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Abstract

Background: Enterococcus faecalis is one of the leading causes of nosocomial infections. Due to its innate and acquired
resistance to most antibiotics, identification of new targets for antimicrobial treatment of E. faecalis is a high priority. The
multiple peptide resistance factor MprF, which was first described in Staphylococcus aureus, modifies phosphatidylglycerol
with lysin and reduces the negative charge of the membrane, thus increasing resistance to cationic antimicrobial peptides.
We studied the effect of mprF in E. faecalis regarding influence on bacterial physiology and virulence.

Results: Two putative mprF paralogs (mprF1 and mprF2) were identified in E. faecalis by BLAST search using the well-
described S. aureus gene as a lead. Two deletion mutants in E. faecalis 12030 were created by homologous recombination.
Analysis of both mutants by thin-layer chromatography showed that inactivation of mprF2 abolishes the synthesis of three
distinct amino-phosphatidylglycerols (PGs). In contrast, deletion of mprF1 did not interfere with the biosynthesis of amino-
PG. Inactivation of mprF2 increased susceptibility against several antimicrobial peptides and resulted in a 42% increased
biofilm formation compared to wild-type mprF. However, resistance to opsonic killing was increased in the mutant, while
virulence in a mouse bacteremia model was unchanged.

Conclusion: Our data suggest that only mprF2 is involved in the aminoacylation of PG in enterococci, and is probably
responsible for synthesis of Lys-PG, Ala-PG, and Arg-PG, while mprF1 does not seem to have a role in aminoacylation. As in
other Gram-positive pathogens, aminoacylation through MprF2 increases resistance against cationic antimicrobial peptides.
Unlike mprF found in other bacteria, mprF2 does not seem to be a major virulence factor in enterococci.
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Introduction

Enterococcus faecalis is part of the normal flora in the gastro-

intestinal tract of humans and animals. Some strains have been

used as probiotics, whereas others are the cause of serious and

sometimes life-threatening infections [1,2]. Due to its innate and

acquired resistance to most clinically used antibiotics, treatment of

serious infections by enterococci is often limited in effect and

sometimes impossible [3].

The main lipid constituents of bacterial membranes are

phospholipids. The two major bacterial phospholipids are

phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG).

Their head groups are negatively charged, thereby imparting

anionic properties to the membrane surface. Many bacteria can

modify negatively charged lipids with positively charged substit-

uents, such as lysine, to form lysyl-phosphatidylglycerol (Lys-PG),

reducing the negative net charge of the membrane surface. Lys-

PG is synthesized by the integral membrane protein MprF, which

transfers a lysyl group from lysyl-tRNA to PG and subsequently

translocates Lys-PG from the inner to the outer leaflet of the

cytoplasmic membrane [4]. The reduced negative net charge of

the cell membrane leads to the repulsion of cationic peptides,

decreasing the sensitivity against these peptides [5]. In addition,

this mechanism also bestows S. aureus with resistance to cationic

antibiotics such as daptomycin, vancomycin [6], and gentamicin

[7]. Furthermore, MprF is also considered a virulence factor, since

it allows bacteria to evade neutrophil killing and enhances the

virulence of S. aureus in mice [8].

In addition to S. aureus, the mprF gene is also present in the

genomes of several other clinically important pathogens, such as

Mycobacterium tuberculosis, Pseudomonas aeroginosa, Listeria monocytogenes,

and E. faecalis [9]. Two putative mprF genes were found in E.

faecalis, Enterococcus faecium, and several other gram-positive species

[10].

In the present study, we used targeted mutagenesis to inactivate

the two mprF paralogs in E. faecalis to characterize the resulting

changes in cell wall lipids and to investigate the contribution of

phosphatidylglycerol aminoacylation to resistance, biofilm forma-

tion, and virulence.
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Results

Identification and Sequence Analysis of Two mprF
Paralogs in E. faecalis

Blast-search analysis of the genome sequences of E. faecalis

V583 [11] and E. faecalis 12030 (unpublished results) identified

genes with significant homology in these two organisms: EF_0031

and EF_1027, sharing 24% and 31% amino-acid identity

(respectively) with the mprF gene of S. aureus (accession number

ADJ67256.1). According to homologies with genes characterized

by Roy and Ibba, we provisionally named these two genes mprF1

(EF_0031) and mprF2 (EF_1027) [9,10]. The MprF protein of S.

aureus consists of two functional domains [4]. The hydrophilic C-

terminus demonstrates aminoacyl phosphatidylglycerol (PG)-

synthase activity, and the hydrophobic N-terminus functions as

a flippase, transferring aminoacyl-PG from the inner to the outer

leaflet of the cell membrane. The homology of the two domains

in S. aureus with the two mprF genes in E. faecalis 12030 was

assessed: The N-terminal part (corresponding to the flippase) of

mprF1 and mprF2 shows 24% and 31% identity with S. aureus,

respectively. The C-terminus (synthase) of mprF1 and mprF2

demonstrates 29% and 40% identity (respectively) with the

synthase of the S. aureus gene.

Growth Kinetics
The mutants 12030DmprF1, 12030DmprF2, and the respective

complemented strains were no different than the wild-type (WT)

regarding growth kinetics in broth culture (data not shown).

