human Drug screening, personalized treatment, modeling of alcohol-related liver disease [, , ]
AdSCs Human or

mouse
Drug screening, transplantation modeling of liver cancer []

Lung AdSCs Mouse Modeling of adenocarcinoma of lung, virus pathology, drug screening [, , ]
ESCs Human Modeling of lung differentiation and disease []
iPSCs Human Drug screening, transplantation []

Heart ESCs Mouse Regenerative medicine []
iPSCs Human Gene editing, modeling of disease [, ]

Brain ESCs Human Modeling of disease, gene editing; single-cell sequencing, assembly technology,
vascularization technology

[, –]

iPSCs Human Modeling of microcephaly, Parkinson’s disease and amyotrophic lateral sclerosis
disease

[, , ,
]

AdSCs Human Modeling of Alzheimer’s disease [, ]
Kidney Npcs Human or

mouse
Gene editing, modeling of disease, drug screening []

iPSC Human or
mouse

Transplantation []

ESCs Human Toxicology research, transplantation []
Pancreas AdSCs Human Modeling of pancreatic cancer, drug screening, transplantation [, , ]
Retina iPSC Mouse Modeling of advanced retinal degenerative disease []

ESCs Human or
mouse

Transplantation [, ]

Breast AdSCs Human Drug screening, personalized treatment [, ]
Inner ear ESCs Human or

mouse
Modeling of disease [, ]

AdSCs, adult stem cells; iPSCs, induced pluripotent stem cells; ESCs, embryonic stem cells; HBV, hepatitis B virus.

Table : Summary of media compositions for different organoids culture.

Organoid
culture

Small molecule compounds Cytokines

Cerebral
organoids

Y-, MK-, GDC-, dorsomorphin FGF-basic, Noggin, DKK-, EGF, BDNF, GDNF, R-Spondin 

Intestinal
organoids

Y-, SB-, A -, gastrin, nicotinamide EGF, Noggin, R-Spondin , Wnt-a, FBS

Liver organoids Y-, A -, DAPT, forskolin, gastrin, nicotinamide,
prostaglandin E

BMP-, EGF, FGF-basic, FGF-, HGF, Noggin, Wnt-a, FBS

Pancreas
organoids

Gastrin I, A -, nicotinamide FGF-, EGF, Noggin, R-Spondin , Wnt-a, B

Prostate
organoids

Y-, SB-, A -, nicotinamide, prostaglandin E,
testosterone

EGF, activin A, FGF-basic, FGF-, Noggin, R-Spondin , Wnt-b

Lung organoids CHIR-, SB- Activin A, FGF-basic, FGF-, Noggin, N
Mammary
organoids

Y-, phosphorylethanolamine, isoproterenol,
hydrocortisone

Here gulin β-, R-Spondin , R-Spondin , Noggin, EGF, FGF-basic,
FGF-, Wnt-a, prolactin

Kidney organoids CHIR-, retinoic acid, hesparin BMP-, BMP-, BMP-, FGF-basic, FGF-

FGF, fibroblast growth factor; EGF, epidermal growth factor; HGF, hepatocyte growth factor; BMP, bone morphogenetic protein.
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matrix gel by tissue decellularization. It was demonstrated
that hydrogel substrates fabricated from decellularized
porcine small intestine could provide better support for the
growth and expansion of endoderm-derived organoids,
overcoming the limitations of Matrigel tumor sources [21].
Residual animal protein constituents in matrix gels may
trigger an immune response in the host, whereas synthetic
macromolecular polymer matrix gels prevent this problem.
Sorrentino et al. used PEG as a skeleton to integrate key
extracellular matrix (ECM) proteins found in the liver, such
as laminin-111, type IV collagen, and fibronectin, to create a
fully chemically synthesized matrix. It was successfully
employed for liver organoid culture [22]. Curvello and his
colleagues developed a plant-derived matrix gel, 0.1 %
plant nanocellulose fibers, which successfully cultured small
intestinal organoids [23].

Cultures of nervous system-like organoids like
cerebrum [20], hippocampus [24], and optic cup [25] are
mostly cultured in suspension, allowing the stem cells to
self-organize into 3D cell aggregates in liquid suspension.
Recently, suspension culturemethods have also been used for
the development of other types of organoids. Capeling and her
colleagues found that simple suspension cultures promoted
the development of serosal mesothelial in human intestinal
organoids. A comparison of suspension cultured organoids,
human tissue andmatrix gel cultured organoids revealed that
suspension cultured organoids were more similar to human
tissue at the molecular level.

Organoid chips are microfabricated cell culture devices
thatmimic the functional units of human organs in vitro [26].
Recent studies have demonstrated that the use of organoid-
on-a-chips to construct and simulate human tissue micro-
environments can recapitulate the specific physiological
functions in some organs [27–29], and has a wide range of
applications in thefields of organ development, regenerative
medicine, drug screening, and disease modeling in the
future.

Modeling human disease with
organoids

Organoids derived from adult stem cells

There are two primary sources of organoids: adult stem
cells (AdSCs) and PSCs, including embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs). Organoids
derived from AdSCs are obtained directly from human or
mouse adult tissues and are further recapitulated within a
tissue-like environment by suspending them in ECM and

supplementing them with growth factors. In comparison to
organoids derived from PSCs, AdSCs-derived organoids
demonstrate superior performance in mimicking physio-
logical and pathological conditions [30, 31].

Adult stem cells derived small intestine organoids

The first AdSC-derived organoids were developed by Hans
Clevers’ research group. They established the first long-term
in vitro culture of single crypts in Matrigel and maintained
the crypts’ structure by supplementing themwith epidermal
growth factor (EGF) and R-Spondin1 [32]. These generated
organoids consisted of over 40 crypt domains surrounding a
central lumen lined with a villus-like epithelium, referred to
as the ‘villus domain.’ This crypt structure was maintained
for a remarkable 8 months. Moreover, they successfully
identified and isolated the specific population of AdSCs
capable of retaining their stem cell properties and forming
large crypt organoids. Lgr5+ cells were found to retain these
stem cell properties, and individual Lgr5-expressing stem
cells could spontaneously create self-organizing crypt-villus
organoids in the absence of non-epithelial niche cells [11].
Lgr5 crypt stem cells exhibited the capacity to undergo
thousands of cell divisions, and a ‘mini-guts’ culture system
was established, involving both whole crypts and single
Lgr5+ stem cells. This system utilized a serum-free medium
supplemented with three recombinant proteins: R-Spondin1
(a Wnt signal amplifier and a ligand for Lgr5), EGF, and the
bone morphogenetic protein (BMP) inhibitor Noggin [33].

In contrast to mouse intestinal crypts, which are
equipped with Paneth cells capable of secreting some niche
growth factors [32], human gut organoid cultures lack fully
functional Wnt-secreting niche cells and necessitate the
addition of exogenous Wnt3a to the culture medium [34].
For the sustained maintenance of human gut organoids
through multiple passages, both a TGFβ pathway inhibitor
and a p38 MAPK pathway inhibitor are essential. However,
the removal of the p38 MAPK inhibitor is a prerequisite for
the emergence of secretory cells [35]. These inhibitors were
subsequently replaced by insulin-like growth factor 1
(IGF-1) and fibroblast growth factor 2 (FGF-2). Organoids
faithfully recapitulate the characteristics of their respec-
tive tissues compared to traditional 2D culture, offering
significant potential in drug discovery, the study of the
tumor microenvironment, exploration of tumor heteroge-
neity, predictive modeling of responses, and personalized
medicine [31, 36].

Furthermore, the intestine, often referred to as the
“second immune system”, plays a substantial role in
microbiome infections. Intestinal organoids have proven
invaluable in understanding the pathogenesis of colorectal
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cancer caused by bacterial agents. In addition to the lungs’
susceptibility to SARS-CoV-2 infection, human intestinal
organoids can also be infected by SARS-CoV-2, leading to the
production of substantial quantities of infectious viral
particles within the intestinal environment [37].

