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Abstract: This work presents a rigorous and generic sensitivity analysis of silicon nitride on silicon
dioxide strip waveguide for virus detection. In general, by functionalizing the waveguide surface
with a specific antibodies layer, we make the optical sensor sensitive only to a particular virus. Unlike
conventional virus detection methods such as polymerase chain reaction (PCR), integrated refractive
index (RI) optical sensors offer cheap and mass-scale fabrication of compact devices for fast and
straightforward detection with high sensitivity and selectivity. Our numerical analysis includes a wide
range of wavelengths from visible to mid-infrared. We determined the strip waveguide’s single-mode
dimensions and the optimum dimensions that maximize the sensitivity to the virus layer attached to
its surface at each wavelength using finite difference eigenmode (FDE) solver. We also compared
the strip waveguide with the widely used slot waveguide. Our theoretical study shows that silicon
nitride strip waveguide working at lower wavelengths is the optimum choice for virus detection as it
maximizes both the waveguide sensitivity (Swg) and the figure of merit (FOM) of the sensor. The
optimized waveguides are well suited for a range of viruses with different sizes and refractive indices.
Balanced Mach–Zehnder interferometer (MZI) sensors were designed using FDE solver and photonic
circuit simulator at different wavelengths. The designed sensors show high FOM at λ = 450 nm
ranging from 500 RIU−1 up to 1231 RIU−1 with LMZI = 500 µm. Different MZI configurations were
also studied and compared. Finally, edge coupling from the fiber to the sensor was designed,
showing insertion loss (IL) at λ = 450 nm of 4.1 dB for the design with FOM = 500 RIU−1. The
obtained coupling efficiencies are higher than recently proposed fiber couplers.

Keywords: virus detection; on-chip optical biosensors; Si3N4 waveguides

1. Introduction

The coronavirus disease pandemic of 2019 (COVID-19) is currently an exceptional
threat to human lives all over the world. Its expeditious spread has led to millions of cases
and hundreds of thousands of deaths in a few months. Almost all countries worldwide
were forced to lockdown for several months to limit the spread of the virus, leading to
devastating social and economic effects. In general, many people across the globe lose their
life due to viral infection diseases [1]. Hence, simple, fast, cheap, and accurate detection of
viruses are of great importance. Polymerase chain reaction (PCR) is one of the well-known
methods used for virus detection and it is the primary method used currently for COVID-19
detection [2]. Although this technique is highly sensitive and accurate, it is expensive,
time-consuming, and involves complex procedures and sample preparation.

Optical refractive index (RI) sensing is one of the main integrated optical techniques
used for bio-detection [3–8]. RI sensors offer fast, compact, and cheap detection with high
sensitivities. However, RI sensors are not selective as they only detect the change in the
medium (clad) refractive index which can occur due to different substances. A widely
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used technique to solve this problem in bio-sensing is surface functionalization [9–11].
In surface functionalization, the surface of the sensing waveguide is coated with specific
molecules called binder or capture molecules and immobilized through a certain process.
These immobilized molecules selectively capture the analyte molecules to be detected from
the whole sample. After sensor exposure to the sample, a washing step is needed to make
sure that only the analyte of interest is present in the sensors’ medium (clad) hence, the
detected refractive index change is due to this analyte alone.

RI sensors’ performance is determined mainly by the figure of merit (FOM) which is
the ratio between the sensor sensitivity (S) and full width half maximum (FWHM) of the
output spectrum, FOM = S/FWHM. RI sensors’ sensitivity (S) can be divided into device
sensitivity (SD) and waveguide sensitivity (Swg). Device sensitivity is defined as the ratio
between the change in the resonance wavelength and the change in the waveguide mode
effective index, SD = dλres/dneff. SD is determined by the optical sensor configuration used
and its dimensions such as Mach–Zhender interferometer and its arm’s length [3–5] or
ring resonators and its ring radius [6–8]. While waveguide sensitivity is defined as the
ratio between the change in the mode effective index and the change in the medium index,
Swg = dneff/dnmed. Swg is determined by the sensing waveguide structure such as strip, rib,
or slot waveguides and their dimensions. The overall sensitivity of the optical sensor is the
product of both parameters, S = SD × Swg. Hence, to maximize any RI sensor performance,
waveguide sensitivity (Swg) should be maximized.