Only Deletion of mprF2 Leads to Complete Loss of
Amino-phospholipids

To confirm whether these two putative enterococcal mprF genes

function similarly to the mprF of S. aureus, we compared the

membrane lipid composition of the wild-type and mutant strains

by two-dimensional thin-layer chromatography (2D-TLC). Four

prominent ninhydrin-positive spots present in the wild-type were

completely absent from the mprF2 mutant, but reappeared upon

complementation by knocking-in of the wild-type allele into the

chromosome of the mutant, and by expression of mprF2 in trans on

plasmid pMSP3535::mprF2 (see Figure 1). All spots mentioned

above (A–D) were stained with molybdenum blue and ninhydrin,

indicating that they represent amino-phospholipids. In E. faecalis,

PG is usually acylated by two molecules of Lysin [12,13]. Spots A

and B migrate similarly to the two Lys-PG spots identified by

Peschel and colleagues [8]. Spots C and D migrate similarly to

Arg-PG [10] and Ala-PG [9], respectively. Deletion of mprF1 did

not seem to have an effect on amino-phospholipids, because in the

deletion mutant 12030DmprF1, all spots were identical to the wild

type.

mprF2 is Involved in Resistance Against Antimicrobial
Peptides

The absence of Lys-PG from the membrane of S. aureus

decreased the minimal inhibitory concentration (MIC) of certain

cationic antimicrobial peptides (CAMP) [8]. The cationic antimi-

crobial peptides (CAMP) colistin, nisin, HBD-3, and polymyxin B

were tested against the parental strain E. faecalis 12030 and its

isogenic mutants. As shown in Table 1, 12030DmprF2 showed a 2-

fold decreased MIC against colistin, a 4-fold decreased MIC

against polymyxin B and nisin, and a .4-fold decreased MIC

against HBD-3 compared to the wild-type strain. Complementa-

tion of mprF2 (12030DmprF2 knock-in) completely restored the

wild-type phenotype. In contrast, no difference in the sensitivity of

the deletion mutant 12030DmprF1 and the tested CAMPs was

noted. E-test showed that the E. faecalis wild-type strain and

mutants tested in this study were not significantly different in their

sensitivity to daptomycin. The MICs of E. faecalis 12030,

12030DmprF1, 12030DmprF2, and 12030DmprF2 CM (knock-in),

were 0.19 mg/l, 0.25 mg/l, 0.25 mg/l, and 0.25 mg/l, respec-

tively.

MprF2 is Involved in Biofilm Formation and eDNA
Release

We showed previously that lack of D-alanine esters on teichoic

acids leads to a decrease in biofilm formation, probably due to

the increase in net charge of the bacterial cell surface [14].

Inactivation of MprF2 is predicted to increase the net negative

charge on bacterial cells. We compared biofilm formation on

polystyrene surfaces by the wild-type strain 12030 and its

isogenic mutants, 12030DmprF2 CM (knock-in) and

12030DmprF2 p3535::mprF2. Surprisingly, the mutant

12030DmprF2 produced significantly more biofilm than the wild

type. Complementation by knock-in of mprF2 (12030DmprF2 CM

knock-in) decreased the production of biofilm below wild-type

levels, while biofilm production after complementation with a

plasmid in trans (without induction by nisin) did not differ from

the wild-type strain. The deletion mutant 12030DmprF1 and the

wild type produced similar amounts of biofilm (Figure 2). As

shown in Figure 3 mutant 12030DmprF2 released significantly

more eDNA than the wild type and the mutant 12030DmprF1.

The strain complemented by knock-in (12030DmprF2 CM)

produced significantly less eDNA biofilm than the wild type,

while the mutant complemented by plasmid partially restored

eDNA levels compared to the wild type.

Triton X-100-induced Autolysis
Mechanisms affecting the modification of the membrane net

charge of the peptidoglycan structure may play a role in the

modulation of autolysin activity and thus may have an impact on

bacterial autolysis. Therefore we evaluated the effect of autolysis

by Triton-X100 on E. faecalis 12030DmprF2 and the wild-type

strain. No significant difference was found between them (data not

shown), suggesting that mprF2 has no obvious effect on autolysis in

E. faecalis.

The mprF2 Mutant is More Resistant to
Opsonophagocytic Killing than the Wild-type Strain

Opsonophagocytic killing of E. faecalis 12030 wild-type and

mutant 12030DmprF2 was compared using log-phase-grown

bacteria that were opsonized with rabbit complement in

conjunction with antibodies against E. faecalis LTA [15].

Subsequently, numbers of surviving bacteria were determined.

The mprF2 mutant was killed significantly less than the wild

type, and complementation by knock-in partially restored the

killing to wild-type levels (Fig. 4). Opsonophagocytic killing in

the presence of PMNs and complement alone did not differ

between 12030DmprF2 and the wild-type strain (data not

shown).

Mouse Bacteremia Model
Virulence of the mprF2 mutant was assessed in a mouse

bacteremia model as described previously [16]. The number of

bacteria recovered from the liver, kidney, and spleen of mice

infected with the mprF2 mutant was not significantly different

from those recovered from animals infected with wild-type

(Figure 5).

mprF in E. faecalis
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Discussion

Bacteria modulate the electrostatic properties of their cell

envelope to protect themselves against the innate defense systems

of the host, especially antimicrobial peptides [5]. Two different

mechanisms that reduce the negative net charge of the bacterial

cell wall have been identified. The first is modification of teichoic

acid with D-alanine through the dlt operon (dltABCD) [17].