Adult stem cells derived hepatic and biliary organoids

Hepatic and biliary (HPB) organoids can be generated
through step-wise methods using either PSCs or iPSCs.
Additionally, these organoids can be generated from adult
human ormouse tissues. These HPB organoids are identified
based on their specific tissue source, and their in vitro cell
types closely mirror the guidelines outlined by Hans
Clevers [38]. Hepatic organoids typically consist of cells or
tissues derived from hepatocytes and cholangiocytes. LGR5,
recognized as a marker for intestinal stem cells, has also
been identified as a stem cell marker in various tissues. In
the context of carbon tetrachloride (CCl4)-induced injury,
Lgr5+ cells emerge in proximity to bile ducts. Furthermore,
individual Lgr5+ cells from the damaged mouse liver can
be clonally expanded as organoids when cultured in an
Rspo1-based medium over an extended period. These
cultured organoids, under the aforementioned conditions,
express multiple markers associated with progenitor,
hepatocyte, and cholangiocyte characteristics, suggesting a
bipotential nature [39].

For the purpose of inducing hepatocyte differentiation,
the culture medium was modified by eliminating R-Spondin
and FSK, and substituting them with the Notch inhibitor
DAPT, FGF19, dexamethasone, and BMP7. This alteration
facilitated the expression of hepatocyte markers [40]. In
2018, Huch and colleagues developed a protocol for the
long-term culture of mouse hepatocytes and human fetal
liver cells as organoids. This protocol marked a departure
from previous methods as it exhibited a morphological
resemblance to cholangiocyte organoids. To achieve this,
they employed small-molecule inhibitors, including Wnt
agonists like R-Spondin1 and CHIR99021, the TGF-b inhibitor
A83-01, and growth factors such as EGF, FGF7, FGF10, and
hepatocyte growth factor (HGF).

The mouse Hepatocyte Organoids (mHOs), generated
through this protocol, displayed a characteristic ‘bunch-
of-grapes’ structure. These organoids expressed specific
hepatocyte markers, including Alb, Hnf4a, Cyp1a2, Cyp3a11,
and the fetal hepatocyte marker Afp. Importantly, they
did not exhibit markers associated with cholangiocytes or
progenitor cells, such as Krt19, Tbx3, and Sox9. Additionally,
these mHOs bore a resemblance to hepatocytes observed
after partial hepatectomy [41].

Hepatocyte organoids, aside fromWnt-mediated cultures,
have been successfully established using an inflammatory
cytokine-mediated expansion protocol for long-term cultured
mHOs. In the context of liver regeneration, tumor necrosis
factor-alpha (TNF-α) activates a series of transcription
factors, including nuclear factor kappa B (NF-κB), Janus
kinase (JAK/STAT), activator protein 1 (AP-1), and Yes-
associated protein (YAP), which enhance cell proliferation.
This culture condition presents an innovative approach to
expanding primary mouse hepatocytes in 3D culture [41].
Under these expansion conditions, mHOs could be sus-
tained for at least 8 months and exhibited similarities to
proliferating hepatocytes following partial hepatectomy
(PHx) [42]. This study introduces a novel approach to
establishing hepatocyte organoids. The hepatocyte orga-
noids culture system could be extended to propagate pri-
mary liver cancer (PLC) organoids, covering three of the
most prevalent PLC subtypes: hepatocellular carcinoma
(HCC), cholangiocarcinoma (CC), and combined HCC/CC
(CHC) tumors [43, 44].

Adult stem cells derived lung organoids

Lungs are complex structures characterized by a branching
network of airways and blood vessels, resembling a tree-like
configuration. This intricate system begins with the trachea
and extends into branching airway tubes, ultimately
culminating in millions of air sacs known as alveoli where
gas exchange with the vasculature takes place [45, 46]. The
most proximal airway, the trachea, bifurcates at the carina,
giving rise to the left and rightmain stembronchi. Eachmain
bronchus further subdivides into secondary or lobar
bronchi, which subsequently branch into progressively
narrower airways until the smallest bronchioles connect to
the alveoli [47]. Various cell types are present in human
lungs, encompassing epithelial cells, endothelial cells
(comprising vasculature and lymphatics), pleura/mesothe-
lium, airway and vascular smooth muscle cells, pericytes,
fibroblasts, neurons, and immune cells such as alveolar
macrophages [48].

Lung organoids can be generated from various cell
types, including basal cells, airway secretory cells, and
alveolar type II cells (AEC2 cells). Two primary approaches to
obtain target cells are lineage-tracing and surface marker-
based cell sorting. The initial organoids derived frommouse
tracheal basal cells were referred to as “tracheospheres.”
These cells were isolated from airway basal cells expressing
Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Basal cells
play a crucial role in generating differentiated cells not
only during postnatal growth but also in adults under
steady-state conditions and during epithelial repair [49, 50].
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Organoids obtained from isolated basal cells may be classi-
fied as either tracheospheres or bronchospheres, depending
on whether the basal cells originate from the trachea or the
larger airways. Typically, these organoids comprise TRP63+

KRT5+ basal cells, functional multiciliated cells, and secre-
tory goblet cells [51, 52].

Organoids derived from airway secretory cells are
primarily generated by isolating secretory Club cells based
on surface markers. Lung epithelial cells that fulfill specific
criteria, being CD45 (Ptprc)neg, CD31 (Pecam1)neg, EpCAM
high, CD49f (Itga6)pos, CD104 (Itgb4)pos, and CD24 low,
are capable of forming spheres. These spheres can be cate-
gorized into three general groups based on theirmorphology
after 14 days of culture [53]. To generate ‘alveolospheres’, a
lineage-tracing approach was initially employed [54]. In the
case of human AEC2s, isolation is typically achieved using a
monoclonal antibody that specifically targets human AEC2s,
known as HTII-280 [55]. Throughout the COVID-19 pandemic,
human lung organoids have proven to be a valuable
preclinical model for investigating virus pathobiology
and advancing therapeutic development. SARS-CoV-2
productively infects AEC2s, leading to the initiation of an
innate immune response. The infection triggers both cell-
autonomous and non-cell-autonomous apoptosis, potentially
contributing to alveolar injury [56, 57].

Organoids derived from pluripotent stem
cells

Cardiac organoids

Cardiovascular diseases are the leading global cause of
death. It has long been difficult to obtain satisfactory
and ideal cardiac models for cardiovascular disease studies
in vitro. Recent advances in cardiac organoids have
provided access to more accurate models with complex
structures and functional maturation for unveiling cardiac
developmental biology, modeling cardiovascular diseases,
establishing relevant drug screening platforms, and
exploring transplantation therapies.

A large body of studies has provided insights into
methods of constructing heart-like organs and cardiac
developmental biology. In the past decade, scientists have
successfully employed tissue engineering techniques to
facilitate the formation of cardiac chambers and emulate
organ complexity, including hydrogels and biomaterial-
based scaffolds [58]. Recent studies have made significant
progress in generating cardiac organoids that can simulate
heart development in vivo in a spatial and temporal manner
through self-organization. These organoids are powerful

tools for studying cardiac development [59, 60]. The first
functional ‘mini-heart’ organoids induced by mouse
embryonic stem cells (mESCs) were reported in 2020 [60].
mESCs undergo a self-organized event to form heart-like
structures when exposed to FGF4 and LN/ET. These
structures showed considerable similarity to the developing
heart in vivo, possessing four intact chambers and a
conducting system that exhibited myocardial contraction
and action potentials [60]. In a pioneering study published
in 2021, Professor Mendjan and his group developed the
first in vitro self-organizing human cardiac organoid model.
This model spontaneously forms a cavity and beats on its
own without the need for stent support. They found that
cavity morphogenesis is governed by a mesodermal
WNT-BMP signaling axis, and the cardiods can autono-
mously mobilize cardiac fibroblasts to migrate and repair
damage after injury [59].

