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Abstract

Background

Recently, tau PET tracers have shown strong associations with clinical outcomes in individ-

uals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir

PET scans to measure tau deposition in multiple brain areas as the disease progresses.

This information needs to be summarized to evaluate disease severity and predict disease

progression. We, therefore, sought to develop a machine learning-derived index, SPARE-

Tau, which successfully detects pathology in the earliest disease stages and accurately pre-

dicts progression compared to a priori-based region of interest approaches (ROI).

Methods

587 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort had flor-

taucipir scans, structural MRI scans, and an Aβ biomarker test (CSF or florbetapir PET) per-

formed on the same visit. We derived the SPARE-Tau index in a subset of 367 participants.

We evaluated associations with clinical measures for CSF p-tau, SPARE-MRI, and flortauci-

pir PET indices (SPARE-Tau, meta-temporal, and average Braak ROIs). Bootstrapped mul-

tivariate adaptive regression splines linear regression analyzed the association between the

biomarkers and baseline ADAS-Cog13 scores. Bootstrapped multivariate linear regression
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models evaluated associations with clinical diagnosis. Cox-hazards and mixed-effects mod-

els investigated clinical progression and longitudinal ADAS-Cog13 changes. The Aβ posi-

tive cognitively unremarkable participants, not included in the SPARE-Tau training, served

as an independent validation group.

Results

Compared to CSF p-tau, meta-temporal, and averaged Braak tau PET ROIs, SPARE-Tau

showed the strongest association with baseline ADAS-cog13 scores and diagnosis.

SPARE-Tau also presented the strongest association with clinical progression in cognitively

unremarkable participants and longitudinal ADAS-Cog13 changes. Results were confirmed

in the Aβ+ cognitively unremarkable hold-out sample participants. CSF p-tau showed the

weakest cross-sectional associations and longitudinal prediction.

Discussion

Flortaucipir indices showed the strongest clinical association among the studied biomarkers

(flortaucipir, florbetapir, structural MRI, and CSF p-tau) and were predictive in the preclinical

disease stages. Among the flortaucipir indices, the machine-learning derived SPARE-Tau

index was the most sensitive clinical progression biomarker. The combination of different

biomarker modalities better predicted cognitive performance.

Introduction

Alzheimer’s disease (AD) is neuropathologically defined by the presence of tau neurofibrillary

tangles and Aβ plaques [1]. Among these defining histopathological lesions, neurofibrillary

tangles have been associated with a faster clinical progression than Aβ plaques [2, 3]. Tau has

been historically measured on cerebrospinal fluid (CSF); however, this method does not pro-

vide sufficient information on the spatial distribution of tangle accumulation throughout the

brain. On the other hand, Positron Emission Tomography (PET) advances offered several tau

tracers, which have recently become available to quantify precise regional brain neurofibrillary

tangle deposition. These new tracers can detect protein deposits present years before cognitive

decline manifests. Tau tangles have been shown to capture stages of Alzheimer’s disease [4],

leading to diagnostic frameworks enabling the categorization of subjects along the AD contin-

uum [5] using a biomarker-based definition of AD [5, 6].

Neuroimaging techniques capture changes across the whole brain that can be successfully

summarized using machine-learning derived approaches [7–9]. Machine-learning algorithms

generate optimal weighting for the different brain regions deriving summary indices with bet-

ter classification accuracy and conversion predictions than simple anatomical-based summary

metrics [10, 11]. Previous work has previously developed neuroimaging-based machine learn-

ing indices using magnetic resonance imaging (MRI) [7–9]. These indices have multiple uses

in clinical practice and trials, in which they can facilitate recruitment and evaluate outcomes

[12–14].

However, studies relied on a priori defined anatomical composites (i.e., meta-temporal

regions of interest (ROI)), to evaluate the association with longitudinal outcomes [15–20].

