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A B S T R A C T   

The quick and precise identification of COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneu-
monia, mycoplasma pneumonia, and normal lung on chest CT images play a crucial role in timely quarantine and 
medical treatment. However, manual identification is subject to potential misinterpretations and time- 
consumption issues owing the visual similarities of pneumonia lesions. In this study, we propose a novel 
multi-scale attention network (MSANet) based on a bag of advanced deep learning techniques for the automatic 
classification of COVID-19 and multiple types of pneumonia. The proposed method can automatically pay 
attention to discriminative information and multi-scale features of pneumonia lesions for better classification. 
The experimental results show that the proposed MSANet can achieve an overall precision of 97.31%, recall of 
96.18%, F1-score of 96.71%, accuracy of 97.46%, and macro-average area under the receiver operating char-
acteristic curve (AUC) of 0.9981 to distinguish between multiple classes of pneumonia. These promising results 
indicate that the proposed method can significantly assist physicians and radiologists in medical diagnosis. The 
dataset is publicly available at https://doi.org/10.17632/rf8x3wp6ss.1.   

1. Introduction 

Pneumonia is a common form of lung infection, which can cause 
serious mortality and morbidity worldwide, especially among children 
and elderly people [1]. There are more than 30 different causes of 
pneumonia, and the main types of pneumonia are bacterial pneumonia 
(BP), viral pneumonia (VP), mycoplasma pneumonia (MP), and other 
types of pneumonia according to the causative pathogens [2]. The 
outbreak of COVID-19 pneumonia, which is a type of VP, poses a real 
threat to all countries and leads to innumerable casualties [3]. The quick 
and precise identification of the type of pneumonia is imperative, which 
can guide clinicians in medication and patient management; for 
example, BP requires an emergency referral for immediate antibiotic 
treatment, whereas VP requires supportive care [4,5]. 

Currently, chest computed tomography (CT) is an important non- 
invasive and effective method of diagnosing multiple types of 

pneumonia [6,7]. To confirm COVID-19, virus-specific reverse- 
transcriptase polymerase chain reaction (RT-PCR) is regarded as the 
gold standard. However, RT-PCR has strict requirements for the labo-
ratory, which may delay the accurate diagnosis of suspected patients 
[8]. In addition, the SARS-CoV-2 virus of COVID-19 pneumonia can 
mutate over time, which may cause the RT-PCR to fail to detect COVID- 
19 patients [9]. Thus, CT examination, which has the advantages of 
reusability, simple operation, and a high positive rate, is used in many 
countries to further evaluate COVID-19 and other types of pneumonia. 

Visual variations in different pneumonia lesions can be easily 
observed on chest CT images. Fig. 1 shows some typical CT image slices 
of multiple types of pneumonia patients, that is, COVID-19, non-COVID- 
19 VP, BP, and MP. In Fig. 1, lesions of different pneumonia appear at 
varying scales, shapes, and locations. For example, abnormal findings of 
ground-glass opacities in patients with COVID-19 are usually multifocal, 
bilateral, and peripheral, which differs from the diffuse distribution of 
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the other non-COVID-19 VP. BP characteristically produces focal 
segmental (bronchopneumonia) or lobar pulmonary opacities (lobar 
pneumonia). For patients suffering from MP, CT usually shows cen-
trilobular nodules (tree-in-bud appearance), and bronchial wall thick-
ening is also seen. These different visual features provide a theoretical 
basis for the classification of different types of pneumonia. Although CT 
imaging is a good method for the screening of multiple types of pneu-
monia, CT images of different types of pneumonia also have intra-lesion 
variances and inter-lesion similarities. These fine-grained characteristics 
result in a low rate of interobserver concordance in manual diagnosis 
[6–8,10,11]. In addition, a CT scan contains over 300 image slices, and 
manual diagnosis is a time-consuming task and sometimes non- 
reproducible. To solve this problem, a potential solution is to develop 
an automatic pneumonia detection system using advanced deep learning 
techniques, which are commonly used for medical diagnosis. 

The current deep learning techniques, especially convolutional 
neural networks (CNNs), have achieved much success in the detection of 
pneumonia from chest CT images since COVID-19 emerged in early 
December 2019. Suri et al. [12] and Khanday et al. [13] reviewed 
artificial intelligence (AI) algorithms used in diagnosing COVID-19 and 
found that most of the AI algorithms are based on CNNs. In this section, 
we introduce some representative examples. Li et al. [14] built a diag-
nostic system that combines several 2D CNN models to classify COVID- 
19, community-acquired pneumonia (CAP), and non-pneumonia. The 
system was trained using 1186 CT scans with 132,583 CT images and 
achieved 90% sensitivity and 96% specificity. This study paved the way 
for the diagnosis of COVID-19 based on CNNs from chest CT. Zhang et al. 
[15] applied several CNN models to develop an intelligent system that 
can identify COVID-19 and differentiate it from common pneumonia 
and normal lung. Their system was trained using 6752 CT scans from 
3777 patients, and achieved satisfactory diagnostic performance. Bai 
et al. [16] reported that the use of a CNN-based intelligent system could 
improve the performance of radiologists in distinguishing COVID-19 
from CAP on chest CT. Ardakani et al. [17] applied 10 state-of-the-art 
CNNs to distinguish COVID-19 from non-COVID-19 groups and found 
that ResNet-101 performed the best with an area under the receiver 

operating characteristic (ROC) curve (AUC) of 0.994. Ouyang et al. [18] 
used a dual-sampling attention network to diagnose COVID-19 and CAP. 
The network was trained using 4,982 CT scans of 3,645 patients and 
acquired a sensitivity of 86.9%. Rahimzadeh et al. [19] distributed a 
large dataset of CT images and presented a completely automated 
approach to detect COVID-19 with high accuracy and speed. Gilanie 
et al. [20] developed a CNN model to detect COVID-19 from both chest 
X-ray and CT images with an average accuracy of 96.68 %, specificity of 
95.65 %, and sensitivity of 96.24 %. In our previous work [21], we 
developed a CNN model that can effectively distinguish COVID-19 from 
other common pneumonia. 