Inactivation of genes within this operon causes complete absence

or reduction of teichoic acid D-alanine esters. This results in a

higher negative net charge on the bacterial surface, because D-

alanine esters neutralize the negative charge of teichoic acids [14].

The second charge-reducing mechanism is modification of

membrane lipid phosphatidylglycerol (PG) with positively or

neutrally charged amino-groups by mprF(multiple peptides resis-

tance factor) [8], sometimes also described as aminoacylpho-

sphatidylglycerol synthases (aaPGSs) [10].

The earliest report described the modification of PG with lysine

in S. aureus [8]. However, It has long been known that certain

bacteria produce Ala-PG (e.g., Pseudomonas aeroginosa [18]) instead

of Lys-PG, while others produce both Lys-PG and Ala-PG (e.g.,

Clostridium perfringens, Bacillus subtilis, and Enterococcus faecium; Roy &

Ibba 2009 [19]). Although Ala-PG has a neutral net charge, this

modification has been demonstrated to increase bacterial resis-

tance to certain CAMPs [18]. These observations suggest that

mprF-mediated CAMPs resistance not only decreases the charge of

the membrane but probably also modulates some biophysical

properties of the membrane, such as fluidity and permeability

[20].

The presence of two putative mprF paralogs in E. faecium DO

was previously reported by Roy and Ibba [9,10], and we

confirmed this finding using translated BLAST (tblastn) of the

well-characterized mprF gene of S. aureus against the genome of

E. faecalis 12030 [21] and V583 [11]. Two genes were identified,

with one (EF_1027) showing a higher homology than the other

(EF_0031). Comparing these two putative mprF genes with the two

Figure 1. Lipid analysis of the wild-type and its mutants by two dimensional thin-layer chromatography. Cell membrane total lipid
extracts from E. faecalis 12030 (wild type), 12030DmprF1 (EF_0031), 12030DmprF2 (EF_1027), 12030DmprF2 CM (knock-in complementation),
12030DmprF2 p3535::mprF2. Lipids were separated using a solvent system of CHCl3/MeOH/H2O(65:15:2, v/v/v) in the first dimension, and CHCl3/
MeOH/Acetic acid/H2O (80/12/15/4, v/v/v) in the second dimension. Aminophospholipids were visualized with molybdenum stain solution, 12030
(wild-type) was also stained with ninhydrin. PG – phosphatidylgylcerol, DPG – diphosphaditylglyerol, DGlcDAG – diglycosyldiacylglycerol. MGlcDAG –
monoglycosyldiacylglycerol.
doi:10.1371/journal.pone.0038458.g001

Table 1. Activities of cationic antimicrobial peptides against
the E. faecalis 12030 wild type, the deletion mutants and the
complemented strain.

Strains Minimal inhibotory concentration (mg/ml)

Colistin Polymyxin BNisin HBD-3

E. faecalis 12030 4096 1024 4 .512

E. faecalis 12030 DmprF1 4096 1024 4 .512

E. faecalis 12030 DmprF2 2048 256 1 128

E. faecalis 12030 DmprF2
CM

4096 1024 4 .512

doi:10.1371/journal.pone.0038458.t001

mprF in E. faecalis
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aaPGs described by Roy and Ibba [10] showed that mprF1

(EF_0031) and mprF2 (EF_1027) share 57% and 62% identities of

amino acids with the sequences of aaPGs1 and aaPGs2,

respectively.

Lipid analysis of the deletion mutants in genes mprF1 and mprF2

in E. faecalis 12030 indicated that mutant DmprF2 lacks aminoacyl

phosphatidylglycerol, whereas no difference in lipid composition

was seen between the mutant DmprF1 and the wild type. To

confirm these findings, we analyzed the composition of phospho-

lipids of insertion mutants of mprF1 and mprF2 in a second strain,

E. faecalis V583. Insertional inactivation of these genes in E. faecalis

V583 produced the same phenotype and aminophospholipid

patterns as noted for E. faecalis 12030 (data not shown). Therefore,

we assume that mprF1 (EF_0031) is not involved in the

aminoacylatylation of PG, while mprF2 (EF_1027) seems to be

the only functional mprF gene in E. faecalis.

Roy and Ibba studied the aminoacylation of recombinantly

expressed MprF1 and MprF2 from Clostridium perfringens in E. coli.

They found that MprF1 was specific for Ala-PG, while only

membrane extracts of E. coli expressing MprF2 were able to

aminoacylate PG with Lys [9]. They also found that aaPGS1 from

E. faecium DO (corresponding to MprF1) cannot use Lys-tRNALys

and Arg-tRNA Arg as aminoacyl group donors; however, results for

Ala-PG were not reported. Using aaPGS2 of E. faecium and Lys-

tRNALys, Ala-tRNAAla, and Arg-tRNA Arg as donors, the final

products Lys-PG, Ala-PG, and Arg-PG could be isolated from the

of E. coli membranes [10].