Cardiac organoids, which possess a 3D structure
allowing them to mimic interactions between different cell
types and complex pathophysiological processes, serve as
an excellent platform for cardiovascular disease research.
These miniature models are invaluable for investigating
conditions like myocardial infarction, arrhythmia, and
genetic cardiac diseases. Complementing pre-clinical
models, cardiac organoids help uncover pathogenic mecha-
nisms and detect drug toxicity and side effects. In a recent
study by Richards et al., they created cardiac organoids that
leverage nutrient transport principles and stimulated
themwith the neurotransmitter noradrenaline to mimic the
post-myocardial infarction structure of the human heart
in vitro. Through transcriptomic analysis and structural and
functional validation, they successfully established an in vi-
tro 3D model of myocardial tissue after myocardial infarc-
tion [61]. Voges and colleagues demonstrated that human
cardiac organoids resembling fetal heart tissue could model
acute myocardial infarction following cryoinjury with a dry
ice probe. These cardioids exhibited an endogenous regen-
erative response, achieving full functional recovery within
2 weeks of acute injury. This study highlights the regenera-
tive capacity of immature human heart tissue in response to
injury [62]. In a recent study, Hofbauer et al. utilized an
advanced hPSC-derived self-organizing cardiac organoid
model to assess the effects of freezing injury on the heart.
They observed that cardiac fibroblasts migrated toward the
injury site and produced proteins to repair the damage [59].
Cardiac organoids are also utilized to study arrhythmia.
Goldfracht et al. developed an arrhythmia model based on
atrial engineered heart tissues and demonstrated its effec-
tiveness by applying relevant pharmacological in-
terventions. They confirmed the ability of
the antiarrhythmic agents flecainide and vernakalant to
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terminate re-entrant activity in the atrial organoid
model [63]. Today, the combination of gene editing tech-
nology and cardiac organoid disease models holds promise
for addressing genetic heart diseases. Mutations can be
precisely corrected and mitigated to provide personalized
treatment for patients. For instance, Chengzu Long and his
colleagues corrected Duchenne muscular dystrophy (DMD)
mutations through exon skipping in 3D engineered heart
muscle. This approach led to restored dystrophin expression
and the corresponding mechanical force of contraction.
Their work demonstrated that single-site genomic editing in
just 50 % of cardiomyocytes is sufficient to rescue mutant
engineered heart muscle phenotypes to near-normal control
levels [64]. However, it is important to note that current
cardiac organoids remain relatively simplified, lacking the
tissue microenvironment found in vivo, such as the immune
and nervous systems. Bridging this gap between in vivo and
in vitro applications of cardiac organoids will require
further efforts and advancements.

Cerebral organoids

Studying and effectively treating diseases of the nervous
system is a formidable challenge, primarily due to the
intricate nature of the human brain and its inaccessibility.
The human brain, arguably the most complex organ in our
body, comprises an extensive array of highly specialized
cells that function in an interconnected manner [65]. While
there have been promising advances in investigating the
molecular and biological mechanisms of neurological
development and neuropsychiatric disorders using mono-
layer neuronal cultures derived from human pluripotent
stem cells and animal models, there are limitations. The
former lack precise cellular connectivity across various
regions of the brain, as well as many distinguishing features
and species differences that hinder animal models in
neurobiology research [66]. Brain organoid techniques offer
a solution to the shortcomings of animal models and 2D
cellular models. They provide a more accurate representa-
tion of in vivo conditions by reproducing the diversity of
human neural cells, the physiological environment of
nervous system development, and the intricacy of neural
networks.

The brain organoid technique, first established in
2013 [20], originated in Knoblich’s laboratory. They devel-
oped a 3D organoid culture system using human pluripotent
stem cells to generate cerebral organoids. These brain-like
organoids have the ability to develop various discrete but
interdependent brain regions. The cerebral cortical regions
within these organoids faithfully recapitulate features of
human cortical development, including apical-basal

polarity, dorsal cortical cytoarchitecture, interkinetic nu-
clear migration during radial glial division, and the pattern
of neural migration [20]. Cerebral organoids typically origi-
nate from pluripotent stem cells, including ESCs derived
from early embryos and iPSCs obtained through somatic
reprogramming. PSCs can be cultured and differentiated
into various types of human cerebral organoids within 3D
environments, either through the intrinsic self-organizing
capacity of aggregated cells or by induction with specific
developmental regulators [67]. To date, researchers have
successfully established a variety of cerebral organoids,
including whole-brain and specific brain region organoid
systems, such as those modeling the cerebral cortex,
midbrain, cerebellum, ventral telencephalon, thalamus,
hypothalamus, striatum, and hippocampus [24, 68–73].
Numerous studies have shown that cerebral organoids
effectively simulate in vivo processes like neurogenesis,
neuronal migration, cortical stratification, and the estab-
lishment of neural circuits. They have significantly advanced
our understanding of neurodevelopmental disorders
and neurodegenerative diseases in vivo [66]. Substantial
progress has been made in the study of conditions such
as Miller-Dieker syndrome (MDS), microcephaly-related
disorders, autism spectrum disorder (ASD), tuberous
sclerosis complex, brain tumors, and Alzheimer’s disease
(AD), among others [74]. Notably, an increasing number of
cutting-edge technologies, such as gene editing, single-cell
sequencing, assembly techniques, and vascularization
technologies, have been applied to cerebral organoids.
This holds great promise for the advancement of research
and treatment in the field of neurological disorders [75–78].

Neurodevelopmental disease
Early neurodevelopmental abnormalities can lead to
malformations of the cerebral cortex, giving rise to disorders
such as lissencephaly, microcephaly, Timothy syndrome,
and tuberous sclerosis complex, as well as neuropsychiatric
disorders, including ASD and schizophrenia (SZ). Human
cerebral organoids have emerged as a promising platform
for the study of neurodevelopmental and psychiatric
disorders.

Lissencephaly. MDS is a severe cortical malformation
characterized by defects in cortical folding and radial
migration. It is commonly associated with microcephaly,
cognitive impairment, mental retardation, and intractable
epilepsy [79, 80]. MDS is caused by multiple heterozygous
deletions of human chromosome 17p13.3, including
PAFAH1B1 (LIS1 protein) and YWHAE (14-3-3ε protein) [81].
In research published in 2017, both Bershteyn et al. and
Iefremova et al. developed forebrain organoids to deepen

Chen et al.: Organoids as preclinical models of human disease 135



our understanding of MDS. Studying MDS in animal models
is challenging because mice naturally have lissencephalic
brains [82, 83]. Outer radial glia (oRG) progenitors, known
for their robust proliferation potential, produce large
numbers of neurons and offer divergent tracks for neurons
migrating along their basal fibers, facilitating cortical
folding [84, 85]. When compared with control organoids,
hiPS-derived telencephalic organoids from MDS patients
displayed increased apoptosis, horizontal division of neural
stem cells, and impaired neuron migration. Moreover,
prolonged mitosis of oRG suggests that oRG may play a role
in the pathogenesis of lissencephaly [82]. Additionally, the
N-cadherin/beta-catenin signaling axis was impaired,
resulting in defective non-cell-autonomous expansion of
radial glial cells in the ventricular zone. Pharmacological
activation of Wnt signaling ameliorated the abnormal
growth of MDS patient-derived organoids [83].

Microcephaly. Microcephaly is a neurodevelopmental
disorder characterized by abnormal brain development,
resulting in a significant reduction in brain volume in
affected individuals [86]. Gene mutations can lead to pri-
mary microcephaly, and extensive studies have connected
several genes with autosomal recessive primary micro-
cephaly (MCPH), such as CDK5RAP2, ASPM, NARS1, and
IER3IP1 [87–89]. The first cerebral organoid was established
to study microcephaly. Mutations in the CDK5RAP2 gene,
which encodes centromere protein, can lead to autosomal
recessive primary microcephaly in humans [90]. When
cerebral organoids were generated from MCPH patients
carrying heterozygous mutations in the CDK5RAP2 gene,
they exhibited premature neuronal differentiation at the
expense of the progenitor cell pools, resulting in smaller-
sized brain organoids. Overexpression of the CDK5RAP2
gene could rescue the reduced size of cerebral organoids,
and the phenotype could be reproduced by RNAi-mediated
knockdown of CDK5RAP2 [20]. The most common cause of
MCPH is mutations in the ASPM gene, which are critical
for mitotic spindle function [85]. Cerebral organoids with
biallelic mutations in ASPM exhibited less neuroepithelial
organization, fewer vRG and oRG cells, and defective layer
lamination, indicating developmental defects in the early
stages. In later stages of development, calcium imaging
experiments revealed fewer mature neurons and less
synchronization of neuronal activities in organoids with
ASPM mutations [91]. iPSC-derived cortical brain organoids
with NARS1mutations also displayed a substantial reduction
in organoid size, linked to a decrease in neural rosette size
and neuron number after mitosis, which may elucidate
the pathogenesis of microcephaly [92]. To date, cerebral
organoids have been employed to screen for genes

contributing to microcephaly. It was found that IER3IP1
could modulate brain growth by regulating the unfolded
protein response [93].