Although the above studies have shown that CNNs can achieve 
impressive diagnostic results, we find that there are still gaps between 
research and practical applications in pneumonia detection from chest 
CT images, which are listed below:  

(1). Most current studies focus on only one or two specific types of 
pneumonia, that is, the differentiation of COVID-19 from CAP or 
normal lung. Consequently, less effort has been made to detect 
multiple types of pneumonia. For real clinical scenarios, multiple 
types of pneumonia can be found during CT screening; therefore, 
a solution for multiclass pneumonia identification is beneficial 
for clinical applications.  

(2). Few studies have considered vital scale information and attention 
mechanisms to deal with the size and location of pneumonia le-
sions from the clinical facts that the infection characteristics of 
COVID-19 and other pneumonia can vary significantly in scale 
and location depending on the condition of the patients. For 
instance, in the early stage of COVID-19 infection, lung lesions 
such as ground-glass opacities on chest CT may be small, sub-
pleural, and peripheral, which need to be analyzed more carefully 
and require more time. In contrast, lesions such as pulmonary 
consolidation in the late stage can be easily observed on a coarse 
scale [6–9]. These radiographic features also appear in other 
cases of pneumonia [12,13]. Therefore, paying attention to the 

Fig. 1. Representative CT images of different types of pneumonia (The yellow arrows indicate pneumonia lesions in the right and/or left lobes): (a) COVID-19, (b) 
non-COVID-19 VP, (c) BP, (d) MP. 
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scale and location characteristics of lesions in CT images is 
beneficial for the pneumonia classification task.  

(3). Clinical data are usually highly imbalanced with varied category 
distributions, for example, normal samples are more prevalent 
than COVID-19 infections. This imbalanced data distribution 
presents a challenge to most classification techniques because 
they are designed based on the assumption that each category has 
the same number of samples [22]. As a result, previous classifi-
cation techniques may make the training ineffective and bias the 
classification results to the majority class. 

This study is motivated by the aforementioned challenges. For the 
first problem, we collected and constructed a multicenter and multiclass 
chest CT dataset that contains four types of pneumonia, that is, COVID- 
19, non-COVID-19 VP, BP, MP, and normal lung. The dataset is named 
the COVID-19 & community-acquired pneumonia (CCAP) dataset and 
has been published for further research. To the best of our knowledge, 
this is the first multiclass CT open dataset for pneumonia. Compared to 
other open datasets, CCAP has more categories and has been cross- 
checked. COVID-19 patients were diagnosed as positive using RT-PCR. 
Other patients were laboratory-confirmed with no-COVID-19 VP, BP, 
and MP. Two experienced radiologists re-checked all the selected CT 
scans and images. For the second problem, we developed a multi-scale 
attention network (MSANet) that generates more discriminative fea-
tures for better classification of multiclass pneumonia. More specifically, 
the key part of MSANet is a multi-scale CNN with three spatial attention 
blocks that focus on discriminative scales and fine-grained features. For 
the third problem, we apply the multiclass focal loss to address the 
category imbalance problem. 

The remainder of this paper is organized as follows. Section 2 de-
scribes the preparation of the dataset. Section 3 describes the proposed 
methodology. In Section 4, the experiments are conducted, and the 
performance results are presented. Finally, Sections 5 and 6 present the 
discussion of the results and conclusions, respectively. 

2. Dataset 

This retrospective study was approved by the institutional review 
boards of Xiangyang Central Hospital (XCH) and Xiangyang No.1 Peo-
ple’s Hospital. Because this was a retrospective study, the requirement 
for written informed consent was waived. 

From January 1 to May 1, 2020, 206 patients, confirmed COVID-19 
positive using RT-PCR were selected, including 104 cases in XCH and 
102 cases in Xiangyang No.1 People’s Hospital. Even though a patient 
had more than one CT scan at disease progression, only one typical CT 
scan with abnormal findings was selected in this study. In addition, 566 
patients (60 non-COVID-19 VP, 160 BP, 90 MP, and 256 normal lungs) 
and their chest CT scans with laboratory-confirmed symptoms from the 
two participating hospitals between January 1, 2017, and May 1, 2020, 
were collected. The CT scanners used in the two participating hospitals 
included Optima CT520 from GE Healthcare, Brilliance iCT (128), and 
Brilliance CT (64) from Philips Healthcare. Furthermore, CT scans were 
performed with a peak voltage of 120 kVp with an automatic tube 
current (50 ~ 300mAs). CT scans were performed on all the patients in a 
thin section. 