Similar to previous reports [4], in E. faecalis 12030 we found that

deletion of both mprF genes has no effect on growth (data not

shown). Also similar to previously published results in S. aureus and

other species, we found that the mutant 12030DmprF2 (EF_1027)

Figure 2. Biofilm production of the wild type and its derivate
mutants. E. faecalis 12030, mutants 12030DmprF21 and 12030DmprF2
and complemented strains 12030DmprF2 CM and 12030DmprF2
P3535::mprF2 were cultivated in TSB media supplemented with 1%
glucose. Bacteria were incubated for 18 h, unbound cells were removed
by washing of the plates with buffer, and biofilm was stained with
crystal violet. Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0038458.g002

Figure 3. Measurement of eDNA in biofilms. All strains (12030,
12030DmprF1, 12030DmprF2, 12030DmprF2 CM, 12030DmprF2
pMSP3535::mprF2) were cultivated overnight in TSB at 37uC and
measured with excitation wavelength at 485 nm and emission
wavelength at 535 nm. *indicates statistical significance at p,0.05.
doi:10.1371/journal.pone.0038458.g003

Figure 4. Effect of the deletion of MprF2 on resistance to
opsonophagocytosis. Opsonophagocytic killing of the wild type
(12030), 12030DmprF2 and 12030DmprF2 CM with serum against anti-
LTA (serum-dilution of 1:1,200).
doi:10.1371/journal.pone.0038458.g004

mprF in E. faecalis

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38458



displayed a decrease in the MIC against nisin, colistin, polymyxin

B, and HBD-3. Inactivation of MprF2 in E. faecalis had a lesser

effect on the MIC of nisin (4-fold difference) than in S. aureus,

where mutation of MprF resulted in a 28-fold drop of the MIC for

this CAMP [8]. In contrast to S. aureus, however, there was no

effect on daptomycin resistance. Interestingly, two recent reports

identified other mutations in the synthetic pathway of phospho-

lipids (i.e., diphosphatidylglycerol synthesis) being involved in

daptomycin resistance of enterococci [22,23], and this mechanism

may be more important for resistance against the above-

mentioned antimicrobial peptides. Our results suggest that Lys-

PG, Ala-PG, and Arg-PG are probably not major factors involved

in resistance to colistin, polymyxin B, nisin, or HBD-3 in

enterococci. A Bacillus anthracis mprF mutant showed hyper-

susceptibility to certain CAMPs (e.g., protamine, HNP-1, and

LL-37) but exhibited only weak or no change in resistance to nisin

[24], suggesting that MprF may be an important resistance

mechanism for some CAMPs, but not for others. In S. aureus it has

been reported that, depending on the individual strain, MprF may

increase [25] or decrease [6] resistance to vancomycin, or may

have no effect [26], with the respective phenotype probably being

dependent on the genetic background of the isolate [6]. A great

variety of additional resistance mechanisms and regulators are

used by bacteria to circumvent the action of CAMPs [27–29].

It has been reported that in certain species (such as Bacillus

subtilis, Lactococcus lactis, and Streptococcus pyogenes) the dlt operon

affects autolysis by incorporation of D-Ala into lipoteichoic acids.

Decreasing the net charge of the cell membrane through reducing

the amount of alanyl-ester leads to increased binding of autolysins

and ultimately increases autolysis [27–29]. Point mutations in the

mprF gene were found in S. aureus strains that were resistant to

daptomycin and defective in autolysis [30]. However, the mprF2

mutant in E. faecalis 12030 did not show increased autolysis

compared with the wild-type (data not shown), indicating that the

aminoacylation of PG has no effect on autolysis in enterococcus.

Formation of biofilm is frequently associated with virulence [31]

and poses a clinical challenge, especially in foreign body infections

[32]. Although E. faecalis 12030 is already a strong biofilm

producer, the mprF2 deletion increased biofilm formation about

42% compared to the wild type. This may be caused by pleiotropic

or compensatory effects, or by down-regulation of specific biofilm

regulators [33], but the exact mechanism has not yet been

elucidated. In the complemented mutant, gene mprF2 was

sequenced and was found to contain 3 amino acids changes

compared to the wild-type, which may be the reason that the

complementation of 12030DmprF2 cannot completely restore the

phenotype to the level of the wild type. That the complementation

of DmprF2 with vector pMSP3535::mprF2 did only partly restore

the lipid content of the mutant compared to the wild type level

may be explained by the fact that expression of the gene could not

be induced. Vector pMSP3535 contains a strong nisin promoter,

which is capable to over-express the gene cloned into the vector

when nisin is added. However, nisin is also a cationic antimicrobial

peptide that influences by itself the lipid composition of cell

membrane (data not shown). Therefore, nisin was not added for

the biofilm formation assay leading to only base-line expression of

the gene cloned into pMSP3535 (i.e mprF2). This could explain the

lower lipid contents extracted from 12030DmprF2

pMSP3535::mprF2 compared to the wild-type.