In addition to primary microcephaly, scientists have
harnessed brain organoids to understand microcephaly
caused by pathogens. It has been discovered that cerebral
organoids show reduced proliferation of neural progenitor
cells and undergo cell death mediated by cysteine aspar-
aginase when exposed to the ZIKV virus [94]. The NS2A
protein encoded by the ZIKV virus disrupts the formation of
adhesion junctions and impairs the proliferation of radial
glial cells in human forebrain organoids [95]. In human fetal
neural stem cells infected with ZIKV, two other proteins,
NS4A and NS4B, synergistically inhibit the Akt-mTOR
signaling pathway, blocking neurogenesis and leading to
abnormal autophagy. This may provide insights into the
pathogenesis of ZIKV virus-induced microcephaly [96].
Furthermore, organoid models of ZIKV virus-induced
microcephaly have been used to test and screen potential
therapeutic drugs [97, 98].

Autism spectrum disorder. ASD refers to a heterogeneous
neurodevelopmental disorder caused by mutations in
multiple genes [99]. ASD patients typically exhibit childhood-
onset symptoms, including repetitive behaviors, restricted
interests, and impaired social interactions and communi-
cation [74]. Understanding the pathophysiology of ASD
has been challenging due to the extreme complexity of its
pathogenesis, which involves interactions with multiple
inherited factors and environmental influences.

Emerging evidence demonstrates that cerebral organoids
are excellent tools for unraveling the mysteries of ASD. In a
study published in 2015, scientists developed telencephalic
organoids derived from iPSCs from severe idiopathic ASD
patients and family controls [100]. Transcriptome and gene
network analyses of ASD-derived organoids revealed upre-
gulated genes associated with cell proliferation, neuronal
differentiation, and synaptic assembly. Compared to control
organoids, they found that the cell cycle was accelerated,
and GABAergic inhibitory neurons were overproduced in
ASD-derived organoids. Significantly, aberrant upregula-
tion of the transcription factor FOXG1 was identified as
responsible for the overproduction of GABAergic neurons
through RNA interference experiments, and knockdown of
FOXG1 rescued this phenotype [100]. In another study,
CHD8, which encodes a chromatin remodeling factor,
was found to affect GABAergic neuron development in
ASD-derived telencephalic organoids by modulating DLX
gene expression [101]. More recently, a pioneering study
explained how different risk genes consistently contribute
to the characterization of ASD phenotypes in human
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cerebral cortex organoid models [102]. Evidence suggests
thatmutations in three ASD risk genes – SUV420H1, ARID1B,
and CHD8 – can lead to asynchronous development of two
major cortical neuronal lineages: γ-aminobutyric acid-
releasing (GABAergic) neurons and deep-layer excitatory
projection neurons. The expressivity of these mutations is
closely regulated by individual genomic context, suggesting
the pathological basis for the varying clinical manifesta-
tions of ASD patients and emphasizing the importance of
future ASD treatment focusing on common pathways
influenced by ASD risk genes [102].

Neurodegenerative disorders
Neurodegenerative diseases (NDDs) constitute a group
of neurological disorders characterized by the progres-
sive loss or degeneration of neurons in the nervous sys-
tem, leading to memory, sensory, cognitive, and motor
dysfunction [103, 104]. Some well-known NDDs include
AD, Parkinson’s disease (PD), amyotrophic lateral scle-
rosis (ALS), and Huntington’s disease (HD). Despite sub-
stantial efforts to understand the pathogenesis of NDDs,
much remains unknown. Major pathological mechanisms
include pathological protein aggregation and autophagy
defects, aberrant mitochondrial energy metabolism,
neuronal cell death, neuroinflammation, and dysfunction
of synapses and neuronal networks [103]. There is an
urgent need for effective therapeutic approaches and
drugs for NDDs. Human cerebral organoids can signifi-
cantly advance NDD research by overcoming the limita-
tions of animal models, which possess different genetic
backgrounds from humans, and simple 2D cell cultures
that lack multiple cell types needed to replicate the in vivo
environment.

Alzheimer’s disease. AD is a neurodegenerative disease
characterized by its insidious onset and progressive loss of
higher neurological functions [105]. A hallmark pathology of
AD is the deposition of neuronal extracellular amyloid-beta
(Aβ) and the formation of neurofibrillary tangles, which
consist of intracellular aggregates of hyperphosphorylated
tau (Phosphorylated Tau, P-Tau) protein [106, 107]. In 2016,
the first cerebral organoid derived from patients with
familial AD carrying a repeat mutation in the APP gene was
established [108]. Subsequently, familial AD brain organoid
models with mutations in PSEN1, PSEN2, and MAPT genes,
as well as sporadic AD brain organoids, have also
been reported [109–111]. All of these models successfully
recapitulate the pathological features of AD, including
amyloid aggregation and abnormal hyperphosphorylated
tau protein. In a study published in 2018, Joseph et al.
introduced a new 3DhumanAD triculturemodel. Thismodel

incorporates neurons, astrocytes, and microglia within a
3D microfluidic platform to facilitate microglia recruitment
and the secretion of pro-inflammatory cytokines and
chemokines, providing a more accurate organoid model of
the human brain [112].

Human brain organoids derived from AD patients offer
profound benefits for advancing mechanistic studies and
therapeutic treatments. The APOE gene stands as a major
risk factor for AD. Scientists have discovered that APOE4
astrocytes increase the formation of neuronal lipid droplets
and cholesterol accumulation in chimeric organoids of
astrocytes and neurons, promoting the onset of AD [113]. The
co-occurrence of APOE4 astrocytes and neurons is essential
for elevating neuronal tau protein levels, underscoring the
significance of both neuronal and astrocytic APOE4 in p-tau
pathology [113]. Pérez et al. constructed mitochondrial pro-
tease 1 (PITRM1) knockout cerebral organoids and observed
that the early activation of the mitochondrial unfolded
protein response (UPRmt) led to mitochondrial dysfunction,
resulting in AD-related phenotypes [114]. There is evidence
suggesting that isogenic conversion of the AD-causing gene
APOE4 to APOE3 attenuates APOE4-related phenotypes in
brain organoids from AD patients [115]. Furthermore, AD
cerebral organoids also serve as an effective platform for the
development and screening of therapeutic drugs for AD
patients. The histone deacetylase 6 (HDAC6) inhibitor
CKD-504 can degrade pathological tau proteins in cerebral
organoids and ameliorate the pathological phenotype of
AD [116]. Park et al. have developed a network-based drug-
screening platform by integrating mathematical modeling
and pathological characterization of organoids from AD
patients, aiming to provide a strategy for precision
medicine [117].

Parkinson’s disease. PD, the second-most prevalent neuro-
degenerative disease globally, has become the fastest-
growing neurological disease in terms of prevalence,
disability, and mortality [118]. Similar to AD, the definitive
cause of PD remains unclear, with research in recent years
suggesting connections to genetics, the environment, and
aging factors [119]. Among its pathologies, progressive loss of
midbrain substantia nigra dopaminergic neurons and the
accumulation of intracytoplasmic Lewy Bodies, eosinophilic
inclusions, lead to the severe symptoms of PD [119, 120].

In 2016, Jo et al. cultured midbrain organoids containing
neurons of distinct layers and detected electrically active
and functionally mature midbrain dopaminergic neurons
(mDAN) with the ability to produce dopamine [72]. In recent
years, scientists have successfully replicated the typical
pathological features of PD inmidbrain organoids harboring
different genes associatedwith PD. In iPSC-derivedmidbrain
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organoids from PD patients carrying a triplication of the
SNCA gene, increased expression levels of α-synuclein, a
major component of Lewy bodies, were observed, and the
accumulation of alpha-synuclein over time was linked to a
selective loss of dopaminergic neurons [121]. Furthermore,
midbrain organoids carrying mutations in the LRRK2 gene
from PD patients exhibited neurodevelopmental defects,
resulting in a decreased number of mDAN compared to
controls [122]. Additionally, the induction of gene-edited
iPSCs into midbrain organoids recapitulated hallmark
features of PD [123, 124], underscoring the utility of estab-
lished disease models for PD research.

Midbrain organoids derived from PD patients are
promising models for therapeutic research and drug
screening. Midbrain organoids with LRRK2 mutations from
PD patients displayed increased LRRK2 activity, reduced
dopaminergic neurons, and higher levels of autophagy [122].
Treatment with the LRRK2 inhibitor PFE-360 rescued the
phenotype by increasing dopamine release and improving
the function of dopaminergic neurons [122]. In another
study, treatment with 2-hydroxypropyl-β-cyclodextrin
ameliorated neuronal autophagy and mitophagy capacity
in PD patient-specific midbrain organoids, leading to an
increase in neuronal dopaminergic differentiation [125].