Typically, a 3D CNN is used to process patient-level 3D CT scans. 
However, the retrospective selection of multiclass pneumonia requires 
numerous CT scans and laboratory and clinical information, which is 
difficult and time-consuming; thus, the number of collected CT scans is 
limited. As the 3D CNN contains more network parameters than 2D CNN 
and requires numerous labeled CT scans to train the parameters, the 
limited CT data can easily lead to strong overfitting for the data-hungry 
3D CNN [18,23]. In addition, previous studies have shown that 3D CNNs 
have high hardware requirements and computational costs (e.g., GPUs), 
which leads to inflexibility in applying them to clinical applications 
[24,25]. Therefore, in this study, we used the 2D CNN framework to 

make image-level classification, which is also widely used in CT imaging 
[14–17,19–21,26–28]. 

To facilitate the above objective, all collected CT scans underwent a 
preprocessing step and an image-level selection before algorithm 
training. The entire CT scans were first preprocessed by setting lung 
window parameters (window width = 1,500 Hu, window level = –600 
Hu) to increase the internal contrast of the lung. Subsequently, the entire 
image slices were extracted to 512 × 512 pixels and standardized by 
mapping the pixel values from 0 to 255. Approximately 20% of CT image 
slices without pulmonary parenchyma at the beginning and at the end of 
one CT scan were removed. Slices containing the pulmonary paren-
chyma and lesions were selected. All selected image slices were 
confirmed by two experienced radiologists. Finally, the selected CT 
scans and the corresponding image slices were randomly split into 60% 
for building the training dataset, 20% for the building validation set, and 
20% for the building test dataset. The division of the enrolled scans and 
image slices in the CCAP dataset is shown in Table 1. 

We also compared our CCAP dataset with other publicly available 
datasets (Table 2). The SARS-CoV-2 CT scan dataset is a 2D binary 
dataset collected from the hospitals of Sao Paulo, Brazil [26]. It only 
contains 2482 CT images, of which 1252 images are from 60 patients 
infected with COVID-19 and 1230 images are from 60 patients who were 
not infected with COVID-19 but had other pulmonary. The large COVID- 
19 CT scan slice dataset is another publicly available dataset proposed 
by Maftouni et al. [27]. Seven scattered CT datasets were collected and 
merged to build the dataset. It contains 7593 COVID-19 images, 2618 
CAP images, and 6893 normal images. However, some of these images 
are extracted from research papers on COVID-19 with different resolu-
tions, which may influence the training performance of the deep 
learning models. The integrative CT images and clinical features of the 
COVID-19 (iCTCF) dataset is an integrated chest CT image resource for 
the public [28]. To construct the iCTCF dataset and train the image-level 
CNN models, 4 radiologists from two hospitals manually labeled 19,685 
CT image slices in JPEG format. The China Consortium of Chest CT 
Image Investigation (CC-CCII) dataset is an open-source chest CT image 
dataset that encompasses 3 classes of COVID-19, CAP, and normal lung 
[15]. It is currently one of the largest CT datasets for COVID-19 diag-
nosis, which contains 617,775 slices of CT images from 6752 scans of 
3777 patients. However, the CC-CCII dataset contains some errors (e.g., 
damaged and disordered image slices, repeated and noisy image slices) 
that would have negative impacts on the deep learning models. In this 
study, only image slices with pneumonia lesions were selected and 
compared. The COVID-CTset dataset is a large chest CT dataset con-
taining 63,849 images from 95 COVID-19 and 282 normal patients [19], 
and the images of this dataset are 16-bit grayscale in TIFF format. 
Table 2 shows that our CCAP dataset has more pneumonia categories, 
which can be used to develop multiclass diagnostic models with higher 
clinical value. In addition, the CCAP dataset was labeled by two expe-
rienced radiologists according to the lesion features and laboratory- 
confirmed symptoms, which can help develop more accurate diag-
nostic models. The accuracies in Table 2 are discussed in section 4.4. 

3. Methodology 

The structure of MSANet, as shown in Fig. 2, consists of four mod-
ules; a lung segmentation module, a spatial pyramid decomposition 
(SPD) module, a multi-scale feature extraction (MSFE) module, and a 
classification module. Specifically, the lung segmentation module re-
ceives CT images and removes noise or irrelevant information to obtain 
pure lung areas. The SPD module was applied to generate multi-scale 
inputs with different levels of contextual information. The MSFE mod-
ule contains three CNN learners with three spatial attention blocks to 
focus on discriminable multi-scale and fine-grained features for better 
categorization. A classification module was used to obtain the final 
prediction. In summary, a raw CT image was first passed through the 
lung segmentation module to obtain pure lung areas. The SPD module 
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was then applied to produce three images with different scales. Subse-
quently, the MSFE module was used to capture discriminable features 
from multi-scale images. Finally, the classification module generated the 
predicted results. 

3.1. Lung segmentation module 

Other than lung areas, a lung CT image contains different human 
tissues (e.g., bone, kidney), part of the CT equipment, and the black 
background. If we directly feed a raw image for classification, irrelevant 
information can make the model inaccurate and unreliable. Thus, we 
annotated 206 CT images and used them to train a standard DeepLabV3 
model [29], which can quickly and precisely segment the lung area from 
the CT images and remove irrelevant parts with a mean intersection- 
over-union (MIoU) score of 0.9793 on our segmentation test set. An 
MIoU score close to 1 indicates an excellent segmentation model. Fig. 3 
shows typical CT images segmented by the lung segmentation module. 