This selection might not provide the optimal weighting of the individual brain regions

involved throughout the disease. There is also limited information regarding biomarker-
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associated outcomes [15]. In this work, we developed a new machine-learning derived tau PET

index, the SPARE-Tau (Spatial Pattern of Abnormality for Recognition of Early Tau pathol-

ogy) and compared it to previously established biomarkers. We evaluated the clinical associa-

tions and prognostic value of CSF p- tau, a priori-defined regional tau PET indices (meta-

temporal ROI and average Braak score), and a machine learning-derived MRI index (SPA-

RE-AD) [8, 9]. We hypothesize that [1] machine learning derived flortaucipir PET imaging

composites offer stronger associations with cross-sectional and longitudinal clinical measures

than a priori-defined tau PET ROIs, and [2] correlate better with clinical outcomes compared

to MRI-defined indices and CSF p-tau.

Methods

Participants and clinical testing

Data used to prepare this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership led by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI and early

AD. 587 ADNI participants with flortaucipir PET scans, MRI scans, and cerebrospinal fluid

(CSF) Aβ1–42 or florbetapir PET Aβ testing during the same study visit were included (S1

Table). Our study included 344 cognitively unremarkable (CU), 182 MCI, and 61 dementia

participants. Participants had yearly neuropsychological battery testing and clinical assess-

ments [21]. The median follow-up was 1.9 years (IQR: 0.79–2.21 years). Further details on the

clinical core, recruitment, and diagnostic methods have been previously published [22, 23],

and details can be found at (http://adni.loni.usc.edu/). All the data is available at http://adni.

loni.usc.edu/. Participants were stratified as normal (Aβ-) and pathological (Aβ+) Aβ bio-

marker values if either their cerebrospinal fluid (CSF) or florbetapir PET scan indicated patho-

logical Aβ values (see PET and CSF sections below). The demographic and biomarker

information of the participants I summarized in S1 Table. We downloaded the anonymized

data from the ADNI website. Patient gave written informed consent; no minors were recruited

into the study. The study was approved by the local institutional review boards (IRBs).

MRI acquisition and processing

3T sagittal MP-RAGE scans for each subject were selected at the same clinical visit as the flor-

taucipir scan and were segmented and parcellated with Freesurfer (v 5.3) [24]. Additional

details for the imaging processing can be found on the ADNI website (http://www.adni-info.

org/). The Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s disease [25]

(SPARE-AD) index is a previously validated imaging signature used to estimate Alzheimer’s

disease-like atrophy patterns in the brain [8, 11]. A support vector machine (SVM) was used to

differentiate between dementia and CU participants maximally. The SVM classifier with a lin-

ear kernel was trained with structural MR scans to classify participants as dementia and CU.

The training data included only healthy controls with known-negative Aβ status and only

dementia participants with known-positive Aβ status. Higher positive SPARE-AD values indi-

cate a more Alzheimer’s disease-like brain structure, and lower negative values indicate normal

brain structure. The SPARE-BA model was trained with CU data only and applied to all partic-

ipants included in this study. A model having a radial basis function kernel was evaluated with

leave-one-out cross-validation using structural region of interest volumes from 352 CU partic-

ipants and had a mean absolute error of 4.22. The predicted brain age for the CU participants

was then adjusted for age using a linear regression model, like previous work [9].
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PET acquisition and processing

For the flortaucipir PET scans, 370 MBq (10.0 mCi) ± 10% of 18F-flortaucipir were adminis-

tered, with 30-minute (6X5 minutes frames) acquisition at 75–105 min post-injection. Each

flortaucipir scan was co-registered to its corresponding MP-RAGE scan, and mean flortaucipir

uptake within each Freesurfer-defined brain region was calculated. Data were corrected for

partial volume effects using the geometric transfer matrix approach1. Mean regional uptake

was normalized by inferior cerebellar gray matter as a reference region to generate the flortau-

cipir SUVRs. Further information can be found on the ADNI website (http://adni.loni.usc.

edu/). We included partial volume corrected ROIs, which were normalized to the inferior cere-

bellum. Meta-temporal ROI was calculated as previously described (see supplementary mate-

rial). The average Braak score was calculated as the average of Braak I, Braak III-IV, and Braak

V-VI areas.