Silicon nitride on insulator (SiNOI) waveguide platform, where the insulator here is
the silicon dioxide, offers numerous advantages for various applications [12–15]. Similar to
silicon on insulator (SOI) platform SiNOI is a complementary metal-oxide semiconductor
(CMOS) compatible allowing for mass-scale and low-cost fabrication [14,15]. It also allows
for monolithic integration with silicon devices and other electronic circuitry [12]. The lower
refractive index contrast of the SiNOI waveguide compared with SOI reduces scattering
loss due to surface roughness resulting in much lower propagation losses [12–14], while
still maintaining device compactness. This lower index contrast also makes SiNOI devices
more tolerant to fabrication errors [12,13]. In addition, the Si3N4 thermo-optical coefficient
is one order of magnitude lower than Si [13], hence Si3N4-based devices are less sensitive
to temperature fluctuations.

Moreover, the SiNOI platform has a wider transparency range, from visible to mid-
infrared, compared with the SOI platform [12–15]. This allows the realization of photonic
applications outside the telecom bands, such as integrated optical phased arrays for LIDAR
applications [16]. Finally, while silicon has a large Kerr effect, the two-photon absorption
(TPA) prevents efficient nonlinear applications. Si3N4, on the other hand, has adequate Kerr
nonlinearity and almost zero TPA [14,15]. Thus, the SiNOI platform allows for frequency
comb as well as supercontinuum generation [17,18], which are essential for high data-rate
telecommunications, high-resolution spectroscopy, and frequency metrology [19].

In this work, we present a detailed theoretical study and optimization of silicon nitride
(Si3N4) on silicon dioxide (SiO2) waveguide platform for virus detection. The waveguide
surface is assumed to be functionalized by the antibodies of the virus to be detected, using
a process similar to that in [9–11] such that the medium index change is only due to this
virus. A finite difference eigenmode (FDE) solver [20] is used to determine the waveguide
dimensions that maximize the waveguide sensitivity (Swg) to a virus layer attached to its
surface. Both fundamental quasi-transverse electric (TE) and quasi-transverse magnetic
(TM) modes are studied. Moreover, slot waveguide was also analyzed and compared with
the strip waveguide. Different operating wavelengths were examined from the visible to
the mid-infrared range. We found that Swg and FOM increase at lower wavelengths. This
numerical analysis is essential to construct a cheap, mass-scale fabrication of a compact and
highly sensitive RI optical sensor for fast virus detection and generally any biomolecule.
The optimized waveguides can be used in different integrated optical devices such as
interferometers and resonators to construct the virus sensor. MZI sensors utilizing the
optimized waveguides were designed reaching FOM = 1231 RIU−1 at λ = 450 nm with
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500 µm arms’ length. We also designed an MZI sensor with waveguide widths above 1 µm
that can be easily fabricated in simple and cheap facilities. Finally, fiber edge coupling to the
sensors chip was studied and optimized, showing higher coupling efficiencies than recently
demonstrated fiber couplers. The analysis and results obtained here are generic, i.e., they
can be applied to a wide range of biomolecules with different sizes and refractive indices.

2. Virus Sensing Waveguide Analysis and Discussion

Figure 1a shows the Si3N4 strip waveguide proposed for virus detection with width (w)
and thickness (h) on SiO2 substrate and water clad. The waveguide surface is functionalized
for selective detection such that only the virus of interest will adhere to the surface and form
a layer. More details about the exact functionalization process can be found in [9–11]. Hence,
we model this layer by a thickness hvir equal to the virus diameter dvir, i.e., hvir = dvir, and
a refractive index nlayer, as shown in Figure 1a. The refractive index nlayer is given by
Equation (1). The value of nlayer changes between the refractive index of the water nwater
and the refractive index of the virus nvir according to the virus coverage fraction r.

nlayer = (1− r)× nwater + r× nvir (1)

In this case, virus binding to the immobilized antibodies on the waveguide surface
will change this layer refractive index which will accordingly change the waveguide mode
effective index. We choose hvir = 80 nm which is in the range of the reported diameters
for the COVID-19 virus [21,22]. All the results obtained here are using hvir = 80 nm unless
mentioned otherwise. This diameter is relatively small when compared with other viruses.
We will see by the end of this section that for the same waveguide dimensions increasing the
virus layer thickness (targeting virus diameter) will result in higher waveguide sensitivity
Swg. Thus, the optimized waveguides at hvir = 80 nm can be used for a range of viruses
with different hvir = dvir.

