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Abstract Sex reversal, representing extraordinary sexual plasticity during the life cycle, not only triggers reproduction in
animals but also affects reproductive and endocrine system-related diseases and cancers in humans. Sex reversal has been
broadly reported in animals; however, an integrated resource hub of sex reversal information is still lacking. Here, we
constructed a comprehensive database named ASER (Animal Sex Reversal) by integrating sex reversal-related data of 18
species from teleostei to mammalia. We systematically collected 40,018 published papers and mined the sex reversal-
associated genes (SRGs), including their regulatory networks, from 1611 core papers. We annotated homologous genes and
computed conservation scores for whole genomes across the 18 species. Furthermore, we collected available RNA-seq
datasets and investigated the expression dynamics of SRGs during sex reversal or sex determination processes. In addition,
we manually annotated 550 in situ hybridization (ISH), fluorescence in situ hybridization (FISH), and im-
munohistochemistry (IHC) images of SRGs from the literature and described their spatial expression in the gonads.
Collectively, ASER provides a unique and integrated resource for researchers to query and reuse organized data to explore
the mechanisms and applications of SRGs in animal breeding and human health. The ASER database is publicly available
at http://aser.ihb.ac.cn/.
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Introduction

Sex determination mechanisms in animals mainly include
genetic sex determination (GSD) and environmental sex

determination (ESD) [1]. In GSD, the primary sex of or-
ganisms is determined by genetics during fertilization,
while organisms with ESD remain bipotential gonads until
they perceive environmental stress to promote sex differen-
tiation during ontogeny [2]. For many years, it was a dogma
in vertebrates in the field of sex determination that sex
would be fixed for life after primary sex determination.
After sex reversal was first reported in Aplocheilus latipes
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and natural sex reversal was found in Monopterus java-
nensis [3], it has been widely accepted that sex determi-
nation is amazingly plastic in vertebrates, especially in fish.
This plasticity shows that sexual fate is not an irreversible
process. Indeed, this reversible process leads to sex re-
versal, a redirection of the sexual phenotype during de-
velopment [4]. Environmental factors can override genetic
factors to redirect sexual fate in fish [5] and reptiles [6]. Sex
reversal has been found to be driven by diverse factors,
such as genetic factors, hormones, temperature, and
social changes [7]. Unlike sex change, which implies a
transition from the stabilized sex to the opposite sex, sex
reversal occurs during gonadal development, including the
initiation phase and maintenance phase of sex determina-
tion [4].

Specifically, sex reversal has been studied in fish, rep-
tiles, birds, amphibians, and even mammals. In fish, types
of gonadal differentiation are roughly divided into two
groups: hermaphroditic and gonochoristic [5]. Hermaphro-
ditic species undergo sex reversal during their lifetime and
include three strategies: female-to-male (protogynous),
male-to-female (protandrous), or bidirectional (serial) sex
change [8]. Taking Monopterus albus as an example, an
individual is female from the embryonic stage to first sexual
maturity, then enters an intersex state, and later develops
into a male [9]. Additionally, some hermaphroditic species
undergo socially cued female-to-male sex reversal, whereby
the removal of the dominant male induces sex reversal in a
resident female, such as Thalassoma bifasciatum [10].
Among gonochoristic fish, sex reversal is a synergistic re-
sult of both GSD and ESD [11]. For example, Cynoglossus
semilaevis is a gonochoristic fish with a female hetero-
gametic sex determination system (ZW♀/ZZ♂) characteri-
zed by GSD and temperature-dependent sex determination
(TSD; a subclass of ESD) [12]. In many reptiles, including
Trachemys scripta, gonadal sex is determined by the en-
vironmental temperature during egg incubation [13].
However, estrogens, including estradiol-17β, have also
been proven to participate in the sex determination of
Trachemys scripta [14]. Sex reversal in birds, such as
Gallus gallus, is mainly related to alterations in sex steroid
hormone action, especially estrogens [15]. Amphibians also
show plasticity in sex determination, influenced by estro-
gens, androgens [16], and sometimes by temperature [17].
Sex determination in mammals has been reported to depend
on three processes: chromosome determination (XX or
XY), appropriate pathway of gonadal differentiation, and
accurate development of secondary sexual characteristics
[18]. Disrupting any of these three steps of gonadal
differentiation can lead to aberrant sex determination. In
Homo sapiens, the frequencies of XX and XY sex reversal
are 1/20,000 and 1/3000, respectively, and most of these
cases are caused by translocations of SRY [19]. Although