For the florbetapir PET scans, 370 MBq (10.0 mCi) ± 10% of 18F-florbetapir were adminis-

tered, with 20 minutes (4X minute frames) acquisition at 50–70 min post-injection. SPM8 soft-

ware was used to co-register the florbetapir PET scans with the corresponding MRI scans.

Florbetapir means from the gray matter in subregions were extracted within four large regions

(frontal, anterior/posterior cingulate, lateral parietal, lateral temporal) [26, 27], and weighted

means for each of the four main regions were created. A composite was used as a reference

region, based on the whole cerebellum, brainstem/pons, and eroded subcortical white matter

(http://www.adni-info.org/). A value�0.78 in the summary composite florbetapir index classi-

fied participants as Aβ+.

SPARE-AD training. A support vector machine (SVM) was used to differentiate between

dementia and CU participants maximally. The SVM classifier with a linear kernel was trained

with structural MR scans to classify participants as dementia and CU. The training data

included only healthy controls with known-negative Aβ status and only dementia participants

with known-positive Aβ status. Higher positive SPARE-AD values indicate a more Alzheimer’s

disease-like brain structure, and lower negative values indicate normal brain structure.

The SPARE-Tau index. A classification model using a support vector machine (SVM)

with a linear kernel was developed and trained to predict the clinical status of 367 participants

defined as control group (n = 218, CU individuals with normal Aβ biomarker values) or patho-

logic group (n = 149, MCI and dementia individuals with pathological Aβ values). The model

was trained with 50-fold cross-validation and used the Freesurfer parcellated ROIs’ SUVR val-

ues. Similar machine learning models have been previously described and validated on MRI

[8, 11]. More positive SPARE-Tau indices indicate pathological tau deposition, and more neg-

ative indices imply lower tau deposition. Areas included in the final model are summarized in

S1 Fig.

Cerebrospinal fluid collection and Aβ1–42 measurements

CSF samples were obtained in the morning after an overnight fast and processed as previously

described [28, 29] (http://adni.loni.usc.edu/). Roche Elecsys Aβ1–42 and tau CSF immunoassay

measurements were performed at the UPenn/ADNI biomarker laboratory following the

Roche Study protocol [22]. The cutoff for pathological values was 977 pg/mL for Aβ1–42 and 27

pg/mL for p-tau [30]. Measurements performed during the same ADNI visit as the flortaucipir

scans were selected (12 days median time interval between CSF draw and PET scans).

Statistical analysis

We calculated median and interquartile range (IQR) values to summarize quantitative vari-

ables and proportions for categorical variables. Kruskal-Wallis analyses and chi-square tests
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were applied to compare continuous and categorical variables between the groups. Spearman

rank correlations evaluated the associations between the different measures. CU participants

with normal Aβ biomarker values and MCI and dementia individuals with pathological Aβ
values were included in the SPARE-Tau training. CU participants with pathological Aβ bio-

marker values were not used in the training of the SPARE-Tau index and therefore served as

an independent testing group. Multivariate analyses included standardized biomarker values

to compare the coefficients. We applied multivariate adaptive regression splines (MARS) mod-

els to evaluate the association between the different biomarker values. For each biomarker, we

performed 1,000 bootstraps with replacement. We analyzed 1,000 bootstrapped linear regres-

sion models with biomarker values as dependent variables and age, gender, education, and

clinical diagnosis as predictors. We compared the R2 and coefficients values from the boot-

strapped models using Friedman tests, followed by post-hoc comparisons with Wilcoxon

signed-rank tests to evaluate which biomarker offered the best fit. A linear discriminant model

with 10-fold cross-validation identified cutoffs to define normal and pathological tau PET

indices and SPARE-AD scores used in longitudinal analyses. Cox hazards models evaluated

the progression from CU to MCI (sex, age, and education included as covariates). We used

mixed-effects models that included ADAS-Cog13 as the outcome to evaluate longitudinal dis-

ease progression. These models included time, sex, age, education, clinical diagnosis, and bio-

markers as fixed effects. We included clinical diagnosis and biomarkers interactions with time.