Different operating wavelengths are studied from visible range λ = 450 nm (blue) and
λ = 650 nm (red), to near-infrared λ = 980 nm and λ = 1550 nm, and MIR λ = 3600 nm.
Material dispersion is considered where silicon nitride, silicon dioxide, and water refractive
index data along the wavelength are obtained from [23,24]. At each operating wavelength,
we firstly define the single mode dimensions by determining the maximum width at
different thicknesses using the FDE solver [20], as shown in Figure 1b,c. Then, we calculate
the waveguide sensitivity (Swg) at different waveguide dimensions (w and h), for both
fundamental quasi-TE and fundamental quasi-TM modes, which we will denote as TE and
TM for simplicity. Note that, unlike most RI sensors designs, here we calculate the surface
waveguide sensitivity, Swg = dneff/dnlayer, not the bulk sensitivity, Swg = dneff/dnclad,
which is more accurate for viral detection. Swg is calculated with nlayer around the water
index with ∆nlayer = 0.001, which means that the waveguides are optimized to have
maximum sensitivity when the virus layer index is changed slightly from that of water.
This corresponds to a minimum virus coverage (r close to 0). Accordingly, the exact
virus refractive index nvir does not affect the obtained results. This makes our analysis
independent of the virus refractive index and hence we do not need to have its value.

Figure 2a,b show the waveguide sensitivity of the TE mode and TM mode, respectively,
for different widths and thicknesses at λ = 450 nm. Results show that for each waveguide
thickness, there is an optimum width that maximizes the waveguide sensitivity. Such
behavior is expected [25]. For large waveguide widths, most of the mode field is confined
inside the silicon nitride core, resulting in low sensitivity. As the width decreases, the
mode becomes less confined and the evanescent field in the cladding increases, increasing
the sensitivity. However, for small widths, near cut-off, more field moves to the higher
(than clad) refractive index substrate which again decreases the sensitivity [25]. Results
also show that as the waveguide thickness increases, the optimum width (wopt) decreases,
and optimum sensitivity increases, which is also expected [25]. Hence, waveguides with
a higher aspect ratio (AR), AR = h/wopt, can achieve higher Swg reaching 0.513 for the
TE mode with w = 104 nm and h = 300 nm (AR = 2.88). This behavior is similar for all
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wavelengths. However, high AR waveguide sensors are more challenging to fabricate and
expensive as they need a fine mask and complex lithography system to obtain the small
waveguide widths needed.
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Figure 1. (a) Schematic of surface-functionalized Si3N4 on SiO2 strip waveguide for virus detection
with a layer representing virus attachment. Strip waveguide single-mode width versus waveguide
thickness at different wavelengths of: (b) TE mode and (c) TM mode.

Moreover, at high AR the waveguide sensitivity is very sensitive to width variations.
For example, changing the width by only 20 nm for the TE mode with AR = 2.88 will
significantly reduce Swg to lower than 0.15, i.e., 3.4 times reduction. Moreover, this optimum
width (wopt = 104 nm) is close to the mode cut-off width (wcut-off = 78 nm) and multimode
width (wMM = 110 nm). Figure 2c shows that for high thicknesses with low optimum widths
(high AR), TE mode can achieve higher Swg than TM mode, while for lower thicknesses
(higher wopt and low AR) TM mode exhibit higher Swg than TE mode. This is because
the TE/TM modes have field discontinuity at the core edges in the x/y direction; hence,
decreasing the width/thickness will increase the evanescent field’s amount and, hence,
sensitivity. Therefore, TM mode is optimum for cheap and easy to fabricate large feature
size sensors.
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Figure 2. Strip waveguide sensitivity (Swg) versus waveguide width (w) at different thicknesses (h)
at λ = 450 nm of: (a) TE mode and (b) TM mode. (c) Strip waveguide sensitivity (Swg) of both TE and
TM modes versus the optimum waveguide width (wopt) at λ = 450 nm.