sex reversal has been broadly reported among vertebrates,
the molecular events underlying sex reversal remain poorly
understood, limited by the lack of integrated omics data
across species.

Although there are several reproduction-related re-
sources, such as GUDMAP [20], GonadSAGE [21], and
ReproGenomics Viewer [22], an integrated and dedicated
database for the community studying sex determination and
differentiation is missing. The GUDMAP database is a
comprehensive gene expression dataset of the developing
genitourinary system in mouse with both in situ and mi-
croarray data. GonadSAGE is a Serial Analysis of Gene
Expression (SAGE) database for male embryonic gonad
development in mouse. The ReproGenomics Viewer is a
cross-species database of omics data (e.g., RNA-seq and
ChIP-seq) for tissues related to reproduction, such as ga-
metogenesis, in 9 model organisms. Here, we developed the
Animal Sex Reversal (ASER) database, the first functional
genomics hub for sex reversal to our best knowledge. The
main works of ASER can be roughly divided as follows. 1)
We screened 18 important and typical species with sex re-
versal phenomena from teleostei to mammalia, including
Cyprinus carpio, Danio rerio, Oryzias latipes, Oreochromis
niloticus, Epinephelus coioides, Thalassoma bifasciatum,
Betta splendens, Monopterus albus, Lates calcarifer,
Paralichthys olivaceus, Cynoglossus semilaevis, Xenopus
laevis, Trachemys scripta, Gallus gallus, Homo sapiens,
Mus musculus, Bos taurus, and Equus caballus, and sum-
marized the major inducements of sex reversal or common

Table 1 Inducements of sex reversal or common approaches used to
manipulate sex in 18 species

Species Gonadal differentiation Inducement/approach

Cyprinus carpio Gonochoristic H/D; Temp
Danio rerio Gonochoristic GA; H/D; Temp
Oryzias latipes Gonochoristic GA; H/D; Temp
Oreochromis niloticus Gonochoristic GA; H/D; Temp
Epinephelus coioides Hermaphroditic Nat; GA; H/D; SF
Thalassoma bifasciatumHermaphroditic Nat; SF
Betta splendens Gonochoristic H/D
Monopterus albus Hermaphroditic Nat
Lates calcarifer Hermaphroditic Nat
Paralichthys olivaceus Gonochoristic H/D; Temp
Cynoglossus semilaevis Gonochoristic Nat; Temp
Xenopus laevis Gonochoristic H/D
Trachemys scripta Gonochoristic GA; H/D; Temp
Gallus gallus Gonochoristic H/D
Homo sapiens Gonochoristic GA
Mus musculus Gonochoristic GA
Bos taurus Gonochoristic GA
Equus caballus Gonochoristic GA