Participants and time were included as random effects. Power transformations were used in

parametric analyses as needed to achieve normal distribution. P-values <0.05 (two-sided)

were considered statistically significant. Bonferroni-Holm multiple comparison correction

was applied to correct for multiple comparisons and the post hoc comparisons. Analyses were

performed using R version 4.2.

Results

Correlation between AD biomarkers

We evaluated correlations between biomarkers included in this study (SPARE-Tau, average

Braak areas, meta-temporal ROI, CSF p-tau, SPARE-AD, and florbetapir composite score) in

groups stratified by Aβ status. Associations were stronger in the Aβ+ participants than in the

Aβ- participants (Fig 1A and 1B). Aβ+ participants showed strong correlations between tau

PET indices and moderate correlations of the tau PET indices with the other biomarkers (CSF

p-tau, SPARE-AD, and florbetapir composite score). Aβ- participants presented moderate cor-

relations between the different tau indices, but correlations with the other biomarkers (CSF p-

tau, SPARE-AD, and florbetapir composite score) were weak or absent (�0.25).

Baseline clinical associations

SPARE-Tau best explained ADAS-Cog13 values in the Aβ+ participants when we compared

the R2 values (explained ADAS-Cog13 variance) of the bootstrapped MARS splines (Fig 1C

and 1D, S2 and S3 Tables). In the Aβ- participants, only the florbetapir summary composite

showed a similar association with ADAS-Cog-13 (Fig 1D and S3 Table) as SPARE-Tau. In

contrast, all other indices explained lower ADAS-Cog13 variance (p-value<0.0001). Combin-

ing SPARE-Tau and SPARE-AD (global 1) led to an increase in the explained ADAS-Cog13

variance in the Aβ+ (R2 difference 0.14, p-value<0.00001) and Aβ- participants (R2 difference

0.10, p-value<0.0001). Further adding the florbetapir summary composite (global 2) led to an

increase in the explained ADAS-Cog13 variance in the Aβ- participants (R2 difference 0.14, p-

value<0.00001), with a minimal but significant improvement in the Aβ+ participants (R2
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Fig 1. Evaluation of biomarker indices (SPARE-Tau, Average Braak, Meta-Regions, CSF p-tau, SPARE-AD and

florbetapir composite score). (A) Correlations between the different biomarkers in the Aβ+ participants (�: p-

value<0.05; �: p-value<0.01; �: p-value<0.0001). (B) Correlations between the different biomarkers in the Aβ-

participants (�: p-value<0.05; �: p-value<0.01; �: p-value<0.0001). (C) Coefficient of determination (R2) of MARS

spline models predicting baseline ADAS-Cog13 values in all the Aβ+ participants. Global 1 (G1) includes SPARE-Tau

and SPARE-AD as predictors. Global 2 (G2) combines SPARE-Tau, SPARE-AD, and the florbetapir composite score

(FBP). (D) Coefficient of determination (R2) of MARS spline models predicting baseline ADAS-Cog13 values in all the

Aβ- participants. Global 1 (G1) includes SPARE-Tau and SPARE-AD as predictors. Global 2 (G2) combines

SPARE-Tau, SPARE-AD, and the florbetapir composite score (FBP). (E): Coefficients of z-scored flortaucipir indices

comparing the clinical groups stratified by Aβ biomarker values against Aβ- cognitively unremarkable (CU)

participants. A-Braak: Average Braak-area flortaucipir score; CSF pT: CSF p-tau; Dem: Dementia; FBP: florbetapir

composite; MCI: Mild cognitive impairment; Meta-T: Meta-temporal ROI flortaucipir score; SP-AD: SPARE-AD;

SP-T: SPARE-Tau.

https://doi.org/10.1371/journal.pone.0276392.g001
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difference 0.009, p-value<0.0001). We excluded CSF p-tau from further analyses due to its

weak association with the clinical measures.