Figure 3 shows the optimum Swg and the optimum width (wopt) dependence with the
AR (or h) at different wavelengths for the TE and TM mode, respectively. We can see that
both the operating wavelength and AR have a significant effect on the obtained Swg. In
addition, the highest Swg is obtained at the lowest operating wavelength (λ = 450 nm) and
it decreases monotonically as the wavelength increases. It is important to note that, scaling
the waveguide dimensions with the wavelength does not result in the same waveguide
sensitivity. This is mainly due to the unchanged layer’s thickness that changes its refractive
index (representing virus attachment). Results also show that TE mode achieves the highest
possible Swg at every wavelength.
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We have also examined Si3N4 slot waveguides (TE mode only). Slot waveguides
sensitivity increase as slot width decrease. Here, we used a slot width (wslot) of 200 nm as
this is the smallest width that can still allow waveguide functionalization [5,26]. Figure 4a
shows the maximum slot waveguide sensitivities at λ = 1.55 µm and λ = 3.6 µm for the TE
mode. At λ = 1.55 µm Swg = 0.22 while at λ = 3.6 µm Swg = 0.192. In order to obtain slot
mode in the visible range, the slot width should be less than 200 nm hence not suitable
for virus detection (functionalization). Consequently, strip waveguides are more suitable
for virus detection as they can achieve higher Swg at lower wavelengths leading to much
higher FOM. In addition, the functionalization process in a tiny 200 nm slot is challenging.
Moreover, strip waveguide offers a simple sensor design, for example, there is no need for
a strip to slot mode converter.
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While all the previous results are obtained using a virus layer thickness hvir of 80 nm,
we also tested the optimized waveguides for different virus diameters (i.e., different hvir)
from 60 nm to 200 nm. Figure 4b shows that the waveguide sensitivity increases with the
virus size. It is important to note that, the optimum waveguide dimensions do not change
significantly from the one obtained for hvir = 80 nm, by changing the virus size. Hence, the
same waveguide can be used for a range of viruses with different diameters. Moreover,
as mentioned above, our analysis is independent of the virus refractive index. Thus, this
work can be considered as a universal virus detection method using the SiNOI waveguide
platform where the optimized waveguides are well suited for various viruses with different
sizes and refractive indices.

While waveguide sensitivity is an important parameter, the RI optical sensors’ over-
all performance is determined by the FOM. In both interferometers and resonators, the
sensitivity (S) is proportional to Swg × λ. However, the FOM is proportional to Swg/λ
because the FWHM is proportional to λ2. Hence, operating the sensor at lower wavelengths
will achieve the highest performance as Swg increases and λ decreases, maximizing the
FOM. Figure 5 shows fitted curves of both Swg × λ and Swg/λ terms versus wavelength for
different AR. It can be seen that, FOM increased around 8 times from NIR (λ = 1.55 µm) to
visible (λ = 450 nm) wavelength for both TE and TM modes while the sensitivity decreased
only 1.4 times. Moreover, working in the visible wavelength range has another advantage
for biosensing as in this range the losses due to water absorption are minimized. From more
than 200 dB/cm mode loss at λ = 3.6 µm to less than 3 × 10−3 dB/cm in the visible range.
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3. Virus Sensors Design

In this section, different MZI sensors have been designed to convert the change in the
waveguide’s effective index to a sensible quantity for virus detection. The Si3N4 waveguide
surface will be functionalized with the virus antibodies. In this case, when the sensor is
exposed to the sample the targeted virus will be selectively captured by the waveguide.
Virus binding will change the refractive index of the 80 nm layer covering the waveguide
core. Accordingly, a wavelength shift (∆λ) in the transmission spectrum of the MZI will
occur, from which the virus concentration can then be determined.