Note: Nat, natural; GA, genetic abnormality; H/D, hormone or drug; Temp, tem-
perature; SF, social factor.
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approaches used to manipulate sex in these species
(Table 1). 2) We compiled a list of the most common genes
or drugs related to sex reversal. Then, we collected and
analyzed PubMed literature to mine sex reversal-associated
genes (SRGs) and obtained their regulatory networks.
Meanwhile, we gathered protein–protein interaction (PPI)
networks related to SRGs from the STRING database. 3) To
facilitate users comparing the homology of SRGs in dif-
ferent species, we collected or assembled the gene annota-
tions for the 18 species, identified homologous genes,
computed the basewise conservation scores across these
species, and identified conserved motifs for orthologous
gene groups. 4) We systematically processed available
RNA-seq data and provided gene expression dynamics
during sex reversal between females and males or different
developmental stages. A user-friendly genome browser was
customized to visualize these genome-wide data. 5) We
collected and annotated available in situ hybridization
(ISH), fluorescence in situ hybridization (FISH), and im-
munohistochemistry (IHC) data to display the spatial ex-
pression of SRGs in the gonads. In conclusion, our ASER
database provides comprehensive and systemic integration
of sex reversal-related data, and we believe that this open
resource will greatly promote research on the mechanisms
of sex reversal.

Data collection and database content

Framework of ASER

An overview of the ASER database and web server is
shown in Figure 1. The ASER database contains five main
functional modules: 1) information for 18 sex reversal
species, 2) SRG regulatory networks, 3) homology align-
ment, 4) expression dynamics, and 5) ISH, FISH, and IHC
images of SRGs (Figure 1A). The preprocessed data were
managed with the MySQL database. Django-based appli-
cations were developed to provide a user-friendly interface
including an embedded genome browser for visualizing
genome-wide data. The key workflows, tools, and pro-
cessed data are summarized in Figure S1A and B and de-
scribed in detail below.

Data sources

SRG information and their regulatory networks were curated
from PubMed literature. All genome sequences and species
information used in this database were downloaded from
NCBI public database. All raw sequencing data were down-
loaded from the Sequence Read Archive (SRA) of NCBI. The
sets of RNA-seq data were organized by species, gonad de-
velopmental stages, and temperature (Table S1). In addition,
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Figure 1 Schematic diagram of ASER database
A. Five main functional modules in ASER, including 1) information for the 18 sex reversal species, 2) SRGs and their regulatory networks, 3) multiple
sequence alignments and conservation scores, 4) gene expression dynamics during sex reversal from RNA-seq data, and 5) spatial distribution of SRGs
from ISH, FISH, and IHC images. B. Data sources in ASER database. ASER stores all processed data in a MySQL database with additional indexes and
uses the Django framework for interactive queries from the web interface to the backend database. C. Overview of the ASER web interface. The main
functionalities are provided and organized into six modules. ASER, Animal Sex Reversal; SRG, sex reversal-associated gene; ISH, in situ hybridization;
FISH, fluorescence in situ hybridization; IHC, immunohistochemistry.
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we retrieved images related to sex reversal from the OPENi
(https://openi.nlm.nih.gov/) and ZFIN databases [23].

SRG mining

We retrieved thousands of articles from PubMed by
querying species and functional keywords (e.g., sex re-
versal). First, the abstracts and full texts of these articles
were collected by text crawler technology. The full texts of
non-open access papers were obtained through the library
portal of Wuhan University, China. Next, we separated a
chunk of continuous text into separate words, and carried
out word stemming to remove plural and different tenses.
Then, we removed stop words, such as “the”, “is”, and
“however”. Finally, we counted the frequency of the words
from the literature, and manually filtered out some high-
frequency but irrelevant words, such as “masculinizing”,
“ovotestes”, “pseudomale”, “hermaphrodite”, and “gyno-
genesis”, into a blacklist until most of the high-frequency
words were gene symbols and drug names. The remaining
words related to genes and drugs were manually added to
the wordlist (Table S2).

We retained 1611 papers that contained the words in the
wordlist and manually read them with notations about SRG
regulation (Table S3). Finally, we found 258 SRGs, 6 drugs,
and 11 hormones, which were validated to be functional in
sex reversal in different species, and constructed the regu-
latory networks of SRGs. We next predicted another 498
genes that were homologous with those SRGs in the 18
species (Figure S1C). Furthermore, PPI networks of SRGs
were extracted from the STRING database [24].