Extracellular DNA was measured in biofilms to assess whether

the increased biofilm formation in the 12030DmprF2 mutant is

caused by eDNA, because it has been previously observed that

eDNA may serve as an important matrix component of microbial

biofilms. For the major autolysins (AtlE of Staphylococcus epidermidis

and muramidase 2 of E. faecalis) several authors confirmed a role in

biofilm formation [34–37] and Qin et al [34] described eDNA as

an integral component during biofilm formation. The measure-

ment of eDNA release confirmed our biofilm results (see Figure 3),

i.e. the 12030DmprF2 mutant showed increased biofilm production

and increased eDNA release. While eDNA has been shown

previously to be primarily a by-product of cell lysis, the

12030DmprF2 mutant was not significantly different regarding

autolysis compared to the wild type in our experiments. This

suggests that in Enterococcus, similar to the results by Grande

[38], accumulation of eDNA may be not caused only by autolysis

but also by other, so far unknown mechanisms.

Although biofilm formation is usually considered a virulence

factor, there was no effect seen on the pathogenicity of the isogenic

mutant compared to the wild type in a mouse bacteremia model.

The increased adherence of the mutant to polystyren may rely on

different mechanism and therefore does probably not correspond

to an increased adherence to eukaryotic cells in the host.

Figure 5. Effect of the deletion of the MprF2 on virulence in mice. 1.56108 CFU bacteria were injected in the tail vein of mice. Animals were
sacrificed after 48 h, and colony counts were enumerated in liver, kidney and spleen.
doi:10.1371/journal.pone.0038458.g005

mprF in E. faecalis
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Alternatively, compensatory mechanisms (such as the increased

susceptibility of the mutant against antimicrobial peptides) may

counteract the increased adherence in vivo. Comparing an mprF

mutant and a dltA mutant in a rabbit endocarditis model,

Weidenmeier and colleagues observed that the reduction in

virulence of the dltA mutation was more pronounced than the mprF

mutation [39]. Using a mouse bacteremia model, we could detect

a significant reduction in virulence in the dltA mutant [14] but

were not able to observe this effect in the mprF mutant. We

therefore conclude that, contrary to the observations in S. aureus

[8,40], Listeria monocytogenes [41], and Mycobacterium tuberculosis [42],

MprF is probably not a major virulence factor in E. faecalis.

Previous studies have shown that a mprF mutant of S. aureus is

killed more readily by neutrophils due to increased susceptibility of

phagocytosed bacteria to defensins like HNP1-3 or cathelicidin

LL-37 that are stored in the azurophilic granules [8,40]. Our

results are not comparable to these studies, because enterococcus is

not killed by complement and phagocytes alone [43]. Only the

addition of opsonic antibodies, e.g., those against LTA [15] or

capsular polysaccharides [44], results in effective killing. The thick

layer of polysaccharide material in enterococci [45] may confer

additional resistance against neutrophil killing and probably

diminishes the specific effects of MprF. Our findings suggest that

bactericidal mechanisms other than CAMPs are more important

in the killing of enterococci by neutrophils. Streptococcus pneumoniae,

for example, is killed even by neutrophils that lack HNP1-3,

suggesting a minor role of defensins in the killing of this gram-

positive pathogen. Instead, the neutrophil serine proteases elastase,

cathepsin G, and proteinase 3 are critical for the intracellular

killing of S. pneumoniae by neutrophils [46]. Hence, nonoxidative

mechanisms such as serine proteases or reactive oxidative species

may be of greater importance than CAMPs in the killing of

E. faecalis by neutrophils.

We investigated the role of mprF2 as a virulence factor in vivo in

a mouse bacteremia model. Our results suggest that the expression

of aminoacyl-PG does not affect bacterial survival during

bloodstream infection. In contrast, impaired aminoacylation of

phosphatidylglyercerol in S. aureus increases intracellular killing by

neutrophils, associated with a reduced bacterial burden during

bacteremia and endocarditis [8,39]. In bloodstream infections,

neutrophils are the first line of defense against invading pathogens,

and it is therefore not surprising that MprF is an important

virulence factor in this model. Since opsonophagocytic killing was

not increased in the E. faecalis mprF2 mutant, it seems plausible that

virulence was also not altered during bloodstream infection.

However, we cannot exclude the possibility that inactivation of

mprF2 impairs virulence in other modes of infection, e.g., during

colonization or biofilm infection. For example, skin expression of

the antimicrobial protein RNase 7 has an important role in the

protection of human skin against E. faecium colonization [47].The

function of mprF1 is not clear from our results or from the data

presented by Roy and Ibba [9,10]; there seems to be no obvious

effect on the cell wall lipids, and the 12030DmprF1 mutant has

been tested also by OPA, in the mouse sepsis and in the autolysis

assay. However, in none of these tests there was a statistically

significant difference between this mutant and the wild-type (data

not shown). Whether this protein functions as a sensor or regulator

for the expression of mprF2 must be the subject of future studies.

Analysis of insertional mutants in genes mprF1 (ef0031) and

mprF2 (ef1027) in a plasmid-cured Enterococcus faecalis V583-

derivative strain (VE14089) has been reported by Rigottier-Gois

et al. [43]. This study showed that there was no difference in

growth kinetics and resistance to antibiotics for the single cross-

over mutants SCO ef0031 and SCO ef1027 The SCO ef1027

mutant was killed by PMNs and complement without the addition

of serum. In contrast, we observed that E. faecalis 12030 DmprF2

was efficiently killed only by a combination of PMNs with

complement and specific antibody. Furthermore, the SCO ef1027

mutant in E. faecalis VE14089 showed decreased virulence in a

Galleria mellonella model while our DmprF2 mutant in E. faecalis

12030 was not significantly affected in virulence in a mouse

bacteremia model. While the reasons for these differences have not

been studied yet, the different virulence model systems and the

different strain background may explain these contrasting results.

