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Abstract. Background: Multiplex Ligation dependent Probe Amplification (MLPA) is a rapid, simple, reliable and customized
method for detection of copy number changes of individual genes at a high resolution and allows for high throughput analysis.
This technique is typically applied for studying specific genes in large sample series. The large amount of data, dissimilarities
in PCR efficiency among the different probe amplification products, and sample-to-sample variation pose a challenge to data
analysis and interpretation. We therefore set out to develop an MLPA data analysis strategy and tool that is simple to use, while
still taking into account the above-mentioned sources of variation.

Materials and methods: MLPAnalyzer was developed in Visual Basic for Applications, and can accept a large number of file
formats directly from capillary sequence systems. Sizes of all MLPA probe signals are determined and filtered, quality control
steps are performed, and variation in peak intensity related to size is corrected for. DNA copy number ratios of test samples are
computed, displayed in a table view and a set of comprehensive figures is generated. To validate this approach, MLPA reactions
were performed using a dedicated MLPA mix on 6 different colorectal cancer cell lines. The generated data were normalized
using our program and results were compared to previously performed array-CGH results using both statistical methods and
visual examination.

Results and discussion: Visual examination of bar graphs and direct ratios for both techniques showed very similar results,
while the average Pearson moment correlation over all MLPA probes was found to be 0.42. Our results thus show that automated
MLPA data processing following our suggested strategy may be of significant use, especially when handling large MLPA data
sets, when samples are of different quality, or interpretation of MLPA electropherograms is too complex. It remains, however,
important to recognize that automated MLPA data processing may only be successful when a dedicated experimental setup is
also considered.
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1. Introduction

Over the last decade, advances in cytogenetics and
molecular biology have allowed us to determine crit-
ical copy number aberrations in the pathogenesis of
genetic syndromes and cancer. However, technolo-
gies used to study these genomic copy number al-
terations often require specific lab resources, large
amounts of samples and low resolution of the meth-
ods used may not allow identifying the causal genes
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located at these aberrant chromosomal regions. Mul-
tiplex ligation-dependent probe amplification (MLPA)
is a polymerase chain reaction (PCR)-based approach,
sufficiently sensitive, reproducible and sequence-spe-
cific to allow the relative quantification of 50 differ-
ent target sequences in a single reaction, requiring only
20 ng of human DNA [1].

In MLPA, each oligo-probe consists of two hemi-
probes which hybridize to adjacent sites of the target
sequence. Adjacent hybridized hemi-probe oligonu-
cleotides are ligated, permitting subsequent amplifica-
tion. All ligated probes have identical end sequences,
permitting simultaneous PCR amplification using only
one primer pair. Due to the different length of every
probe in the probe mix, each probe gives rise to an am-
plification product of a unique size between 130 and
480 bp [1]. These products can be separated and mea-
sured using standard capillary fragment electrophore-
sis. Amplification of these probes is proportional to the
amount of the target sequences present in a sample.
The measured intensity of fluorescence of each probe
is then compared to the intensity of the same probe per-
formed on normal human DNA to determine its rela-
tive copy number, which then is presented as a copy
number ratio.

The advantages of MLPA puts this technology
forward as an alternative to the more costly array-
comparative genomic hybridization (arrayCGH) and
fluorescent in situ hybridization (FISH) techniques
used to inspect aberrant chromosomal regions. This
has been illustrated in several studies that aimed to de-
tect gene copy number changes [2–7]. However, de-
spite the previously mentioned advantages, manage-
ment of large numbers of samples and probes, dissim-
ilarities in PCR efficiency among the different probes,
and sample to sample variation still pose a challenge
to data analysis and results interpretation. While part
of these aspects may be tackled during the experimen-
tal procedure, others can be undertaken during data
analysis. The aim of this study is therefore to develop
a robust and standardized MLPA normalization strat-
egy that takes into account structural sample to sample
variation and differences in PCR efficiencies, and im-
plement this into a software tool for rapid handling and
interpreting of large amounts of MLPA data. Addition-
ally, this software includes a visualization and database
tool, providing an easier interpretation and storage of
MLPA results, and sample handling protocols to fur-
ther optimize MLPA results. The software runs in a
Microsoft Excel XP, 2003 or 2007 (© 2006 Microsoft
Corporation) environment, is easy to implement, have
a user-friendly interface, is freely available and usable
for any MLPA probe mix.