3.2. Spatial pyramid decomposition (SPD) module 

The strategy of multi-scale observation is inspired by previous 
studies in other applications [30,31] and the clinical fact that pneu-
monia lesions exhibit key radiographic characteristics at different scales. 
If there are both small and large pneumonia lesions in a CT image, the 
detection of small lesions (low contrast) usually requires a higher res-
olution or image scale. In contrast, the detection of large lesions requires 
a smaller resolution or an image scale. Therefore, SPD was applied to 
produce multi-scale views of the CT images. 

SPD can offer a flexible, convenient, multi-resolution format that 
emulates multi-scale image processing in the human visual system [32]; 
it is widely used in the medical imaging community. Suppose a CT image 
g is represented by a 2-D array; this image is at the zero level (l = 0) of 
the pyramid, and the different levels of the pyramid are calculated as: 

gl(m, n) =
∑2

p=− 2

∑2

q=− 2
w(p, q)gl− 1(2m + p, 2n + q) (1)  

where gl is the image obtained at scale l and m and n are pixel co-

Table 1 
Characteristics of enrolled patients and images.  

Class Training set (~60%) Validation set (~20%) Test set (~20%) 

No. of patients No. of images No. of patients No. of images No. of patients No. of images 

COVID-19 123 6585 41 2067 42 2035 
non-COVID-19 VP 36 2320 12 853 12 844 
BP 96 4415 32 1707 32 1644 
MP 54 1792 18 867 18 784 
Normal 156 7298 50 2265 50 2103 
Total 465 22,410 153 7759 154 7410  

Table 2 
Comparison of CCAP dataset and other open-source datasets.  

Paper 2D/3D dataset Dataset statistics Classification statics** Format Accuracy (%)† Accuracy (%)‡

No. of patients No. of scans No. of slices COVID-19 non-COVID-19 

CAP* Normal 

VP BP MP 

[26] 2D 120 – 2482 1252 1230 PNG 97.38 97.61 
[27] 2D 1130 – 17,104 7593 2618 6893 PNG 95.31 96.18 
[28] 2D 104 – 19,685 4001 9979 JPEG 92.18 95.91 
[15] 2D/3D 3777 6752 617,775 21,872 36,894 – PNG – 92.31 
[19] 2D/3D 377 377 63,849 2282 – 9776 TIFF 98.49 98.76 
CCAP 2D/3D 772 772 37,579 10,687 4017 7766 3443 11,666 JPG –  97.46  

Fig. 2. Architecture of proposed MSANet.  
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ordinates. We set the separable kernel w(p, q) = w(p)w(q) with w =

[(1/4) − (a/4),1/4, a, 1/4, (1/4) − (a/4)] and a = 0.375 in this study. 
The SPD produces image pyramids with 3 levels (i.e., l0=512 × 512 
pixels, l1=256 × 256 pixels, andl2 = 128 × 128 pixels). If the scale is 
more than 3, the image resolution will become too small to capture the 
necessary diagnostic information [20]. Through the pyramid decom-
position of a CT image, we obtain images with different scales or reso-
lutions, which can enhance the accuracy of lesion detection [32]. 

3.3. Multi-scale feature extraction (MSFE) module 

To extract the important features related to pneumonia lesions, we 
constructed an MSFE module that contains three single-scale CNN 
learners. The SPD module decomposes a CT image at different scales, 
then the multi-scale images are fed to the corresponding CNN learners to 
extract scale-specific information (i.e., the image at l0 level is fed into the 
CNN0 learner, at l1 level is fed into the CNN1 learner, and at l2 level is 
fed into the CNN2 learner). After each CNN learner, a global average- 

pooling (GAP) layer, which can enforce correspondences between 
feature maps and categories, and avoid overfitting [33], is used to 
replace the traditional fully connected layers in CNN. Finally, a 
concatenate layer is applied to combine the outputs of GAP layers along 
a specified dimension for better feature representation [34]. Essentially, 
feeding multi-scale images to the MSFE module is equivalent to 
ensemble learning, which enables a model to recognize lesions across a 
broad range of scales for better classification. Satisfactory diagnostic 
results can be achieved without numerous labeled CT images. Extensive 
studies show that the performance of the overall classifier can be 
improved if the CNNs in the ensemble model have different learning 
preferences [35]. The MSFE module with varying input scales met this 
requirement. 

The three CNN learners have the same structure and different input 
sizes. Each CNN learner contains a backbone network and spatial 
attention block. The backbone network of CNN learners plays a vital role 
in determining the performance of pneumonia lesion classification. In 
this study, several state-of-the-art CNN architectures were compared, 

Fig. 3. Typical CT images segmented by lung segmentation module: (a) COVID-19, (b) non-COVID-19 VP, (c) BP, (d) MP, (e) Normal.  
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and the best one was selected as the backbone network. The strategy of 
using the attention mechanism is the clinical fact that multiple types of 
pneumonia exhibit inter-lesion similarities and huge intra-lesion dif-
ferences, which make it difficult for CNNs to find discriminative fea-
tures. Instead of analyzing the entire CT image, experienced radiologists 
generally assess the diagnosis results by viewing the salient areas. This 
attention mechanism is developed throughout human evolution, which 
gradually improves the efficiency and precision of visual information 
processing [36]. The attention mechanism was successfully applied to 
CNNs to analyze generic images [37,38] and medical images [39,40]. 
Inspired by the attention mechanism and imitating the radiologists’ 
diagnostic process, a novel spatial attention block is proposed, which 
can locate the discriminative regions from the input feature maps to 
achieve powerful classification models. In addition, it can be combined 
with any CNN backbone to construct a CNN learner. 