All flortaucipir indices were higher in Aβ+ participants (including the Aβ+ CU group for

the SPARE-Tau and meta-temporal ROI), with a progressive increase in the Aβ+ MCI and

dementia participants (Fig 1E). SPARE-Tau presented the highest z-scored differences in all

the Aβ+ groups compared to the Aβ- CU group (p-value<0.0001). The average Braak score

showed the highest value for the Aβ- MCI group (p<0.0001) and also was the only index that

showed higher values in the Aβ- MCI than the Aβ+ CU group. SPARE-Tau showed the highest

R2 (0.48, IQR = 0.45–0.51), compared to average Braak (R2 = 0.41, IQR = 0.38–0.44) and

meta-temporal ROI (R2 = 0.41, IQR = 0.38–0.44).

Longitudinal clinical associations

To evaluate the association with the longitudinal changes, we estimated SPARE-Tau, average

Braak score, meta-temporal ROI, and SPARE-AD cutoffs based on classifying CU Aβ- partici-

pants versus Aβ+ MCI and dementia participants. For the florbetapir Aβ PET, we used the pre-

viously derived florbetapir composite score.

All the biomarkers predicted progression from CU to MCI/dementia when all the CU par-

ticipants were included (Table 1), but when we evaluated the clinical progression in the Aβ
+ CU participants, the meta-temporal ROI did not predict clinical progression, and SPARE--

Tau remained the strongest association. All three flortaucipir PET measures and SPARE-AD

predicted longitudinal changes in ADAS-Cog13 in the whole cohort (Table 2), but only SPAR-

E-Tau predicted longitudinal changes in the Aβ+ CU participants. None of the biomarkers

Table 1. Prediction of clinical progression in CU participants. Analyses adjusted by age, education, and sex. Bio-

markers values were classified as normal or pathological to predict clinical progression. Bonferroni-Holm multiple

comparison correction applied.

CU (All) to MCI/Dementia

(nTotal = 331, nProgressors = 20)

CU (Aβ+) to MCI/Dementia

(nTotal = 122, nProgressors = 13)

H.R. (95% CI) p-value H.R. (95% CI) p-value

Flortaucipir SPARE-Tau index 7.9 (2.7–22.7) 0.0006 6.2 (1.7–22.8) 0.022

Flortaucipir meta-temporal ROI index 3.3 (1.2–8.8) 0.021 2.79 (0.87–9.0) 0.11

Flortaucipir average Braak index 5.3 (1.9–14.7) 0.003 4.6 (1.4–15.6) 0.022

Florbetapir Composite index 3.1 (0.97–9.7) 0.056 - -

MRI SPARE-AD 3.9 (1.5–10.1) 0.009 4.9 (1.4–17.1) 0.022

H.R.: Hazard ratio.

https://doi.org/10.1371/journal.pone.0276392.t001

Table 2. Prediction of ADAS-Cog13 longitudinal changes. Analyses adjusted by age, education, and sex. Model with all participants also adjusted for baseline clinical

diagnosis. Biomarkers values were classified as normal or pathological to predict cognitive decline. Bonferroni-Holm multiple comparison correction applied.

All CU Participants (n = 172) CU Aβ- (n = 100) CU Aβ+ (n = 72)

Coef. (SE) p-value AIC Coef. (SE) p-value AIC Coef. (SE) p-value AIC

Flortaucipir SPARE-Tau index 0.35 (0.05) <0.0001 3074.3 0.16 (0.15) 0.32 980.7 0.28 (0.09) 0.0070 713.8

Flortaucipir meta-temporal ROI index 0.32 (0.05) <0.0001 3094.8 0.16 (0.12) 0.24 980.9 0.20 (0.1) 0.071 716.9

Flortaucipir average Braak index 0.26 (0.05) <0.0001 3103.7 0.14 (0.12) 0.31 981.5 0.18 (0.1) 0.12 716

MRI SPARE-AD 0.19 (0.05) 0.0002 3129.2 0.14 (0.09) 0.20 978.9 0.10 (0.11) 0.36 728.7

AIC: Akaike information criterion. Coef.: Coefficient; SE: Standard error.

https://doi.org/10.1371/journal.pone.0276392.t002
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predicted longitudinal changes in the Aβ- CU participants. A comparison of SPARE-Tau and

CSF p-tau is included in S4 Table.