Amyotrophic lateral sclerosis. ALS is a neurodegenerative
disease characterized by progressive muscle weakness due
to the death of motor neurons in the brain, brainstem, and
spinal cord [126]. Clinical symptoms of ALS patients include
progressive muscle atrophy and cognitive decline, with ALS
patients typically succumbing to respiratory failure within 5
years [127]. The etiology of ALS is not yet fully understood.
Approximately 15 % of ALS cases are familial ALS (fALS),
while the remainder are sporadic ALS (sALS) [128]. To date,
approximately 40 genes linked to ALS have been identified,
primarily influencing protein homeostasis, DNA damage
repair, RNA metabolism, vesicle transport, and mitochon-
drial function [129]. Some of these genes are also associated
with other neurological disorders, such as CCNF, ANXA11,
TBK1, and SQSTM1, which are related to frontotemporal
dementia (FTD) [129].

Scientists have harnessed the potential of human cere-
bral organoids to delve into the pathogenesis and treatment
of ALS. For instance, Szebényi et al. developed a cerebral
organoid slice model derived from human iPSCs, displaying
early molecular pathology of C9ORF72 ALS/FTD [130].
Combined with single-cell sequencing, they observed
protein disorders in astrocytes, including the early accu-
mulation of the autophagy signaling protein P62 and the
toxic dipeptide repeat protein poly (GA), along with cell
death occurring in deep layer neurons. Furthermore,

GSK2606414, a repressor of translational inhibition caused
by UPR, could pharmacologically rescue the phenotype [130].
Researchers have also recently generated microglia-
containing cerebral organoids derived from iPSCs from
ALS patients [131]. Impaired microglia-mediated autophagy
and down-regulated expression of the type I interferon
signaling pathwaywere detected in patient-derived cerebral
organoids compared to controls, suggesting that microglia
are also involved in the pathogenesis of ALS [131].
Additionally, Pereira et al. have generated sensory-motor
organoids with physiological neuromuscular junctions
(NMJs) and applied this model to different subgroups of
ALS, contributing to a better understanding of the patho-
physiological mechanisms of ALS [132].

Liver organoids

The liver, one of the essential organs in the human body,
performs various functions, including metabolism, synthe-
sis, detoxification, and bile secretion [133]. However, liver
disease remains a significant global public health concern.
According to the World Health Organization’s statistics, 350
million people worldwide suffer from liver disease, with
more than 1 million people succumbing to it annually. The
primary causes are the scarcity of organ donors and an
incomplete understanding of the pathological mecha-
nisms [134]. Therefore, the study of liver development,
regeneration, and pathogenesis holds immense significance
in regenerative medicine and disease treatment.

Traditional methods for studying liver diseases have
their limitations. For instance, in a 2D cell culture system,
isolated primary human hepatocytes struggle to maintain
viability over an extended period in vitro and have
limited expansion capabilities. This system is suitable only
for short-term studies, and the cells’ functions deteriorate
rapidly after 48 h. Conventional animal models may not be
applicable to all diseases, with variations among species and
potential ethical constraints [135, 136]. The development of
liver organoids offers a more physiologically relevant and
in vivo-like environment for studying liver diseases [137].

The induction of iPSCs toward mesoderm or endo-
derm, particularly for hepatocyte and cholangiocyte dif-
ferentiation, involves the use of specific cytokines such as
fibroblast growth factor (FGF), BMP, HGF, and Wnt. Liver
organoids are subsequently formed by embedding these
cells in Matrigel under the influence of specific factors.
Another approach for liver organoid formation, pioneered
by Takebe and colleagues, involves the spontaneous for-
mation of 3D aggregates known as iPSC-liver buds (iPSC--
LB). These liver buds are created by mixing human
pluripotent stem cell-derived hepatocytes, human
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mesenchymal stem cells, and human endothelial cells on a
Matrigel layer, resulting in an organ-like in vitro liver
model with functional vascular-like endothelial networks.
Subsequent experiments involving the implantation of
liver buds into mouse models of liver disease have
demonstrated their potential for reducing mortality in
mice with liver injuries [138]. Studies have shown that
hPSC-derived liver organoids not only secrete human al-
bumin and alpha-1-antitrypsin (A1AT) but also synthesize
urea and regulate cytochrome P450 (CYP) enzymes in vitro.

Liver organoids have become invaluable tools in various
therapeutic fields. For instance, HCC often results from
chronic parenchymal liver damage due to monogenic
diseases. Liver organoid models are indispensable for
studying this disease [139]. It has been reported that
hepatocyte-derived organoids, derived from iPSC-derived
cholangiocytes in 3D culture, can excrete bile acids and
exhibit functional secretion, mimicking conditions such
as Alagille syndrome [140]. iPSC-derived liver organoid
models of steatohepatitis hold the promise of providing
personalized drug treatment options for reducing lipid
accumulation, potentiallymitigating the impact ofWolman’s
disease on patients [141]. Additionally, iPSC-derived liver
organoids from patients with specific diseases can simulate
various inheritedmetabolic disorders and cholangiopathies,
offering a platform for in vitro drug validation for conditions
like polycystic liver disease and cystic fibrosis
cholangiopathy [142].

In the past decade, hepatocytes and liver organoids
derived from iPSCs have played a significant role in the
in vitro study of liver physiology and pathology. However,
challenges related to limitations, safety, and stability still
exist. Efforts are ongoing to enable their clinical application
and help address various disease-related issues as soon as
possible.

Intestine organoids

Hans Clevers’ laboratory has initiated a new chapter in the
development of intestinal organoids, utilizing single mouse
LGR5 intestinal stem cells to self-organize into an intestinal
crypt-villus structure in vitro. In the past, biological model
systems such as the mouse model were employed to study
enteroendocrine cells. Additionally, certain cell lines have
been used as research models, such as the mouse GLUTag
cell line, which serves as a model for regulating GLP-1
secretion [143]. There are also BON cell lines for endometrial
cancer, which can be used to model serotonin produc-
tion [144]. While these models have advanced the study of
the enteroendocrine system to some extent, they still possess
certain limitations, including the inability to simulate the

in vivo environment and a lack of cell-to-cell interactions.
Over the past decade, organoid models derived from AdSCs
have been developed to investigate interactions between
enteroendocrine cells, other epithelial cell types, and the
enteric nervous system. However, the iPSC method can
construct a more ideal model suitable for disease research.

For colonic diseases, studies have been conducted to
create colonic organoids. Colon organoids were generated
from iPSCs derived frompatients with familial adenomatous
polyposis (FAP). PSCs were induced into directed endoderm
using CHIR and activin A. In the presence of B27, CHIR, and
FGF4 were utilized to induce hindgut endoderm (HE).
Starting from day 8, HE cells were treated with a medium
containing CHIR, LDN, and EGF for 12 days to produce
colonic epithelial cells, which were subsequently embedded
in Matrigel to gradually form organoids [145]. Compounds
that have been reported to be effective against colon cancer,
such as rapamycin [146] and XAV 939 [147], can be consid-
ered as potential drugs to treat FAP. The results have shown
that these two compounds reduced cell proliferation
not only in colon cancer but also in normal colon tissue.
However, this potential drawback, which could harm
healthy colonic crypts, may limit their therapeutic use.
In contrast, geneticin reduces the over-activation of WNT
signaling, thereby decreasing the excessive proliferation of
colonic epithelial cells, which is strongly associated with
colorectal cancer. One of the advantages of diseasemodeling
is the ability to screen for drugs that can reverse the path-
ogenic phenotype [145].

The main symptoms of COVID-19 primarily affect
the respiratory tract, but ACE2 expression is highest in the
microvilli of intestinal epithelial cells in the human body.
Relevant studies have suggested that the gastrointestinal
tract may serve as a potential entry route for SARS-CoV-
2 [148]. Numerous experiments conducted with intestinal
organoids have demonstrated that iPSC-derived intestinal
organoids can be employed as a research model to replicate
COVID-19 infection. For instance, remdesivir and EK1, two
viral fusion inhibitors, have been discovered to inhibit
coronavirus infection and restore the morphology of intes-
tinal organoids [149]. Certain studies have utilized intestinal
organoids induced by coronavirus infection and subse-
quently employed TEM imaging and gene set analysis to
unveil the presence of viral particles and the upregulation of
apoptosis-related genes.