Fig. 4 shows the proposed spatial attention. A feature map F ∈

RC×H×W is given as the output of the backbone network in one CNN 
learner, where H × W is the size of the feature map and C denotes the 
channels. To calculate the spatial attention features FSA ∈ RC×H×W, we 
first apply a 1 × 1 convolutional layer with parameters W1

SB on F to yield 
per-channel attentive maps. A rectified linear unit (ReLU) function was 
used to increase the nonlinear modeling ability. Thus, the second 1 × 1 
convolutional layer with parameters W2

SB was used to squeeze the 
attentive maps. Subsequently, the sigmoid function was applied to 
normalize the attentive map. Finally, element-wise multiplication was 
performed to obtain the final spatial attention features. The process can 
be formulated as: 

FSB = σ(Conv2(δ(Conv2(F) ) ) ) ⊗ F
= σ

(
W2

SB

(
δ
(
W1

SBF
) ) )

⊗ F
(2)  

where W1
SB ∈ RC×C×1×1 and W2

SB ∈ R1×1. σ and δ denote the sigmoid and 
ReLU functions, respectively. Conv2 represents the 1 × 1 convolutional 
layer, and ⊗ denotes element-wise multiplication. In summary, high- 
level feature maps are first passed through a 1 × 1 convolutional layer 
and a ReLU function. Subsequently, the second 1 × 1 convolutional 
layer and a sigmoid function are applied to produce the attentive map. 
Finally, element-wise multiplication is performed on the original feature 
maps and the attentive map to obtain the final spatial attention features. 
With the spatial attention block, the representational power of the CNN 
learners and the MSFE module is enhanced by adaptively focusing on 
salient parts and reducing the influence of redundant information. 

3.4. Classification module 

The classification module is a three-layer, fully connected network. 
The first layer is fully connected with 512 nodes, together with a ReLU 
function, which is used to improve the capability of nonlinear modeling. 
The second layer is a dropout layer with a probability of 0.25. It is used 
in increasing the generalization and control of overfitting [41]. Finally, a 

new fully-connected layer with 5 output nodes together with a ‘softmax’ 
function is appended to generate 5 continuous numbers between 0 and 
1, which indicates the probability of each category; the sum of the 
probabilities of all outputs equals 1. 

3.5. Multiclass focal loss 

Although the parameters of the MSANet can be easily trained end-to- 
end by back-propagating the gradients of the classification loss, we still 
need to pay attention to choosing an appropriate loss function to address 
the category imbalance problem. As shown in Table 1, our CCAP dataset 
was imbalanced. The imbalance of the dataset biases the classification 
results to the majority class, resulting in poor detection of minority ones 
[42]. To overcome this problem, a multiclass focal loss function is used 
to train the CNNs. The focal loss was originally designed to handle class 
imbalance for binary classification in object detection tasks, and we 
modified and extended it to handle multiclass image classification 
problems in this study [43]. 

The focal loss function makes the loss indirectly focuses on chal-
lenging classes and down-weights well-classified examples, which is 
more computationally efficient in addressing the imbalanced issue [43]. 
To introduce multiclass focal loss, we first introduce the cross-entropy 
loss function [44] for multiclass classification. The conventional cross- 
entropy loss (L CE) is given as: 

L CE = −
∑M

i=1
tilog(yi) (3)  

where M is the number of classes and yi represents the predicted prob-
ability. ti is the real probability distribution, ti = 1 when i belongs to the 
true label; otherwise it is 0. L CE provides equal weights for classifica-
tion errors of all classes, which will lead to incorrect classification of the 
minority class. Our dataset has 5 categories, and each category is 
imbalanced; thus, we use the multiclass focal loss to handle this 
imbalanced problem, which can be formulated as: 

L MFL = −
∑M

i=1
(1 − yi)

γtilog(yi) (4)  

where 
(
1 − yi

)γ is a modulating factor with a tunable focusing parameter 
γ⩾0 for the cross-entropy loss. Intuitively, hard samples are those with 
large errors, and the model classifies samples with high probability. 
When the modulation factor is applied, the loss contribution from 
challenging samples is increased, this is how the multiclass focal loss 
handles the imbalanced issue. When γ = 0, the multiclass focal loss is 
equivalent to the cross-entropy loss. In this study, we set γ = 2 according 
to the experimental results in [43], which performs the best in handling 
the category imbalance problem. 

Fig. 4. Architecture of proposed spatial attention block.  
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4. Experiments and results 

4.1. Evaluation metrics 

To evaluate the performance of the proposed methods, according to 
the 5-class confusion matrix, which is used to check any confusion be-
tween two classes [45], the values of accuracy, recall, precision, and F1- 
score are employed. The formulas of these evaluation metrics are shown 
in Table 3, where TP, FP, TN, and FN refer to the numbers of true pos-
itives, false positives, true negatives and false negatives, respectively. 
Recall measures the proportion of positives correctly predicted, preci-
sion evaluates the precision of a model in predicting positive labels, and 
F1-score is the harmonic average of precision and recall [46]. In addi-
tion, the macro-average AUC was used to assess the overall performance. 
When there is an uneven class distribution, the AUC is a more appro-
priate statistic. In reality, the value of AUC fluctuates between 0.5 and 1, 
with a value near 1 indicating a good classifier [43]. 