For an MZI device with power evenly divided to its arms, the transmission spectrum
can be derived to be [27]:

T = cos2(
∆ϕ
2

) (2)

with∆ϕ =
2π

λ
(neff,sensLsens − neff,refLref) (3)

where ∆ϕ the phase difference of the MZI arms; neff,sens, neff,ref and Lsens, Lref are the
waveguide mode effective index and length of the sensing and reference arms of the MZI
sensor, respectively.

From which we can get the peak wavelengths as:

λpeak =
1
q
(neff,sensLsens − neff,refLref) (4)

where q is an integer.
Accordingly, the free spectral range (FSR), full-width half maximum (FWHM), sensi-

tivity (S) and FOM of the MZI sensor can be derived as follows [27]:

FSR =
λ2

neff,sensLsens − neff,refLref
(5)

FWHM =

√
2FSR
π

(6)

S =
dλpeak

dn
=

λSwgLsens

neff,sensLsens − neff,refLref
(7)
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FOM =
S

FWHM
=
πSwgLsens√

2λ
(8)

FOM is the main performance parameter of any RI sensor as it determines the min-
imum detectable refractive index change. Table 1 shows the dimensions and FOM of
different symmetric MZI (s-MZI) sensors designs, Lsens = Lref = LMZI, at different wave-
lengths with AR≈1, LMZI = 500 µm, and ideal y-junction for comparison. The optimized
strip waveguides from the previous analysis with the virus layer around the core are used
as the sensing arm with width wsens. Oxide-capped waveguides are used as the reference
arm with width wref. These results are obtained using an FDE solver to determine neff(λ) of
the sensing and reference waveguides. Next, an integrated photonics circuit simulator [28]
is used to determine T(λ) at different nlayer (virus concentration) from which S, FWHM,
and FOM are then calculated. Results exhibit the same response as Figure 5 with around
8 times greater FOM at the lower (blue) wavelength. Table 1 also shows FOM at λ = 450 nm
for different AR, reaching a maximum of 1231 RIU−1 at AR = 2.88. As mentioned before, at
higher waveguide widths, TM mode was used as it can reach higher Swg than TE mode,
see Figure 2c. Note that, MIR range was discarded due to its low Swg and high (water
absorption) losses.

Table 1. FOM of S-MZI sensors with LMZI = 500 µm.

λ (nm) AR Dimensions (nm) FOM (RIU−1)

450

0.13 * wsens = 550, wref = 520 and h = 70 501
0.37 * wsens = 270, wref = 300 and h = 100 553

1 wsens = 138, wref = 145 and h = 140 812
2.88 wsens = 104, wref = 104 and h = 300 1231

650 1.1 wsens = 203, wref = 230 and h = 220 454

980 1.2 wsens = 300, wref = 360 and h = 360 244

1550 1 wsens = 512, wref = 850 and h = 500 100
* Representing TM mode.

Although small waveguide dimensions in the visible range exhibit high sensing per-
formance, the fabrication of such waveguides requires complex and expensive lithography
systems such as electron beam or deep UV lithography. Hence, we want to determine a
sensor’s performance with a feature size above 1 µm, which will allow for easy and cheap
fabrication. While lower wavelengths exhibit higher performance, the blue wavelength
has almost zero sensitivity for small AR waveguides with wopt > 1 µm. Hence, we choose
to compare two designs both with TM mode. The first design is operating at low (red)
wavelength λ = 650 nm exhibiting Swg of 0.115, and the second is operating at a higher
wavelength at λ = 980 nm but demonstrating a slightly higher Swg of 0.13. Table 2 shows
the dimensions and the FOM of both MZI sensor designs. We can see that the first design
operating at a lower (red) wavelength with AR = 0.05 has a higher FOM of 158 RIU−1 even
if it exhibits slightly lower Swg.

Table 2. FOM of S-MZI sensors with large feature size using TM mode at LMZI = 500 µm.

λ (nm) Dimensions (nm) FOM (RIU−1)

650 wsens = 1500, wref = 1000 and h = 80 158
980 wsens = 1500, wref = 1100 and h = 160 127

The minimum detectable index change of the virus layer can be calculated from [29]
as ∆nmin = 1/FOM. These values can then be converted to minimum detectable virus
coverage rmin using Equation (1). Table 3 shows ∆nmin and rmin for the MZI sensors designs
at the blue wavelength with different AR and the design at red wavelength optimized for
large dimensions (AR = 0.05) with LMZI = 500 µm. Note that, lower virus concentrations
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(coverage r) can be detected by increasing the FOM by increasing the MZI sensor length as
given in Equation (8).