The study of these intestinal models can further our
understanding of the physiology, developmental biology,
regenerativemedicine, and pathophysiology of the intestine.
Moreover, they can be employed to investigate host-
pathogen interactions, digestion and absorption processes,
transplantation, and more. For example, intestinal
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organoids can be used to explore intestinal barrier integrity
andmetabolism [150], iPSC-derived intestinal organoids that
contain the enteric nervous system can help investigate in-
testinal motility disorders, and they can even serve as
models for toxicology assessments [151].

Traditional organoids are primarily derived from
homeostatic stem cells. However, when the body is damaged,
homeostatic stem cells may not be sufficient to compensate
for tissue loss. Previous studies have reported that
constructing a proliferative intestinal organoid system can
better reflect the regenerative response of the intestinal
epithelium to injury in vivo, and have identified VPA and
EPZ 6438 as important regulators of intestinal organoid
proliferation [152]. This innovative organoid system may
play a more critical role in exploring intestinal diseases
and regeneration in the future. Nonetheless, iPSC-derived
organoids have smaller cell populations than normal tissue
and tend to decline over time [153]. The controlled formation
of intestinal organoids remains a major challenge for future
research [154].

Lung organoids

Previous studies have provided a strategy for deriving lung
organoids from iPSCs. Initially, iPSCs are differentiated into
endoderm in a medium containing activin A. Subsequently,
the definitive endoderm is cultured in a medium containing
NOG, FGF4, CHIR99021, and SB431542 to encourage differ-
entiation into foregut spheroids. Finally, these foregut
spheroids are embedded in Matrigel for culture, with the
addition of FGF10 to the medium.

Since the development of lung organoids, extensive
basic research has been conducted. For instance, NKX2.1
in lung epithelial progenitor cells can be used to screen
for markers that enhance expression, allowing for more
efficient and targeted differentiation towards specific
fates [155]. Some experiments have revealed that the
culture process of iPSC-derived lung organoids shares
common features with fetal lung development. Under
conditions that stimulate FGF signaling, lung organoids
preferentially generate NKX2.1, SOX2, and SOX9 epithelial
cells, resembling early lung progenitors [156]. When lung
organoids are placed in media that activate BMP, FGF, and
WNT signaling pathways, lung epithelial cells undergo
morphological branching, akin to the processes during lung
development [157].

Furthermore, the advent of lung organoids has facili-
tated the modeling and study of various diseases, including
pulmonary fibrosis, congenital diseases, and neonatal
respiratory distress syndrome. In the wake of the global
COVID-19 pandemic, iPSC-derived lung organoids have

proven valuable for modeling the disease, and candidate
drugs for treatment have been tested in relevant
studies [150, 158]. Another possibility is the induction of
human lung lobes from hPSCs. Although the coverage of
human lobes is not as extensive as in the rat model, this
in vitro lung engineering approachmay address the issue of
the shortage of lung donors for transplantation [159].

Numerous efforts have been made to address idiopathic
pulmonary fibrosis (IPF), but the pathophysiological
mechanism of the disease remains poorly understood.
The primary reason is the lack of models for studying
pathological mechanisms and drug screening. While animal
models and 2D cell cultures have contributed to progress in
exploring the mechanisms of IPF, they also come with
their own limitations. IPSC-derived organoids, including
lung bud organoids and alveolar epithelial organoids, offer
a more accurate simulation of the in vivo environment,
making them a powerful model for studying respiratory
diseases [160]. Nevertheless, the lung is a highly complex
organ, and IPF involves the interaction of various cell types,
making it a significant challenge to decipher the pathology.
The development of human fetal-derived mesenchymal
organoids for IPF modeling [161] and fibrotic lung organoids
created through the CRISPR/Cas9 gene editing system [162]
have been instrumental in exploring the pathological
mechanisms of IPF.

It is undeniable that iPSC-derived lung organoids hold
great potential for studying specific aspects of human
development and disease. Lung organoid systems provide a
valuable platform for basic research, toxicity assessment,
drug screening, and personalized disease modeling.

Retinal organoids

The retina originates from the neuroectoderm and functions
as a light-sensitive region of the eye. During embryonic
development, the optic vesicle invaginates to form the optic
cup divided into two layers, with the outermost layer
forming the retinal pigment epithelium and the inner layer
highly specialized to constitute the retinal neuroepithelial
layer composed of retinal neurons and glial cells. The neural
retina then continues to stratify, with the development of
layers of photoreceptor and ancillary cell types, such as
horizontal cells, bipolar cells, and so on.

Retinal morphogenesis depends on an intrinsic self-
organizing program, and pluripotent stem cells can differ-
entiate into retinal organoids by regulation of endogenous
factors. Optic nerve cup-like organoids derived from mESCs
can aggregate and develop in serum-free medium contain-
ing low levels of growth factors to form stratified neural
retinal tissues, similar to the developmental trajectory
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in vivo [25]. When transplantation of ESC or iPSC-derived
retinal cells into a model of advanced retinal degeneration
without the outer nuclear layer, the transplanted tissue
could establish synaptic connections with host cells and
restore light response. The studies provided proof of
concept for transplantation therapy of retinal cells [163, 164].
Three-dimensional optic nerve cup organoids of hiPSC origin
can spatiotemporally recapitulate the major steps of retinal
development, and differentiate into mature photoreceptors,
giving rise to possibilities for disease modeling and future
therapies for retinal dysfunction [165]. Recently, a human
retinoblastoma model was successfully established in mice.
hiPSCs from retinoblastoma patients were cultured and
differentiated into retinal organoids and then transplanted
into the vitreous of mouse eyes to support tumor growth,
which was molecularly, cellularly and genomically identical
to the tumor patients [166]. This human cancer model facil-
itates the study of pathogenesis and specific treatments
for patients with particular germline cancers.

Inner ear organoids

The inner ear develops from the otic placode of the
ectoderm. The inner ear contains a large population of
specialised sensory cells, known as ‘hair cells’, which are
able to convert mechanical stimuli into electrochemical
signals [167]. The development of the inner ear is modulated
by signaling pathways such as BMP, Wnt and Sox2,
and regulating the inputs of these signaling factors in vitro
induces the directed differentiation of PSCs towards sensory
hair cells in the inner ear [168]. In 2013, Koehler and his
colleagues partially recapitulated the developmental
process of inner ear in vitro by temporally controlling the
signaling pathway with precise timing and differentiating
mouse ESCs into functionally mature sensory hair cells
in a 3D culture system [169]. Subsequently, by a similar
approach, Koehler induced inner ear organoids innervated
by sensory neurons from human ESCs [170]. Recently,
multiple immunostaining and single-cell RNA sequencing
techniqueswere used to compare the characteristics of early
human embryonic otocyst and fetal sensory organs with the
human inner ear organoids, together with an assessment of
the expression and localization of key markers at the same
stage, providing evidence that the inner ear organoids can be
further used as a developmental and disease models [171].

Since the first technical breakthrough of intestinal
organoids in 2009, more and more organoids have been
cultured and applied to various organs, including brain,
liver, lung, pancreas, kidney, etc., which can reduce the
complexity of experimental operation and better optimize
the experimental protocol. They have important

applications in drug screening, transplantation, disease
modeling, gene editing, personalized treatment, and toxi-
cology research. In terms of disease modeling, even complex
and fine brain organs can be constructed to construct
structures such as cerebellum and cortical layers for the
study of various diseases. The kidney and liver organoids,
which are the most important metabolic functions, also
provide a platform for toxicity prediction. In addition to
iPSCs and ESCs, organoids derived from primary tumors
such as colon, breast, and pancreas can also be used for drug
screening and provide substrates for personalized therapy.
In summary, more studies are needed to evaluate the effi-
cacy and safety of these methods to guide the clinical
application of organoids (Table 1).

Organoids derived from tumor

Cancer is one of the significant threats to human health
worldwide. In current preclinical research on tumors, there
are several types of tumor models: tumor cell line models
(CCL), patient-derived tumor xenograft models (PDTX), and
patient-derived organoids (PDO).