4.2. Effect of multiclass focal loss towards classification 

The classification results obtained by the conventional cross-entropy 
loss and multiclass focal loss are compared to demonstrate their effec-
tiveness. For quick verification, we designed a single-scale classifier as 
the baseline model. The baseline model is constructed using a CNN1 
learner with ResNet101 as the backbone; subsequently, a GAP layer is 
added. After the GAP layer, the classification module in MSANet fol-
lowed. The weights of ResNet101 were initialized using the weights pre- 
trained on the ImageNet dataset [47]. The input size is 256 × 256, and 
the evaluation indexes are precision, recall, and F1-score of each cate-
gory. A total of 7410 test CT images, including 2035 COVID-19 images, 
844 non-COVID-19 VP images, 1644 BP images, 784 MP images, and 
2103 normal images were used for evaluation. The training process was 
executed based on a mini-batch size of 8 using the Adam optimizer with 
an initial learning rate of 0.0003 for 20 epochs. We used the Keras 
(https://keras.io/) library on the Tensorflow backend to develop and 
run the CNNs on an Intel i7 CPU with a GeForce RTX 2080Ti GPU 
personal computer. 

In our CCAP dataset, the number of non-COVID-19 VPs and MPs was 
relatively small compared with other categories. Table 4 shows that the 
multiclass focal loss improves the class-wise precision of non-COVID-19 
VP from 63.39% to 66.44%, recall from 38.98% to 68.96%, F1-score 
from 48.28% to 67.67%, and AUC from 0.9204 to 0.9591 as compared 
with the conventional cross-entropy loss. For MP and other types of 
pneumonia, most evaluation metrics can achieve a certain degree of 
improvement when using multiclass focal loss. Hence, the multiclass 
focal loss can improve the diagnostic performance of the minority 
classes without influencing the diagnostic performance of the majority 
classes; thus, the method of multiclass focal loss is applied to train the 
models in the following section, and all models are trained using the 
same hyperparameters to provide a fair comparison. 

4.3. Selection of backbone networks 

Although the major contribution of the proposed MSANet is the use 
of a multi-scale strategy and attention mechanism, the backbone 

network in CNN learners also significantly influences the performance of 
the pneumonia categorization. Thus, in addition to ResNet101 as the 
backbone discussed in Section 4.2, several state-of-the-art CNN archi-
tectures were also compared. In this experiment, we alternately used 
pre-trained Xception [48], VGG16 [49], InceptionV3 [50], MobileNetV2 
[51], DenseNet121 [52], and EfficientNetB0 [53] to replace ResNet101 
in the baseline model. Table 5 shows that EfficientNetB0 as the back-
bone achieves the best accuracy and the average precision, recall, F1- 
score, accuracy and macro-average AUC are 92.03%, 90.07%, 90.86%, 
93.44%, and 0.9887, respectively. Therefore, in this study, Effi-
cientNetB0 was selected as the backbone network to build the CNN 
learners and MSANet. 

4.4. Performance of proposed MSANet 

Three single-scale CNN learners equipped with EfficientNetB0 as the 
backbone were designed to individually classify pneumonia, and they 
were compared with the proposed MSANet. In addition, to verify the 
effectiveness of the spatial attention block, we compared the perfor-
mance of CNNs with and without spatial attention blocks. Furthermore, 
we analyzed the complexity of the models from the perspective of 
training time and test time. The performance scores, training times, and 
test times are listed in Table 6. 

Table 6 reveals that CNN0 learner with input sizes of 512 × 512 
achieved average precision, recall, F1-score, accuracy, macro-average 
AUC, training time, and test time of 94.78%, 92.80%, 93.64%, 
95.51%, 0.9975, 26664 s, and 569 s, respectively. For CNN1 learner 
with an input size of 256 × 256, the average precision, recall, F1-score, 
accuracy, macro-average AUC, training time, and test time were 
92.03%, 90.07%, 90.86%, 93.44%, 0.9887,7546 s, and 169 s, respec-
tively. For CNN2 learner with an input size of 128 × 128, the average 
precision, recall, F1-score, accuracy, macro-average AUC, training time, 
and test time were 83.04%, 79.92%, 81.16%, 84.94%, 0.9671, 3806 s, 

Table 3 
Evaluation metrics.  

Metrics Calculation equations 

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN  
Recall Recall =

TP
TP + FN  

Precision Precision =
TP

TP + FN  
F1-score F1 − score =

2 × Precision × Recall
Precision + Recall   

Table 4 
Effect of loss function on class-wise performance.  

Method class Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

AUC 

CNN1 learner 
with L CE  

COVID-19  94.29  91.74  93.00  0.9934 
non-COVID- 
19 VP  

63.39  38.98  48.28  0.9204 

BP  75.23  93.31  83.30  0.9827 
MP  91.95  72.83  81.28  0.9842 
Normal  89.56  95.86  92.60  0.9945 

CNN1 learner 
with L MFL  

COVID-19  94.62  94.20  94.20  0.9962 
non-COVID- 
19 VP  

66.44  68.96  67.67  0.9591 

BP  88.12  89.29  88.70  0.9898 
MP  86.52  72.83  79.09  0.9831 
Normal  90.33  93.72  92.00  0.9898 

Note: CNN1 learner is ResNet101 as the backbone with an input size of 256 ×
256. L CE denotes conventional cross-entropy loss. L MFL denotes multi-class 
focal loss. 