Table 3. ∆nmin and Rmin of S-MZI sensors with LMZI = 500 µm.

λ (nm) AR ∆nmin rmin (%)

450

0.13 * 2.0 × 10−3 1.29
0.37 * 1.8 × 10−3 1.16

1 1.2 × 10−3 0.79
2.88 8.1 × 10−4 0.52

650 0.05 * 6.3 × 10−3 3.73
* Representing TM mode.

It is important to note that, silicon nitride waveguides with film thickness greater
than 300 nm suffer significant stress, and different techniques are used to overcome this
problem [30–32]. However, our analysis shows that thin silicon nitride waveguides, with
h < 300 nm, in the visible range are of better sensing performance. In this case, such stress
is reduced and a homogeneous index and thickness can be obtained using low-pressure
chemical vapor deposition (LP-CVD) [32].

Finally, different MZI configurations were studied and compared for sensing, namely,
symmetric MZI (s-MZI), asymmetric MZI (a-MZI), and loop-terminated MZI (LT-MZI)
shown in Figure 6. The simulated results of the different configurations are summarized
in Table 4 for the design of TM mode with wsens = 270 nm, h = 100 nm, and wref = 300 nm
at λ = 450 nm and Lsens = 500 µm. While s-MZI (Lsens = Lref) sensitivity is determined
only by its waveguide structures, i.e. ∆neff = neff,sens−neff,ref, a-MZI (Lsens = Lref + ∆L)
sensitivity can be engineered using ∆L = Lsens−Lref, according to Equation (7). However,
both structures will exhibit almost the same FOM for the same Lsens. On the other hand,
LT-MZI is a recently proposed design [33] that consists of a conventional MZI with a
loop connecting the output directional coupler arms, reflecting the wave back to the
interferometer. For the same waveguide structure and Lsens, LT-MZI will exhibit the same
sensitivity with the conventional MZI while the FWHM will reduce to half resulting in
twice the FOM. The LT-MZI directional couplers are also assumed to be ideal 3-dB couplers.
The asymmetric LT-MZI can also be used to control the sensitivity using ∆L as in the
a-MZI case.
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Table 4. FOM and S of the TM mode for different MZI sensors configurations with wsens = 270 nm,
h = 100 nm, and wref =300 nm at λ = 450 nm and Lsens = 500 µm.

S (nm/RIU) FOM (RIU−1)

s-MZI 3098 553

a-MZI
∆L = 30 µm 1316 540
∆L = 5 µm 5579 530

LT-MZI 3098 1106

4. Edge Fiber Coupling of Designed Sensors

Recently, many efforts have been done to couple light from fiber to Si3N4 platform
in the NIR range (around 1.55 µm) [34–36], reaching a measured coupling efficiency as
low as −1.75 dB [34], using a bottom multilayer reflector and an apodized grating cou-
pler. However, few works have been published for coupling in the visible wavelength
range [37–39].