CCL, originating from immortalized cancer cell lines
derived from patient tumors, are traditional models widely
employed in tumor research. In 1951, the initial human
tumor cell line was isolated from an American cancer
patient, which is widely known as HeLa cells [172]. CCLs span
a variety of human tumors such as breast, central nervous
system, colon, kidney, leukemia, lung, melanoma, ovary, and
prostate [173]. Despite their diverse origins, these CCLs
continue to play a crucial role in modern cancer research.
PDTX is a valuable model which small fragments of tumors
are surgically removed from cancer patients and then
transplanted directly into immunodeficient mice [174]. In
1969, Ragaard and Povlsen successfully implanted human
colonic tumor tissue into nude mice [175]. This achievement
might be the first PDTX model. PDTXs are highly favored by
researchers because they largely preserve the cellular and
histopathological structures of the original tumors. In
numerous preclinical cancer research studies, the presence
of PDTXs is quite common. For example, in recently
published studies in colorectal cancer, breast cancer [176],
CC [177] and HCC [178]. Tumor organoids serve as a pivotal
model system in the realm of precision medicine, owing
to their unique capability to faithfully preserve the funda-
mental characteristics of the primary tumor [179]. They
have emerged as a highly promising model for precision
medicine, primarily due to their aptitude for predicting
drug responses tailored to the unique profiles of individual
patients. Tumor organoids can be effectively cultured from a
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diverse array of cancer types, encompassing brain, lung,
liver, pancreatic, and breast cancer, among others [180]. The
envisioned process involves procuring a patient’s tumor
specimen, generating and sustaining organoids, exposing
these patient-derived tumor organoids to a wide range of
pharmaceutical agents, and subsequently administering
the most optimal drug or drug combination. These diverse
tumor models contribute to our understanding of cancer
biology and aid in the development of potential treatments
and they each have their respective advantages and disad-
vantages (Table 3).

Brain cancer

In a 2018 article published in the journal Nature Methods,
Bian and their colleagues conducted a study to explore the
use of genetically modified cerebral organoids as a reliable
model for investigating the mechanisms involved in the
formation of brain tumors [181]. The goal of this research
was to enhance the utility of cerebral organoids by geneti-
cally modifying them to mimic the development of brain
tumors. They introduced genetic mutations commonly
associated with brain cancers, such as TP53 and PTEN
alterations. This research is significant in the fields of cancer
biology and neuro-oncology, providing a valuable platform
for studying the molecular and cellular processes involved
in brain tumor development. Glioblastomas are highly
aggressive and deadly brain cancers known for their
complexity and the presence of areas with low oxygen levels
(hypoxic regions). In 2016, Hubert and their team conducted

a study aimed at creating a 3D organoid culture system us-
ing human glioblastoma samples [182]. The main goal was to
develop an in vitro model that accurately reproduces the
hypoxic gradients and the diversity of cancer stem cells
found in glioblastoma tumors in real-life conditions. The
study successfully generated a 3D organoid culture system
derived from human glioblastoma tissue. This organoid
culture system shows promise as a valuable tool for studying
glioblastomas and potentially other types of cancer.

Lung cancer

Lung cancer is a significant global cause of death. Lung
cancer can be broadly classified into two main types: non-
small cell lung cancer (NSCLC), and small cell lung cancer
(SCLC). Within NSCLC, the most common subtype is lung
adenocarcinoma (LUAD). It is a complex diseasewith diverse
characteristics, both in terms of physical features and
genetic makeup. This complexity makes it challenging to
create animal models for research [183]. Researchers are
increasingly using lung cancer organoids (LCOs) because
they can faithfully replicate the structure and function of
lung tissue found in the body.

LCOs are vital tools for researching the mechanisms of
lung cancer. Zhang et al. demonstrated that the sustained
expression and activation of KRAS, along with the loss of
Lkb1, can transform normal lung organoids into malignant
ones, promoting the transition to lung squamous cell car-
cinoma (LUSC) [184]. Subsequently, Dost and their col-
leagues used organoid systems derived from human iPSCs
and mouse lung epithelial cells to simulate the develop-
ment of LUAD. In both systems, the expression of KRAS in
lung alveolar epithelial progenitor cells led to changes
in the transcriptional program, resulting in the down-
regulation of genes associated with differentiation and
maturation [185]. These two studies provided ground-
breaking insights into the mechanisms of lung tumor
formation. Kim et al. established various subtypes of LCOs,
such as adenocarcinoma, squamous cell carcinoma, ade-
nosquamous carcinoma, large cell carcinoma, and small
cell carcinoma [186]. Li et al. [187] and Chen et al. [188] also
successfully established biobanks of LCOs of different
subtypes. These organoids exhibit a high degree of consis-
tency with the original lung cancer tissue, offering new
directions for personalized and precision therapies for
lung cancer. Additionally, LCOs can be used for drug
sensitivity testing. One study used 212 LCOs generated from
107 patients for drug sensitivity testing (LCO-DST). LCO-DST
accurately predicted the clinical responses of some lung
cancer patients to treatment [189]. Beyond drug sensitivity

Table : The advantages and disadvantages of CCL, PDTX and PDO.

Tumor
models

Advantages Disadvantages

CCL Lower cost;
Easy to maintain;
High-throughput screening,
Convenient manipulation

Loss original tumor complexity;
Lack tumor microenvironment;
Lack genetic diversity

PDTX Maintain tumor heterogeneity;
Mimics in vivo
microenvironment;
More physiological
environment;
From human tumor

Technically challenging;
Expensive;
Tumor restrictions;
Long research time

PDO Maintain tumor heterogeneity;
Mimics in vivo
microenvironment;
Personalized medicine;
Platform of drug discovery

Longer culturing;
Technically challenging;
Expensive

CCL, tumor cell linemodels; PDTX, patient-derived tumor xenograft models;
PDO, patient-derived organoids.

142 Chen et al.: Organoids as preclinical models of human disease



testing, LCOs can be applied in drug development by
conducting high-throughput screening of numerous com-
pounds to identify potential anti-cancer drugs [190].

Liver cancer

PLC is the second leading cause of cancer-related deaths
worldwide. PLC encompasses various types, including HCC,
intrahepatic cholangiocarcinoma (iCCA), and other less
common tumors [191]. In cancer research, it is crucial to
create accurate models to understand the disease better.
Traditional 2D models have limitations, but 3D systems offer
a more faithful representation of what happens in the body.

Hepatitis B virus (HBV) is a significant factor in the
development of liver cancer. One study investigated liver
cancer using PDO created from non-tumor cirrhotic liver
tissues of liver transplant patients. Analysis of the gene
expression patterns in these organoids revealed unusual
early cancer-related characteristics. These findings have the
potential to serve as new biological markers for under-
standing how HBV infection contributes to the development
of liver cancer [192]. Naruse and colleagues established a
novel in vitro model for inducing carcinogenesis through
chemical treatments, using liver organoids. They used liver
organoids derived from mouse tissues and exposed them to
a chemical called diethylnitrosamine (DEN). This model
helped explain the patterns of chemical carcinogenesis
and how it can lead to liver cancer [193]. Sun et al. took a
different approach by using reprogrammed human liver
cells (hiHeps) with deactivated p53 and RB genes to create
liver organoids. These organoids were then genetically
modified to simulate the development of human liver
cancer [194]. Li and their team highlighted the potential of
tumor organoids in screening drugs for liver cancer treat-
ment. They established 27 different liver cancer cell lines and
tested them with 129 different cancer drugs. This research
revealed significant variations in how tumors respond
to these drugs, offering new insights into personalized
treatment strategies for liver cancer [195]. These innovative
approaches and organoid models are helping researchers
better understand the complexities of liver cancer,
providing new avenues for studying its development and
potential treatments.

Pancreatic cancer

Pancreatic cancer is an extremely aggressive tumor with a
very low 5-year survival rate. It ranks as the seventh most
common cancer globally [196]. Pancreatic cancer organoids
retain the physiological characteristics and functions of a

patient’s original tumor cells. These organoids are valuable
for personalized drug screening and drug sensitivity testing,
offering promise for early diagnosis and personalized
treatment of pancreatic cancer.