2. Material and methods

2.1. Materials

We investigated six colorectal cancer cell lines with
a panel of 46 MLPA probes, targeted to chromosomal
areas related to colon cancer progression [27]. DNA
from colorectal cancer cell lines HT29, SW116, RKO,
SNU4, HCT116 and COLO320, with arrayCGH data
available, was collected at the VU University Medical
Center (Amsterdam, The Netherlands).

Commercially available human genomic DNA was
used as reference (Promega Corporation, Madison,
Wisconsin, USA).

2.2. DNA isolation

Genomic DNA from cell lines was extracted using
the Puregene DNA isolation kit (Biozym, Landgraaf,
The Netherlands) according to the manufacturers’ rec-
ommendations.

2.3. MLPA

All MLPA reactions were performed according to
the standard MLPA reaction protocol [1]. All MLPA
reactions were performed in triplicate. Each MLPA ex-
periment included five samples from normal human
DNA which were spread through the sample plate
for normalization reasons. We generated a dedicated
colon cancer MLPA mix, which targeted genes lo-
cated on gained chromosomal arms previously de-
scribed to be involved in colorectal cancer [27,28].
The MLPA probe mix included eleven probes tar-
geting genes located on chromosome 8, 12 probes
targeting genes on chromosome 13 and 16 probes
targeting genes on chromosome 20. Eight reference
probes for normalization purposes were added target-
ing chromosomal arms 2p, 4q, 12p and 16p. To mea-
sure DNA input, four concentration control fragments
(CCF1–4) and a ligation- dependent fragment (CCF5)
were also added to the MLPA mix. Separation, detec-
tion and quantification of the MLPA probe products
were performed on a CEQ8000 capillary sequence sys-
tem (Beckman Coulter, Fullerton, USA), using 1 µl
of MLPA product mixed with 0.3 µl of size standard
(08095 CEQ™ DNA Size Standard Kit-600) and 32 µl
of formamide.
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2.4. Data analysis, the algorithm

2.4.1. Notation
XL,i: Measurement of length of a peak for

sample i.
XS,i: Measurement of intensity of a peak for

sample i.
PBMin

j : Minimal set (bin) length for probe j.

PBMax
j : Maximal set (bin) length for probe j.

SPi,j : Measurement for sample i and test
probe j.

LSPi,j : Log converted measurement for sample
i and test probe j.

RPh,j : Measurement for reference h and test
probe j.

LRPh,j : Log converted measurement for refer-
ence h and test probe j.

SCi,z : Measurement for sample i and reference
probe z.

LSCi,z : Log converted measurement for sample
i and reference probe z.

RCh,z : Measurement for reference h and refer-
ence probe z.

LRCh,z : Log converted measurement for refer-
ence h and reference probe z.−−→

LSCi = (LSCi,1, . . . , LSCi,h).
CCFi;r,m: Measurement for sample i or reference

h and concentration control fragment m.
DQi,j = Dosage quotient for test probe j for sam-

ple i.
m: Number of control probes.
w: Number of all probes.
n: Number of sample runs.
k: Number of reference runs.
q: Total number of probes.

2.4.2. Size calling and data filtering
Peak signals were related to a probe when the length

of a peak insert ‘was’ between ±2 bp of a set actual
probe length (bin set) and when the intensity of the
peak was larger than 3% of the sum of all peak signals
in a sample run:

(
XL,i > PBmin

j & XL,i < PBmax
j

)

& XS,i >
Sum(XS,1, . . . , XS,j)

100
.

2.4.3. Signal-to-noise determination
To determine whether to use the probe peak height

or peak area as the basis for normalization, the signal-
to-noise ratio (SNR) was determined for both metrics.

First for both metrics, the median signal of each ref-
erence probe as well as its standard deviation over the
samples was computed. Next, the SNR was assessed
by dividing the average of these median signals by the
standard deviation pooled over the reference probes:

SNR =
∑n

i=1[med(
−−→
LSCi)]/q√∑n

i=1 σ2(
−−→
LSCi)/q

.