In conclusion, our data demonstrate that mprF2 (EF_1027)

seems to be the only functional aminoacyl-phosphatidylglycerol

synthase in E. faecalis in the conditions tested by us. It is responsible

for synthesis of three distinct amino-PGs, most likely Lys-PG, Ala-

PG, and Arg-PG. MprF2 is involved in resistance against CAMPs

but is unnecessary for autolysis, killing by neutrophils, or

bacteremia in mice.

Materials and Methods

Bacterial Strains, Plasmids, and Growth Conditions
The bacterial strains and plasmids used are listed in Table 2.

E. faecalis strain 12030 was grown in 37uC tryptic soy broth (TSB;

CASO broth; Merck) or on tryptic soy agar plates (TSA; CASO

agar; Merck). When required, erythromycin (100 or 150 mg/ml) or

kanamycin (1000 mg/ml) were added. Escherichia coli strains were

cultured under vigorous shaking at 37uC in Luria-Bertani broth

(LB; Merck) with ampicillin (100 mg/ml), kanamycin (50 mg/ml),

or erythromycin (100 mg/ml) when required. All antibiotics were

purchased from Sigma Chemicals.

General Molecular Techniques
Chromosomal DNA from enterococci was prepared using the

DNeasy Tissue kit (Qiagen) according to the manufacturer’s

instructions. Plasmids were purified using the Wizard Plus SV

Miniprep System (Promega). PCR was carried out in a reaction

volume of 25 ml with about 100 ng of chromosomal DNA of E.

faecalis 12030 and Platinum Taq DNA polymerase (Invitrogen); the

annealing temperature depended on the calculated melting

temperature of primers. In general, 30 cycles were performed,

and PCR products were subsequently purified using the QIAquick

PCR purification Kit (Qiagen Hilden, Germany). Primers used for

this study are listed in Table 3. Custom primers were manufac-

tured by Invitrogen and Sigma. Restriction and modifying

enzymes were obtained from New England Biolabs and Fermen-

tas. Electrocompetent enterococci were prepared as described

previously [48]. All the other methods (DNA ligation, eletrophor-

esis, and transformation of competent E. coli) used standard

techniques [49].

Construction of Deletion Mutants Delta mprF1 and mprF2
A non-polar deletion mutant 12030DmprF1 was constructed.

A part of gene mprF1 (EF_0031 in E. faecalis V583; GenBank

accession no. NP_813841) was deleted from aminoacid 84 to 817,

i.e. a total of 733 aa was deleted using the method described by Le

Jeune et al. [50] with the following modification. Briefly, two

fragments of approximately 900 bp, corresponding to the flanking

regions of the target gene, were amplified by PCR using primers

shown in Table 3. The DNA fragments were purified, digested

with restriction enzymes, and ligated into vector pMAD [51]

(Table 2).

A deletion mutant of mprF2 (EF_1027 in the E. faecalis V583

genome) was created using the method described by Cieslewicz

et al. [52]. Briefly, two fragments of approximately 600 bp,
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PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e38458



corresponding to the flanking regions of the target gene, were

amplified by PCR using primers shown in Table 3. This resulted

in the deletion of a fragment from nucleotide position 738 to 1538,

i.e. 800 bp were deleted. The resulting fragments were cloned into

the gram-negative cloning vector pCRII-TOPO (Invitrogen) and

excised with restriction enzyme EcoRI.

The mprF2 fragment was inserted into the gram-positive vector

pCASPER (Table 2), which contains a temperature-sensitive

origin of replication [53].

The ligation mixtures of the two plasmids pMAD::DmprF1 and

pCASPER::DmprF2 were transformed by electroporation into E.

coli Top10F cells. After selection and verification, the generated

recombinant plasmids were used to transform electro-competent

E. faecalis 12030 cells [14], and gene replacement was performed

via double cross-over as described previously [14,50].

Complementation of the Deletion Mutants
The entire mprF2 with flanking regions was amplified using

primer-pairs 5/6 (Table 3). The PCR product was cloned into

pMAD, and the resulting plasmid pMAD::mprF2 was transformed

into E. faecalis 12030DmprF2 by electroporation. Double cross-over

and selection of mutants was performed subsequently as described

above (knock-in mutant).

The mprF2 gene was also cloned into expression vector

pMSP3535 (Table 2) [54] using primers 9 and 10 to amplify the

entire gene mprF2 including the RBS, start codon (ATG), and stop

codon (TGA). The PCR product and plasmid pMSP3535 were

digested with restriction enzyme BamHI and PstI and ligated using

T4 DNA ligase. The chimeric plasmid pMSP3535::mprF2 was

transformed in E. coli Top10, and correct inserts were confirmed

by PCR. Plasmid pMSP3535::mprF2 was extracted from E. coli and

Table 2. Enterococcal strains and plasmids used in this study.