Table 5 
Comparison of different backbone networks.  

Backbone 
network 

Precision 
(%) 

Recall 
(%) 

F1- 
score 
(%) 

Accuracy 
(%) 

macro- 
average 
AUC 

Baseline 
(ResNet101)  

85.20  83.80  84.37  87.84  0.9837 

Xception  90.13  88.64  89.24  91.73  0.9907 
VGG16  73.58  72.00  72.11  76.83  0.9264 
InceptionV3  90.61  89.60  90.03  92.05  0.9849 
MobileNetV2  88.08  87.24  87.44  90.97  0.9898 
DenseNet121  91.39  88.67  89.71  92.54  0.9907 
EfficientNetB0  92.03  90.07  90.86  93.44  0.9887 

Note: Bold denotes the best. 
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and 96 s, respectively. The experimental results demonstrate that the 
CNN0 learner with an input size of 512 × 512 obtains the best accuracy 
among the three single-scale CNN learners. This is because high- 
resolution images provide more detailed information and microscopic 
features of pneumonia lesions. High resolution also means that it takes 
more time to extract features. Compared with the CNN0 learner, the 
CNN1 learner showed lower performance and shorter training and test 

times, and the CNN2 learner achieved the shortest training and test 
times; however, its performance was the worst. This is because the 
resolution and details of the image decrease with an increase in the scale 
number. When the three single-scale CNNs were integrated to obtain the 
MSANet, the average precision, recall, F1-score, and accuracy of the 
MSANet were better than those of the single-scale CNN learners. How-
ever, the training and test times were all the longest. This is because the 

Table 6 
Details and average performance of the proposed methods on the test dataset.  

Model Precision (%) Recall (%) F1-score (%) Accuracy (%) macro-average AUC Training time* (s) Test time** (s) 

CNN0  94.78  92.80  93.64  95.51  0.9975 26,664 569 
CNN0 without SAB  93.67  92.89  93.21  95.53  0.9971 25,806 508 
CNN1  92.03  90.07  90.86  93.44  0.9887 7546 169 
CNN1 without SAB  91.87  88.83  90.08  93.06  0.9901 7040 161 
CNN2  83.04  79.92  81.16  84.94  0.9671 3806 96 
CNN2 without SAB  82.75  80.11  81.18  84.25  0.9636 3542 91 
MSANet  97.31  96.18  96.71  97.46  0.9981 39,727 917 
MSANet without SABs  95.28  92.58  93.69  95.60  0.9970 37,599 832 

Note: SAB denotes spatial attention block. Bold means the best. *Training time refers to the total time spent for training 20 epochs on the training set and verification 
set in Table 1. **Test time represents the total time spent for judging 7410 test images in Table 1. 

Fig. 5. Confusion matrices of different CNN configurations: (a) Confusion matrix of CNN0 learner, (b) Confusion matrix of CNN1 learner, (c) Confusion matrix of 
CNN2 learner, (d) Confusion matrix of MSANet. 
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proposed MSANet can capture the inter-scale variability of the pneu-
monia lesions, which results in better classification accuracy, whereas 
the ensemble of multiple single-scale CNNs in the MSANet also requires 
more computation and consumes more time. Table 6 also shows that 
when spatial attention blocks are removed from the three single-scale 
CNN learners, the values of the evaluation metrics, the training time, 
and the test time are all slightly decreased, which demonstrated that the 
spatial attention blocks can indeed enhance the feature extraction 
capability of the CNN, and it also proves the “No Free Lunch Theorem” 
[54]. In this study, although MSANet is more complex and requires 
consumes more computation than other single-scale CNN models, its 
diagnostic performance is the best. Because we need to accurately di-
agnose each pneumonia patient, especially during the epidemic, MSA-
Net is applied to diagnose multiple types of pneumonia. In addition, the 
diagnosis time of MSANet is 0.12 s per image, whereas experienced 
radiologists require an average of 6 s per image, which shows that the 
proposed MSANet can significantly improve the diagnosis time for 
pneumonia identification. 

Fig. 5(a)-(d) present the image-level confusion matrices of the three 
single-scale CNN learners and the proposed MSANet, respectively. For 
the three single-scale CNN learners, there are more cases for them to 
misclassify non-COVID-19 VP as COVID-19, this situation also appears 
in identifying MP as non-COVID-19 VP, this is because COVID-19, non- 
COVID-19 VP and MP share some common radiological characteristics 
which are difficult to distinguish. When combining multi-scale CNN 
learners into the proposed MSANet, these mistakes are significantly 
reduced, and there are only a few misclassifications. However, radiol-
ogists also have certain error rates [16]. Fig. 6 presents the ROC curves 
and AUCs of MSANet. In terms of AUC, the ideal value is 1. The AUC 
values also revealed that the proposed MSANet can accurately distin-
guish between various types of pneumonia. 