2.4.4. Sample concentration control
The DNA concentration was assumed to be too low

when one third of the median of the signal intensi-
ties of the amplification products of MLPA CCFs of
64 (CCFI,1), 70 (CCFI,2), 76 (CCFI,3) and 82 (CCFI,4)
was greater than the signal intensity of the fifth control
band of 92 (CCFI,4) bp:

med(CCFi,1, CCFi,2, CCFi,3, CCFi,4)
3

>CCFi,5.

2.4.5. Correcting for probe-wise bias by
pre-normalization

Correction factors for probe specific biases were
computed for all reference runs by dividing the actual
probe signal through its predicted signal (RPL(pred) =
a+ b∗XL), based on the least of squares method [14].
Our explanatory variable was the probe length (XL),
whereas our response variable was the probe signal
(RP). The final probe-wise correction factors were de-
termined by taking a median of the calculated values
over all reference runs:

Correction factor PL,j

= med

(
RPj,1

RPL,j,1(pred)
, . . . ,

RPj,k

RPL,j,k(pred)

)
.

This correction factor was then applied to all runs to
reduce the effect of probe bias due to particular probe
properties on the forthcoming regression-type normal-
ization:

RP′
i,j =

RPi,j

PL,j
,

SP′
i,j =

SPi,j

PL,j
.

2.4.6. Correcting for tailing effects
For every run, prior to normalization, the amount of

slope of signals was approached by a function where
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the log two transformed pre-normalized signals of all
probes (or only the reference probes) were regressed
linearly on the probe lengths:

LRP′
i,j(pred) = a + b ∗ XL,j ,

LSP′
i,j(pred) = a + b ∗ XL,j .

Slope (b) and intercept (a) were determined by us-
ing the least squares method after taking out large
outliers, using a Monte-Carlo like simulation, adapted
to search for expected probe deviations (gains/losses).
The probe length-related normalization value was ob-
tained by calculating the distance of each signal to the
determined regression line:

LRP∗
i,j = LRP′

i,j − LRP′
i,j(pred),

LSP∗
i,j = LSP′

i,j − LSP′
i,j(pred).

2.4.7. Determining the reference
Reference signals values for each probe were deter-

mined by calculating the average signal over all refer-
ence runs, after correction for probe bias and slope.

−−→LRP =
1
k

k∑
h=1

LRP∗
h,j .

2.4.8. MLPA normalization
We used every MLPA probe set as a reference probe

for normalization to produce an independent ratio
(DQj,z). The cell line COLO320 was furthermore nor-
malized using all probes for normalization to demon-
strate the importance of the chosen normalization fac-
tor on the MLPA results:

DQi,j,z = [LSP∗
i,j − LSC∗

i,z] −
[
LRP∗

j − LRC
∗
z

]
.

The median of all produced ratios was taken as the final
probe ratio. The DQi,j for a test probe in a sample is
therefore:

DQi,j = med(DQi,j,1, . . . , DQi,j,m).

2.4.9. Ratio confidence interval
The quality of the normalization constant (set refer-

ence probes) was assessed by calculating the median
of absolute deviations (MAD) of each independent ref-
erence probe DQs to the final median ratio:

MADi,j = medm
z=1

(
|DQi,j,z − DQi,j |

)
.

Next, the intrinsic variation of each probe was com-
puted by normalizing each separate reference run back
to the defined reference signals. The standard deviation
of the mean of each probe over the reference runs was
estimated by:

σRPj =
1√
k

σ(LRP∗
1,j , . . . , LRP∗

k,j).

The final standard deviation of each calculated ra-
tio per MLPA probe in a sample was determined by
the sum of the MAD value (MADi,j) and the intrin-
sic probe variation (σRPj). MAD values were first
converted to standard deviations by multiplying with
1.4826 [20] and divided by the square root of the num-
ber of reference probes. Both standard deviations were
then pooled by squaring each standard deviation and
taking the square root of the sum of both:

σi,j =
√

(1.4826 ∗ MADi,j/
√

z)2 + σRP2
j .

The average and/or median value over all calculated
MAD values in a run can furthermore be calculated and
used as an indication for the quality of the normaliza-
tion for that run.