RNA-seq data processing

The data quality of the collected RNA-seq data was assessed
using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), and the adapters and low-quality bases in
raw reads were removed using Trim Galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Fil-
tered reads were aligned to the genome using STAR [25] in
end-to-end mode. The primary alignments were retained
through SAMtools [26]. Gene expression quantification in
fragments per kilobase of exon per million mapped frag-
ments (FPKM) was computed using StringTie [27]. Differ-
ential expression analysis was performed using DESeq2 [28].

Transcriptome assembly

High-quality reads were de novo assembled using StringTie
[27] with default parameter settings. The longest open
reading frames (ORFs) were predicted in the assembled
transcripts using TransDecoder.LongOrfs (https://help.rc.
ufl.edu/doc/TransDecoder). DIAMOND [29] was used to

collect homologous evidence of identified ORFs from the
UniProt database (https://www.uniprot.org/). The potential
coding regions were further refined by TransDecoder.Predict.
Finally, a GFF3 file based on the coding regions of the re-
ference genome was generated through the “cdna_
alignment_orf_to_genome_orf.pl” function in TransDecoder.

Homology alignment

Orthologous groups of SRGs were identified among all sex
reversal species using BLAST [30] all-v-all algorithm in
OrthoFinder [31]. Conserved motifs of orthogroups were
predicted using MEME [32]. Comparisons between con-
served motifs and known motifs were performed using
Tomtom [33]. A species tree was constructed according to
the species taxonomy on NCBI. Meanwhile, the evolu-
tionary relationship was verified by OrthoFinder.

For the orthologue tracks in a reference species, the
homologous genes in other species were mapped to the
reference genome using BLAT [34]. Alignments with se-
quence identity ≥ 60% were retained, and the maximum
intron size was set to 450,000 bp.

For the conservation track, pairwise alignments between
genome sequences were built using LASTZ [35], and
MULTIZ [36] was then used to construct multiple align-
ments, based on which the conservation scores were cal-
culated using phyloP from the PHAST package [37].

Image collection and annotation

We collected available ISH, FISH, and IHC data related to
SRGs from the OPENi and ZFIN databases. The images
were classified by gene, differentiation status, developmental
period, and gender. Wemanually added descriptions for those
images based on the original figure legends and articles.

Web interface and usage

ASER is a user-friendly database, and all the contents are
interactive and dynamic. The main functionalities are pro-
vided and organized into six modules, including Species,
Image, SRG, Gene, Browser, and Download (Figure 1C). In
addition, the “Search” module is developed to display and
interconnect different kinds of data in other modules.

For the “Species” module, the evolutionary tree con-
structed for the 18 sex reversal species is displayed on the
main page (Figure 2A). The reported inducements of sex
reversal or common approaches used to manipulate sex in
each species are displayed on this page, including natural
processes, genetic abnormality (e.g., amh overexpression),
administration of exogenous hormones or drugs (e.g.,
17α-methyltestosterone), temperature changes during

876 Genomics Proteomics Bioinformatics 19 (2021) 873–881

https://openi.nlm.nih.gov/
https://www.sciengine.com/doi/10.1016/j.gpb.2021.10.001
https://www.sciengine.com/doi/10.1016/j.gpb.2021.10.001
https://www.sciengine.com/doi/10.1016/j.gpb.2021.10.001
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://help.rc.ufl.edu/doc/TransDecoder
https://help.rc.ufl.edu/doc/TransDecoder
https://www.uniprot.org/


gonadal differentiation, and manipulation of social factors.
The literature supporting this information is also provided.
Users can click on any species to obtain detailed descrip-
tions and genome information for this species (Figure 2B).

For the “Image” module, we summarized the morpho-
logical characteristics of zebrafish (Danio rerio) ovary and
mouse (Mus musculus) ovary at different developmental
stages to help users better understand the content of this
module (Figure 2C). ISH, FISH, and IHC data related to
specific SRGs can be queried in different ways by species,
gene, differentiative stage, and gonad. Detailed descriptions
of images are shown to help users understand the spatial
distribution of SRGs in the gonads (Figure 2D).