Discussion

Among the three tested flortaucipir measures (SPARE-Tau, meta-temporal ROI, and average

Braak score), our novel SPARE-Tau index offered the best classification accuracy. SPARE-Tau

showed the largest differences between the Aβ+ and the Aβ- CU participants, best-predicted

baseline ADAS-Cog13 scores, and presented the strongest association with longitudinal clini-

cal progression (including the CU Aβ+ participants).

AD biomarker models and studies of participants with AD autosomal dominant mutations

indicate that Aβ biomarkers precede tau biomarkers [4, 31]. About 30% of CU elderly individ-

uals are Aβ+ in the seventh decade of life [32, 33]. In turn, tau changes are closer to the onset

of cognitive decline and have been considered a marker for the disease [5]. Neuropathological

studies showed a stronger association of tau pathology with cognition and explained a large

part of cognitive changes present in cognitively impaired individuals compared to other indi-

viduals [34]. Flortaucipir binding correlates with neurofibrillary tangle deposition in AD and

regional neurofibrillary pathology burden [35]. Therefore, we expected tau PET tracers to out-

perform Aβ biomarkers to predict clinical outcomes. Imaging-based biomarkers reflect

changes across the whole brain. This information needs to be summarized to facilitate its clini-

cal application. Previous flortaucipir PET measures have been developed on averages of ROI

[27, 36]. This follows previous MRI approaches that identified hippocampal atrophy as a mea-

sure of neurodegeneration in AD. A limitation of these analyses is that they select a subset of

the regions and do not weigh them according to their importance. We previously developed a

support vector machine-derived MRI index, SPARE-AD, which showed improved classifica-

tion and prediction of clinical progression compared to ROI-based MRI indices [10]. Here we

expanded the SPARE framework to include the SPARE-Tau index. These machine-learning

approaches combine the information derived from multiple brain regions to provide a global,

easily interpretable, sensitive and specific measures compared to single ROI, like the

hippocampus.

Flortaucipir has shown an inverse correlation with brain atrophy, stronger than the one

observed for Aβ PET scans [17, 18], in line with our finding. We identified a correlation

(r = 0.62) between our SPARE-AD and SPARE-Tau indices. Our previously developed MRI

index (SPARE-AD) underperformed all flortaucipir indices when evaluating clinical progres-

sion and cognitive decline. This finding might be counterintuitive because structural MRI

reflects atrophy related to AD-specific regions, and those might be injured later in the AD tim-

ing model [37]. Additionally, potential interactions with cognition should be studied in future

work, evaluating in-vivo the different mechanisms of tau-related cognitive impairment (local

structural damage versus functional network dysfunction). Nevertheless, neuropathological

studies indicate that AD pathology is the primary driver of cognitive impairment [38].

Among the flortaucipir indices, the meta-temporal ROI (or other ROIs) is the most com-

monly used measure when clinical associations of flortaucipir scans are evaluated [15, 19, 35,

39]. We also included an index reflecting global flortaucipir burden, the average Braak index,

based on the staging defined by Braak [40]. We evaluated several cross-sectional metrics (clini-

cal diagnostic accuracy and ADAS-Cog13) and clinical progression (clinical progression of

CU and MCI participants and cognitive decline measured using ADAS-Cog13). SPARE-Tau

outperformed these commonly used ROI-based indices (meta-temporal ROI and the average

Braak indices).
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Moreover, SPARE-Tau identified the largest effect size difference when we compared

Aβ+ CU participants (not used for training) to Aβ- CU participants and was the strongest pre-

dictor of clinical progression and cognitive decline in the Aβ+ CU participants (hold-out vali-

dation group). We also stratified our analyses by Aβ status, analyzing Aβ- and Aβ+ separately

in several analyses, whereas our training groups evaluated CU Aβ- versus cognitively impaired

Aβ+ participants. CSF p-tau underperformed all flortaucipir indices in our cross-sectional

analyses, and we, therefore, excluded it from the longitudinal analyses. It can be expected that