Researchers, such as those in the Clevers and Tuveson
labs, have used surgically removed pancreatic cancer tissues
to create pancreatic cancer organ models. They found that
transplanting these organoids can mimic the full range of
tumor development, offering insights into the entire cancer
progression process [43]. One study discovered that the
expression of the PDAC-related cancer gene GNASR201C
induced cystic growth more effectively in pancreatic ducts
compared to pancreatic acinar organoids. On the other hand,
KRASG12D was more effective at simulating cancer when
expressed in acinar organoids as opposed to ductal orga-
noids. The researchers developed a renewable source of
pancreatic ductal and acinar organoids, providing a tool to
study the lineage plasticity and human pancreatic cancer
gene actions [197]. A team of researchers from Harvard
Medical School, as published in Nature Medicine, employed
3D cell culture techniques to amplify and cultivate primary
cancer cell organoids from pancreatic cancer patients’
tissues. These tumor organoids maintain the characteristics
of the original tumor and preserve the specific physiological
changes unique to the patients. These pancreatic tumor
organoids can be used to simulate pancreatic cancer and
conduct drug screening for precision treatments.

Breast cancer

Breast cancer is one of the most common malignancies
affecting women globally and stands as the second leading
cause of cancer-related deaths in women. The primary
research models for breast cancer have traditionally been
tumor CCL and PDTX. However, both of these models
have their limitations. In 2018, Sachs and their team made a
significant breakthrough by creating breast cancer organo-
ids from pathological tissues of breast cancer patients.
Furthermore, the team established a biobank comprising
over 100 breast cancer organoid samples [198]. Building
upon research conducted by Hans Clevers’ team, Mazzuc-
chelli and others isolated breast cancer cells from surgical
or biopsy samples and then cultivated them into organo-
ids [199]. Li and colleagues successfully cultured organoids
from large papillary breast cancer. These organoids
continued to grow for over 6 months. These proliferating
breast cancer organoids exhibited consistent pathology,
hormone receptor expression, and the proliferation marker
Ki-67 with post-surgery pathological results [200]. In another
study, Nayak and their team cultured primary breast cancer
cells from different patients in specific culture conditions,
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generating breast cancer organoids. They then exposed
these organoids to chemotherapy drugs, doxorubicin, and
mitoxantrone. The results highlighted significant differences
in the response of organoids from different patients to
these two chemotherapy drugs [201]. This underscores the
capability of organoid models to replicate the tumor’s
heterogeneity in vitro, offering a basis for personalized
treatment approaches.

In summary, organoids derived fromAdSCs, pluripotent
stem cells, and tumor tissues have their own roles in human
disease modeling. They can well simulate the characteristics
of in vivo tissue biology, and capture some of the multicel-
lular structure, anatomy, and even functional characteris-
tics similar to real organs, providing an important platform
for the study of disease modeling in different fields.

Conclusions and perspectives

Ever since Rheinwald and Green first reconstituted 3D tis-
sue structures from cultured human stem cells [202–204],
organoids are now defined as self-organized 3D structures
grown from stem cells, composed of organ-specific cell
types, and capable of reconstituting specific organ functions
in vitro [205, 206]. After decades of development, organoids
have been generated from various tissues, including the
small intestine, prostate, brain, lung, and liver. Organoid
technology has opened up new possibilities for scientific
discovery in developmental biology, drug discovery, and
personalized therapy [207], and multiple biobanks of orga-
noids have been established for modeling human diseases

and drug discovery, bringing the promise of personalized
medicine closer to reality [36, 208] (Figure 2).

The ethical issues of organoids cannot be ignored. The
first ethical issue that is often discussed is that researchers
should only carry out experiments with the consent of do-
nors. If the research is carried out without the donor’s
knowledge and completely separated from the donor’s
personal data, it will weaken the clinical application of
organoids. Informed consent from donors in organoid
research means that they have control over the conduct
of the experiment and the option to opt out. Interviews
showed that the patients who participated in the research
wanted to be informed about the experimental study of
organoids, and wanted to know the related profits and drug
pricing involved in the follow-up [209, 210]. Another issue
is the ethical challenge of organoids commercialization.
Patients usually donate their tissues for nothing, but in
addition to the distrust of the research community, they also
worry about the experimental data involved in subsequent
organoids, profits, and whether the company will be overly
profitable. These negative effectsmay be solved by providing
benefits to the donor. It can be financial support or clinical
special care such as experiencing new therapies based on
organoid research [211]. The pertinent departments ought
to enhance discourse regarding the ethics surrounding
organoids and ensure patients are informed about organo-
ids in an open and transparent manner. Furthermore, it is
imperative to establish appropriate legislation to regulate
the advancement of this technology in clinical practice.
Improving ethical supervision, reducing public concerns,
and improving the understanding of organoids to help
organoids continue to develop on the premise of ethics [212].

Organoids are typically derived from a single germ
layer through step-wise differentiation, whereas an organ
contains cells from multiple germ layers. Multi-tissue orga-
noids [213, 214] or assembloids [215, 216] are established
through the co-culture of cells derived from at least two
germ layers (Figures 3 and 4). Significant progress has been
made in understanding diseases such as cystic fibrosis,
pancreatic cancer, colon cancer, Zika virus, and micro-
cephaly with the use of brain organoids [217–219]. Despite
these tremendous achievements and rapid development,
organoids have a few limitations that hinder their broader
application. Organoid cultures exhibit significant heteroge-
neity and variable complexity in cellular composition, can
undergo poorly controlled morphogenesis, and often lack
stromal, vascular, and immunological components [220].
Several achievements have been made in vascularized
organoids [221], mainly through transplanting organoids
into highly vascular tissues in immunodeficientmice [222] or
culturing organoids on microfluidic devices that mimic

Figure 2: Multiple applications of organoid technology (by Figdraw). The
schematic summarizes the different applications of organoids in many
fields, including developmental biology, gene editing, drug screening,
disease modeling, personalized therapy, and regenerative medicine.
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Figure 3: Liver organoids and brain organoids obtained from iPSCs and ESCs (by Figdraw). Induced pluripotent stem cells (iPSCs) and embryonic stem
cells (ESCs) respectively from the inner cell mass of blastocysts and somatic cell reprogramming through the cultivation of different numbers of days and
cell factors to generate the corresponding organoids.

Figure 4: Overview of organoid types (by Figdraw). Starting cell types include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), adult
stem cells (ASCs), and tumor stem cells, which are aggregated into cell populations by self-organization. The cell population differentiates into three germ
layers: endoderm, mesoderm, and ectoderm, which further specializes into various organoid types.
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vasculature [223, 224]. The ectopic expression of human ETS
variant 2 (ETV2) has also contributed to the formation of a
complex vascular-like network in human cortical organoids
(hCOs) [78]. However, the formation of specific cell types and
the simulation of functional systems are difficult to over-
come for organoids, especially the nervous system. The
problem is further complicated if the interaction between
cells and tissues is also explored. In addition, there is also
variability in organoids derived from patients of different
ages and genetic backgrounds [20], and the differences in
tumor-like tumors can also lead to heterogeneity in tumor
results [36]. For the above vulnerabilities, CRISPR-Cas9
technology may be used to engineer organoids with an iso-
genetic background to reduce variability [225]. Every model
has its own advantages and disadvantages, and organoids
are not exceptional. Pay attention to the limitations when
applying them.

Due to the random configuration of traditional 3D
culture, it is difficult to precisely control organoids and their
local environment [226, 227]. Organoids, in collaboration
with engineers and organ-on-a-chip technology, provide
a path to more controllable organoid systems [228–230],
which have been used to create the required concentration
gradients to regulate tissue patterning and development.
Scaffolds made of biological materials can improve the
abnormal tissue structure caused by the organoid self-
organization [231]. A significant step has been taken in
modeling the alveolar–capillary unit of the lung with a
biomimetic microsystem that reconstitutes the critical
functional alveolar-capillary interface of the human
lung [232]. However, simulating the important physiological
process of organoids in vivo vascularization and inner-
vation is still one of the indispensable keys to under-
standing the mechanism of tumorigenesis, metastasis, or
neurodegenerative disease [233]. In addition, the wide
application of Matrigel cannot reflect the dynamic
changes of biomechanics in organs. To solve this problem,
some biological companies or laboratories have cooper-
ated with engineering laboratories to develop synthetic
substrates with both biophysical and biochemical prop-
erties [234]. Furthermore, the combination of organoids
with other technologies, including CRISPR/Cas9 genome-
editing technology [235], mass spectrometry, single-cell
RNA sequencing, and cryo-electron microscopy (cryo-
EM) [206], has further advanced our understanding of
organoid assembly and organ development. In the future,
the integration of organoids with other technologies may
accelerate the development of organoids, simulating more
complex human physiological and pathological situations
and improving the accuracy of organoids to reproduce
human physiological processes.
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