The “SRG” module includes word cloud, regulatory and
PPI networks, and search pages. The word cloud figure is

dynamically presented by species with hyperlinks on the
nodes (Figure 3A). When the user clicks one node, the
original references and additional actions for more in-
formation will be shown under the figure. For any validated
SRG, ASER allows users to obtain its regulators (including
genes, hormones, and drugs), targets, and the associated
modes of regulation (Figure 3B). At the same time, PPI
networks of these SRGs in different species are also dis-
played (Figure 3C), in which the colors of the edges are
used to distinguish known interactions (experimentally de-
termined interaction and database annotated), predicted
interactions (neighborhood on chromosome, gene fusion,
and phylogenetic co-occurrence), and other types (homolo-
gy, co-expression, and automated text mining). In addition,
the search page provides an interface for a specific SRG to
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Figure 2 “Species” and “Image” modules in ASER
A. The main page of “Species” module. Evolutionary relationship and sex reversal inducements or common approaches used to manipulate sex of the 18
species belonging to teleostei, mammalia, sauropsida, and amphibia are shown the main page. B. Detailed descriptions, genome information, and
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show its regulatory network and more detailed information,
such as tissue, developmental stage, and literature evidence
(Figure 3D and E).

The “Gene” module provides different kinds of data for

any annotated gene, some of which are linked to the
“Browser” module for visualization. The links corre-
sponding to the query gene are shown on the search page by
species and gene symbol (Figure 4A). Detailed information
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for a specific query gene includes its orthogroup in all
species, predicted motifs, and similar known motifs (Figure
4B). The orthologous genes and 18-way conservation
scores for the query gene can be inspected in “Browser”
tracks (Figure 4C). Detailed alignment information can be
obtained and downloaded by clicking on the track. In ad-
dition, gene expression quantifications in FPKM across
different stages, tissues, and conditions are shown as bar
plots and in detail as tables (Figure 4D). The RNA-seq
signal profiles are displayed in “Browser”, and the tracks
can be customized easily, including color, scale, height, etc.

For any species, the available tracks can be dynamically
selected or unselected. For example, inDanio rerio, a subset
of RNA-seq tracks are shown for the sox9 gene during sex
reversal (Figure 4E).

Discussion

Studies on sex reversal have been especially useful in helping
redefine the concept of sex determination. There are diverse
master sex-determining genes reported in different species.
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In addition, genes previously known to be involved in sex
determination or differentiation are emerging as potential key
components of sex reversal in other vertebrates [38].
Therefore, studies in different species continue to reveal
genes with unexpected roles in sex reversal, and their
homologues in other vertebrates also deserve investigation.
ASER fills the gap of the sex reversal database by in-
tegrating diverse information at different levels for the 18
species with sex reversal phenomena, including curated
SRGs, RNA-seq data, image data, and conservation data.

For any collected sex reversal species, users can obtain
major inducements of sex reversal in this species in the
“Species” module. For any SRG, users can obtain its regu-
lators and targets during sex determination in the “SRG”
module, and spatial distribution in different stages in the
“Image” module. For any annotated gene, users can obtain
its homologous genes and conserved motifs in 18 species in
the “Gene” module. Furthermore, users can also explore
and visualize expression dynamics across different condi-
tions in the “Gene” or “Browser” module.

In the future, we will continuously select important and
typical sex reversal species as their complete genome and
omics data from both “female” and “male” samples become
available. Hermaphroditic fish such as Synbranchus mar-
moratus and Amphiprion perideraion and invertebrates
such as Macrobrachium rosenbergii and Venus mercenaria
are candidates. In addition, we will add more omics data,
such as sRNA-seq, BS-seq, and ChIP-seq data. We expect
that the resources in ASER will promote further studies to
decode the molecular mechanisms of sex reversal.

Data availability

ASER is publicly available at http://aser.ihb.ac.cn/.
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