CSF tau measurements underperform ligand-based PET tau estimates as CSF tau represents a

more indirect measure of overall brain tau deposition, and tau is deposited intracellularly in

the form of neurofibrillary tangles. Other studies found a stronger cross-sectional association

of PET ROI metrics with clinical than those observed for CSF tau assays [41]. Alternatively, it

is possible that CSF p-tau identifies changes at an earlier preclinical stage than SPARE-Tau

(23.6% abnormal CSF p-tau and 12% abnormal SPARE-Tau in the CU Aβ+ group). This could

also explain why CSF p-tau underperforms SPARE-Tau in the case of a short follow-up. One

study has described inconsistent findings of CSF p-tau better predicting cognition in CU par-

ticipants than tau PET [42]. These differences might be to differences in cohort composition,

CSF assays, and length of follow-up. Further studies with longer longitudinal follow-up that

include plasma, CSF and PET tau measures in CU participants in CU participants are needed.

We expand the previous findings by additionally evaluating with the ADAS-Cog13 scale,

predicting clinical conversion in CU participants, and assessing CSF p-tau, which surprisingly

showed the lowest clinical associations. One recent study evaluated the longitudinal correlates

of structural MRI and flortaucipir PET [15]. This study indicated that meta-temporal flortauci-

pir ROI showed the strongest association with longitudinal MMSE scores, followed by MRI

(using predefined temporal lobe ROI), and least associated with Aβ PETs. Adding MRI infor-

mation led to increased MMSE variability explained by the biomarkers. The authors acknowl-

edged several limitations, like the lack of more detailed clinical measures, the lack of

diagnostic conversion outcomes, and the need to evaluate biofluid biomarkers. Other studies

have considered flortaucipir scans in preclinical stages, selecting a single ROI and identifying

longitudinal clinical decline based on increased uptake in a single ROI [16, 43]. In addition, we

included sophisticated machine-learning derived measures that improve the diagnostic perfor-

mance over a priori-defined ROIs. The meta-temporal ROI also underperformed the average

Braak score. We also confirmed that including our MRI measure, SPARE-AD, improved the

model evaluating longitudinal ADAS-Cog13 changes; however, when we looked at the model’s

different components, SPARE-AD only showed an association with baseline ADAS-Cog13 val-

ues and was not associated with longitudinal ADAS-Cog13 changes. In agreement with previ-

ous neuropathological studies and disease models, recent studies have confirmed that

flortaucipir PET scans (based on predefined ROIs) have a stronger association with longitudi-

nal outcomes than Aβ PET scans [16, 43].

The finding of larger SPARE-Tau and average tau PET changes during follow-up in Aβ
+ participants agrees with recent findings of a ceiling effect in lower Braak stage regions as dis-

ease progresses [44]. Therefore, it is expected that indices that track areas beyond the temporal

lobe will identify AD-related tau deposition better.

This manuscript’s strengths are the large sample size, the comparison of multiple tau indi-

ces (including CSF and PET), florbetapir composite, and MRI structural measures using

machine-learning derived indices. We also evaluated ADAS-Cog13 which offers more infor-

mation than MMSE, used in other analyses, and we evaluated longitudinal outcomes. There

are several limitations to our study: first, only a small number of participants progressed from

CU to MCI (Table 1). Second, CSF tau and florbetapir scans were not available for all partici-

pants. Finally, although we used leave one out cross-validation, a commonly used procedure to
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ensure generalization of results, there was no independent validation cohort accessible to us to

confirm our results. Furthermore, we designed our study to leave Aβ+ CU participants out of

the training sample and this sample served as an independent sample test sample.

This manuscript presents a novel machine-learning derived flortaucipir index that outper-

forms other previously utilized flortaucipir indices in multiple cross-sectional and longitudinal

clinical outcomes, detecting changes and better prognosticating changes in the preclinical dis-

ease stages. We further compared its performance to other biomarker modalities, confirming

that SPARE-Tau showed the best prediction and that MRI, but not florbetapir, added value to

predicting baseline cognitive scores in Aβ+ participants.
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