Strain or plasmid Characterization Reference or source

Strains

E.faecalis V583 Reference strain, fully sequenced [11]

E.faecalis 12030 Clinical isolate [21]

E.faecalis 12030DmprF1 mprF1 (EF_0031) mutant This study

E.faecalis 12303DmprF2 mprF2 (EF_1027) mutant This study

E.faecalis 12030DmprF2 CM Strain complemented with knock in of mprF2 gene This study

E.faecalis 12030DmprF2/pMSP3535::mprF2 Strain complemented with mprF2 gene by plasmid pMSP This study

E.coli TOP10 F Gram-negative cloning host Invitrogen

Plsmids

pCASPER Gram-positive, temp-sensitive mutagenesis vector [57]

pMAD Gram-positive, temp-sensitive mutagenesis vector [51]

pMAD - DmprF1 pMAD carrying mprF1 deleted This study

pCASPER - DmprF2 pCAPER carrying mprF2 deleted This study

pMSP3535 Emr, pAMb1 and ColE1 replicons, nisRK, PnisA [54]

pMSP3535::mprF2 Expression vector carrying the mprF2 gene This study

pCRII-TOPO Gram-negative cloning vector Invitrogen

doi:10.1371/journal.pone.0038458.t002

Table 3. Primers used in this study.

No. Name Sequence (59–39) a

1 EF0031DMF EcoRI CTGTCGAATTCCATCAGCGCTTAGGAATAATTG

2 EF0031DMR SmaI CTGTCCCCGGGCAACATAACGTAGCCAAAGAG

3 EF0031 inside 1 CAATAATTTAACGACTACATAGTC

4 EF0031 inside 2 GTCACTAGTTGGCAACCAC

5 EF1027 delF CAGCAATTGGGTTTCTTTGAA

6 EF1027 delR TTTGATGAGATTCCGCTATGG

7 EF1027 OEL ACTAGCGCGGCCGCTTGCTCCCCAAGTTGGTGAGTTTCCAGA

8 EF1027 OER GGAGCAAGCGGCCGCGCTAGTAGCAATCCCAATAATCGAAGC

9 pMSP1027 BamHI CCTGTCGGATCCGGAAATGAAGGTGTCTAAATGAA

10 pMSP1027 PstI CCTGTCCTGCAGAATTGAGCTTCTTTTTGTTAGTC

aLinkers are underlined.
doi:10.1371/journal.pone.0038458.t003
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transformed into E. faecalis 12030DmprF2 by electroporation;

transformants were selected on TSA plates containing erythromy-

cin.

Growth Kinetics
Growth curves of the wild-type E. faecalis 12030, its isogenic

derivative mutants, and the complemented mutants were com-

pared in TSB. An overnight culture was diluted 1:50 and

incubated at 37uC, while the OD600 was measured every hour.

Membrane Lipid Extraction
Lipids were extracted from E. faecalis 12030, its isogenic

derivative mutants, as well as the complemented mutants using a

modified Bligh-Dyer method [55]. For isolation of these strains’

membrane lipids, 500 ml overnight TSB culture grown at 37uC
was used. Cultures were cooled on ice for 30 to 60 min, and

bacteria were collected by centrifugation and washed with 0.1 M

citrate buffer (pH 4.7). The bacterial suspension was mixed with

an equal volume of glass beads, and bacterial cells were lysed with

a bead beater (Biospec Products, Inc.) by vigorous shaking for

2 min three times at 4uC. Bacteria were cooled on ice between

each run for 5 min. Glass beads were sedimented by centrifuga-

tion for 1 min at 2006g, and bacterial cell membranes were

removed with the supernatant. The remaining bacterial debris was

again sedimented by centrifugation at 12,0006g for 20 min. The

pellets were washed with 40 ml of 0.1 M citrate buffer (pH 4.7),

the wet weight was determined, and samples were stored frozen at

–20uC. For lipid extraction, frozen pellets were resuspended in

0.1 M citrate buffer (pH 4.7). Chloroform and methanol were

added to obtain a final chloroform/methanol/buffer ratio of

2:1:0.8. Lipids were extracted for 2 h at room temperature with

vigorous vortexing. Insoluble material was removed by centrifu-

gation at 2,6006g for 20 min, and the extracted lipids were

transferred with the supernatant into new tubes. The extraction

was repeated as described above; chloroform and buffer were

added to the combined extracts to obtain a methanol/chloroform/

buffer ratio of 1:1:0.8. Following vigorous vortexing, samples were

centrifuged at 2,6006g for 20 min, and the chloroform phase

containing lipids was transferred to a new tube. Lipids were dried

under a stream of nitrogen, and the dry weight was determined.

Lipids were then resuspended in methanol-chloroform (1:1) at a

concentration of 10 mg/ml and stored at –20uC, and 100-mg

samples were analyzed by thin-layer chromatography (TLC).

Lipid Analysis by TLC
Lipids were separated by TLC using silica 60 F254 HPTLC

plates (Merck) and developed with chloroform/methanol/water

(65:15:2, by volume) in the first direction and chloroform/

methanol/acetic acid/water (80:12:15:4, by volume) in the second

direction. For detection of phospholipids, TLC plates were stained

with molybdenum blue, and aminophospholipids were stained

with ninhydrin, as previously described [8]. Phosphatidylgylcerol

(PG), diphosphaditylglycerol (DPG), diglycosyldiacylglycerol

(DGlcDAG), and monoglycosyldiacylglycerol (MGlcDAG) were

identified by commercial (purchased from Sigma-Aldrich) or

internal laboratory standards [48] and used to determine the

position of the PG and DPG spots in 2D-TLC.