In this section, we study the coupling from single-mode fibers [40] in the visible
region (blue and red) to the silicon nitride chip through edge coupling again using an
FDE solver. We focus on the coupling to the TM mode sensors designs mentioned in
the previous section, which can achieve high coupling efficiencies and high FOM with
waveguide widths larger than 250 nm, see Tables 1 and 2. Design 1: wsens = 550 nm,
h = 70 nm (AR = 0.13) and Design 2: wsens = 270 nm, h = 100 nm (AR = 0.37), both at
λ = 450 nm. While Design 3: wsens = 1500 nm, h = 80 nm (AR = 0.05) at λ = 650 nm for a
large feature size sensor (w > 1 µm). Figure 7a shows the coupling efficiency at blue and
red wavelengths to a waveguide with thickness h = 20 nm and h = 40 nm, respectively.
A maximum coupling efficiency of 93% and 92.7% can be achieved from the fiber to the
waveguide TM mode at λ = 450 nm with w = 600 nm and at λ = 650 nm with w = 565 nm,
respectively. Note that, waveguides with higher thicknesses exhibit significantly lower
coupling for w > 250 nm. Hence, there is a mismatch between the waveguide dimensions
with optimum fiber coupling (wcpl, hcpl) and optimum sensing (wsens, hsens), as shown
in Figure 7b. Accordingly, the coupling between these two waveguides was studied and
the insertion loss (IL) was determined for the different sensing waveguides. For each
design, we optimize the waveguide–waveguide coupling, wcpl × hcpl → wout × hsens, by
changing the output waveguide width (wout), which can then be converted to wsens with
significantly low losses using a taper. Hence, for the blue wavelength the IL from the
fiber to the optimum coupling waveguide, wcpl = 600 nm, and hcpl = 20 nm, is 0.3 dB. The
waveguide–waveguide coupling for the sensing waveguide with hsens = 70 nm (Design 1)
shows IL = 3.8 dB with an optimum wout of 2600 nm. While for the sensing waveguide
with hsens = 100 nm (Design 2) IL = 4.8 dB at wout = 2700 nm. Hence, the overall fiber
coupling loss to the sensing waveguide is 4.1 dB and 5.1 dB, respectively. For the red
wavelength (Design 3), with w > 1 µm, the fiber-coupling waveguide IL is 1.37 dB at
wcpl = 1030 nm and hcpl = 40 nm. While the waveguide–waveguide coupling exhibits
IL = 1.1 dB for wout = 1940 nm to the sensing waveguide with hsens = 80 nm, resulting in
an overall coupling loss of 2.47 dB.

These designs exhibit higher coupling efficiencies than most fiber couplers proposed
for the Si3N4 platform at the same wavelength range [37–39]. This is mainly due to the
different waveguide dimensions, as the optimum waveguides for sensing have small core
thickness dimensions; thus, exhibiting a large mode size which leads to better matching
with the fiber mode. The recently proposed fiber couplers and our proposed ones are
summarized in Table 5.
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Table 5. Comparison of our proposed fiber couplers and recently demonstrated ones, showing
the output waveguide (w × h) in each case with (S) and (M) denoting simulated and measured
results, respectively.

λ (nm) Waveguide
(nm) Technique Coupling Loss (dB)

[37] 660 700 × 100 Grating 4.2 (M)

[38]
532 350 × 180 Grating 6 (S)

640 340 × 220 Grating 6.6 (S)
7.5 (M)

[39] 430–648 340 × 135 Edge 8–8.9 (M)

Our Designs 450
550 × 70 Edge with h step 4.1 (S)

270 × 100 Edge with h step 5.1 (S)
650 1500 × 80 Edge with h step 2.47 (S)

5. Conclusions

We propose a Si3N4 strip waveguide to be used as the sensing arm in different inte-
grated optical sensors configurations for virus detection. Integrated RI sensors offer fast,
cheap, and simple detection when compared with the existing methods such as PCR, which
is expensive and involves complex procedures. Our theoretical study shows that the Si3N4
strip waveguide sensors can achieve high sensitivity, and with surface functionalization,
they can detect only a specific virus for high selectivity. Our numerical analysis determines
the waveguide dimensions that maximize the sensitivity to the virus layer attached to its
surface. The optimum dimensions were determined for different wavelengths from the
visible to the MIR and for both fundamental quasi-TE and quasi-TM modes. In addition,
we compared the silicon nitride strip waveguide with the slot waveguide. The results show
that strip waveguide operating at low wavelengths is the best choice for virus detection.
MZI sensors were designed offering a FOM as high as 1231 RIU−1 for LMZI = 500 µm at
λ = 450 nm. Finally, edge coupling from the fiber to the waveguide sensor was studied,
showing only 4.1 dB insertion loss at λ = 450 nm for the MZI design with FOM = 500 RIU−1.
Our work forms a universal virus detection method using the SiNOI waveguide platform.
This is because the optimized waveguides are well suited for various viruses with different
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sizes, refractive indices, and generally for the detection of different biomolecules using
functionalized waveguide surfaces.
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