Comparative experiments on other publicly available datasets were 
conducted to prove the efficiency of the proposed MSANet. Different 
datasets contain different categories: some are binary and some are 
ternary datasets. Accordingly, the accuracy, which is also applied to 
evaluate the deep learning models on all the related datasets 
[19,26–28], was selected as the evaluation index. All experiments were 
evaluated on 2D image-level slices in which the pulmonary parenchyma 
could be captured for judgment. The comparative results in Table 2 
show that MSANet can achieve higher accuracy than the existing 
studies, especially on the iCTCF dataset, which again proves the effec-
tiveness of MSANet. To further prove the generalization of the proposed 
MSANet, we evaluated its performance on unseen data collected from 
more patients and sources. The unseen dataset contains 5 COVID-19 
scans (253 images), 3 VP scans (281 images), 4 BP scans (172 im-
ages), 3 MP scans (127 images), and 6 normal scans (323 images). All 

903 non-COVID-19 CT images were acquired from patients who visited 
the Radiology Center of XCH from May 2021 to June 2021. The 253 
COVID-19 images were selected from the CC-CCII dataset [15], as no 
COVID-19 cases have recently appeared in XCH. The selection criteria 
for images in the unseen dataset were the same as the training data. For 
MSANet at slice level analysis on the unseen dataset, the average pre-
cision, recall, F1-score, accuracy, macro-average AUC, and diagnostic 
time were 94.90%, 93.61%, 93.98%, 96.18%, 0.9921, and 143 s, 
respectively. The diagnostic results show that the proposed MSANet can 
also achieve satisfactory diagnostic performance on unseen data, which 
shows that the system can significantly assist physicians and radiologists 
in the decision-making process. 

5. Discussion 

The outbreak of COVID-19 pneumonia poses a real threat to all 
countries and leads to innumerable casualties. Early diagnosis and 
timely treatment can alleviate the spread of the epidemic and decrease 
mortality [3]. Thus, automatic screening of multiple types of pneumonia 
and differentiation of COVID-19 pneumonia from non-COVID-19 VP, 
BP, MP, and healthy lung on chest CT could significantly reduce the 
effort of the radiologist and accelerate the diagnosis process. However, 
the manual identification of these types of pneumonia from chest CT is 
time-consuming and often reduces interobserver variability. 

Several artificial intelligence systems, especially deep learning al-
gorithms with CNNs, have been developed to save the effort of the ra-
diologists and accelerate the diagnosis process in this pandemic. While 
existing studies mostly focus on binary or ternary classification, a system 
for multiclass pneumonia detection has not yet been developed, which is 
more important for clinical diagnosis. In addition, to achieve high 
diagnostic accuracy, existing deep learning methods usually use massive 
CT data to train deep networks [14–19]. However, the acquisition of a 
large amount of well-annotated CT data is laborious and tedious for 
radiologists. Driven by the desire to develop a high-quality diagnostic 
system for multiple types of pneumonia, an MSANet was developed to 
reduce the demand for CT images by effectively exploiting the multi-
scale features and location characteristics of lesions in CT images. The 
MSFE module is the key component of MSANet, and it contains three 
CNN learners equipped with three spatial attention blocks, which focus 
on the lesion areas to acquire more detailed fine-grained information. 
Moreover, the MSFE module can accept images of different scales 
simultaneously to capture multiscale features, which is also a key 
radiologic marker to distinguish among the different types of pneu-
monia. Owning to the imbalanced property of the chest CT dataset for 
multiple types of pneumonia, the multiclass focal loss is used to solve 
this problem. The experimental results show that the proposed approach 
is feasible. MSANet can achieve better performance than any single- 
scale CNN. The MSANe with EfficientNetB0 as the backbone network 
achieved the best precision (97.31%), recall (96.18%), F1-score 
(96.71%), accuracy (97.46%), and macro-average AUC (0.9981) in 
distinguishing multiclass pneumonia. 

This study also has some limitations. (1) Although our MSANet 
works well on the test dataset, it still needs to be tested on more datasets 
from other hospitals to prove its generalization. (2) For real clinical 
scenarios, multiple types of pneumonia can be found in one patient; for 
example, non-COVID-19 VP and BP may concurrently occur in one pa-
tient. A solution for joint detection (i.e., multilabel classification) should 
be considered in the future. (3) The MSANet is an image-level solution, 
which makes 2D image-level predictions and ignores the inherent spatial 
coherence of each CT image. A volume-level solution takes 3D CT scans 
(such as videos) as input and uses a 3D CNN to exploit volume-level 
information of CT scans, which can perform better than 2D CNN, 
although this requires numerous CT scans to train the 3D CNN. The 
collection of a large amount of CT data and the design of an efficient 3D 
CNN model are also our future study objectives. 

Fig. 6. ROC curves and AUCs obtained using MSANet.  
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6. Conclusions 

In this study, a novel MSANet was successfully developed for the 
automatic differentiation of multiple types of lung pneumonia (i.e., 
COVID-19, non-COVID-19 VP, BP, MP, and normal lung) from CT im-
ages. The main contributions of this study are summarized as follows: 
(1) Multicentre and multiclass pneumonia CT dataset was constructed 
and published. The published multiclass dataset is beneficial for clinical 
applications and promotes research on AI diagnosis of COVID-19 and 
pneumonia. (2) For the screening problem of multiple types of pneu-
monia, this is the first study to propose an MSANet based on advanced 
deep learning techniques and endow it with the ability to capture 
multiscale features and fine-grade characteristics of different pneu-
monia lesions. (3) A spatial attention block is proposed to effectively 
focus on the salient parts and fine-grained characteristics of the CT 
image. (4) A multiclass focal loss is designed to better handle the data 
imbalance problem. Comprehensive experiments show that the pro-
posed MSANet can obtain excellent diagnostic accuracy for a few CT 
images. It is believed that the proposed MSANet can significantly assist 
in clinical applications. 
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