Biofilm Assay
Biofilm formation was measured as described by Baldassarri et

al. [52]. In brief 180 ml TSB supplemented with 1% glucose in a

96 well tissue culture plate (Brand) were inoculated with 20 ml of a

stationary phase culture of the respective strain. Afterwards, the

plate was incubated for 18 h at 37uC without shaking. To prevent

the cultures from drying, the growth environment was kept humid.

Bacterial growth was determined the next day by maesuring the

OD of each well in a plate reader at a wavelength of 600 nm. After

discarding the growth medium and washing the wells three times

with PBS, the biofilm was dried for 1 h at 60uC. Subsequently, the

biofilm was stained with 100 ml Huckers Crystall Violet for 2–

3 min followed by washing the plate under tap water and drying of

the stained biofilm. The OD600 was measured in a plate reader

and the biofilm index was calculated as follows: (OD(Bio-

film)60.5)/OD (Growth).

eDNA Assay
Analysis of eDNA was carried out as described previously

[36,37]. All strains were cultivated overnight in TSB at 37uC. The

culture was diluted 1:10 in TSB with 1% glucose, and 200 ml of

this cell suspension was used to inoculate a sterile black 96-well

FIA- plates (Greiner Bio-one). Each strain was cultivated in

triplicate. After 18 h at 37uC, wells were gently washed three times

with 200 ml of phosphate-buffered saline (PBS), and dried at 60uC
for 1 hour. 100 ml of DNA-specific dye SYTOX green (Invitrogen)

was added to these wells at a final concentration of 1 mM in

DMSO, and incubated for 10 minutes before being spectro-

fluorometrically measured with excitation wavelength at 485 nm

and emission wavelength at 535 nm.

Triton X-100-induced Autolysis Assays Under Non-
growing Conditions

Strains were grown to an OD600 of 0.8 in TSB medium and

treated as previously described [56]. Briefly, cells were pelleted by

centrifugation (4000 g, 10 min at 4uC), washed in the same

volume of ice-cold sterile water, and resuspended in the same

volume of 50 mM Tris-HCl, pH 7.5, containing 0.1% Triton X-

100. The cell suspensions were then transferred into 96-well sterile

microplates and incubated at 37uC without shaking. Autolysis was

monitored by measuring OD600 every 10 min with an automated

incubator/optical density reader (Model 680, Bio-Rad Laborato-

ries). The results were normalized to the OD600 at time zero, i.e.,

percent lysis at time t = [(OD at time zero – OD at time t)/OD at

time zero]6100.

Antimicrobial Susceptibility to Polymyxin B, Nisin,
Colistin, HBD-3, and Daptomycin

The minimal inhibitory concentration (MIC) of polymyxin B,

nisin, HBD-3, and colistin was determined in serial dilution with a

modified NCCLS method [29]. Experiments were performed in

TSB broth in 96-well microtiter tissue culture plates (Greiner).

Wells were inoculated with 50-ml volumes of a suspension

containing approximately 16106 CFU/ml of the test organism,

and concentrations were confirmed by enumeration of CFUs after

serial dilution. Microtiter plates were incubated overnight at 37uC,

and the MICs were defined as the lowest concentration at which

visible growth was inhibited. The MIC against daptomycin was

determined by E-test according to standard laboratory procedures.

Opsonophagocytic Assay
The opsonophagocytic assay was performed as described

elsewhere [48] using baby rabbit serum as complement source

and rabbit sera raised against purified LTA from E. faecalis 12030.

Polymorphonuclear neutrophils (PMN) were freshly prepared

from human blood collected from healthy adult volunteers. The

institutional review board of the University of Freiburg approved

the study protocol, and written informed consent was obtained
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from all study participants. Bacterial strains were grown to mid-log

phase in TSB, adjusted to 26107/ml, and mixed with equal

volumes of serum (dilution 1:100), absorbed baby rabbit sera as

complement source (dilution 1:15), and PMNs (adjusted to 26107/

ml). Controls included tubes from which PMNs (PMNneg),

complement (c’neg), or antibody (Abneg) was omitted. The mixture

was incubated on a rotor rack at 37uC for 90 min, and samples

were plated in duplicate at time 0 and after 90 min. Percent killing

was calculated by comparing the colony counts at 90 min (t90) of a

control not containing PMNs (PMNneg) to the colony counts of a

tube that contained all four components of the assay using the

following formula: {[(mean CFU PMNneg at t90) - (mean CFU at

t90)]/(mean CFU PMNneg at t90)}6100.

Animal Studies
The virulence of E. faecalis 12030, its isogenic derivative

mutants, and the complemented mutants was evaluated in a

mouse bacteremia model [48]. In summary, eight female BALB/c

mice 6–8 weeks old were challenged by i.v. injection with

1.56108 cfu of E. faecalis 12030, 12030DmprF2, and 12030DmprF2

CM (knock-in) via the tail vein. Forty-eight hours after injection

the animals were sacrificed, and livers, spleens, and kidneys were

removed to assess bacterial loads.

Ethics Statement
All animal experiments were performed in compliance with the

German animal protection law (TierSchG). Mice were housed and
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