2.5. MLPA to array CGH correlation

DNA copy number ratios measured by MLPA and
BAC array CGH were compared for the cell lines
studied. The array used contained approximately 2500
DNA clones evenly spread across the whole genome,
with an average resolution of 1.4 Mb. Image acquisi-
tion, analysis and data extraction were performed as
previously described [19]. The MLPAnalyzer automat-
ically searched for the array CGH clone closest to
the map view location (MV35, NCBI) of each MLPA
probe. Next, ratio results for each MLPA probe and its
corresponding arrayCGH clone over all cell lines were
correlated by computing the Pearson moment correla-
tions [14].

3. Results (analysis strategy)

3.1. Experimental design

MLPA is a technique where relative signal changes
are being measured. Thus, a sample run alone will not
provide the information needed to estimate the copy
number changes without a reference run to compare
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to. Multiple reference runs are furthermore needed to
estimate the reproducibility of each MLPA probe in a
distinct experimental setup. Preferably, multiple stan-
dardized reference samples should be tested at multi-
ple time points during the course of the experiments
and randomly spread through the MLPA sample plate
to cover any technical experimental variation. We per-
formed 5 MLPA reactions on reference samples in each
MLPA experiment. Test samples were performed in
triplo and the average of the three independently ana-
lyzed results provided our final results.

3.2. MLPAnalyzer features and implementation

MLPAnalyzer is written in Visual Basic for Ap-
plications (VBA), an implementation of Visual Ba-
sic which is built into all Microsoft Office applica-
tions. VBA is closely related to Visual Basic, but runs
from within the host application (Microsoft Excel XP,
2003 or 2007 (© 2006 Microsoft Corporation)), rather
than as a standalone application. The data flow of
MLPAnalyzer is briefly outlined in Fig. 1. All dis-
cussed algorithms are implemented in the MLPAna-
lyzer and can be accessed through an easy to handle
user form.

To increase the MLPA data flow, the MLPAnalyzer
directly accepts raw size called data files in *.txt or
*.CSV format exported from most common capillary
electrophoresis systems. The fragment analysis soft-
ware provided with the electrophoresis system should
thus be used for size calling of the separated MLPA
products. Size calling and electropherogram visualiza-
tion of ABIF data files, from the ABI-310 and ABI-
3100 series can also be performed by the MLPAna-
lyzer, omitting the usage of any other software. Af-
ter importing, all data will be filtered from background
signals and a DNA concentration, ligation check, and
a signal count is performed automatically. Following
these quality checks, the actual normalization com-
mences which deals with the dissimilarities among
different probes and sample to sample variation by per-
forming: signal-to-noise determination, probe bias cor-
rection, slope correction, data normalization and ra-
tio confidence determination. Individual sample charts
and reports are created afterwards, as well as overall
project ratio and statistical results. All results are di-
rectly stored on disk as new Excel files, results can be
accessed from within the program itself, or by explor-
ing the created results files.

3.3. Managing large sample numbers

Management of large batches of MLPA samples
is mainly problematic because MLPA fragment data
needs individual visual run inspection and manual fil-
tering of background signals. The MLPAnalyzer auto-
matically filters all fragment data and simultaneously
performs all necessary quality checks, significantly in-
creasing the data stream.

3.3.1. Automated data filtering
Software developed for DNA fragment analysis,

such as Genescan®, Genotyper®, Genemapper®, Peak
Scanner software® (Applied Bio systems, Foster City,
CA), CEQ 2000® and 8000® (Beckman Coulter, Ful-
lerton, USA) are typically used for peak-detection, size
calling and intensity quantification. All these programs
produce data files containing peak length, peak height
and peak area of every MLPA probe. These different
programs allow for a number of different size calling
methods and the use of different size standard markers,
which consequently gives the probes a deviation length
from the original probe size.

Currently, most MLPA users export measurements
of fluorescent units for all peaks into Excel spread-
sheets. Probe signals and background signals are then
separated manually from each other in Excel. In the
MLPAnalyzer, the user can adjust the actual probes
sizes and subsequently import and filter the raw data
files automatically, continuing only with the MLPA
probe specific signals, either the complete peak area or
largest peak height signal which are stored for further
analysis.

3.3.2. Signal-to-noise determination
In practice MLPA users usually choose to use the

peak height as a metric for normalization, which has
some practical advantages [9]. To be more methodi-
cally sound, the signal-to-noise ratio (SNR) can be cal-
culated for both metrics as MLPAnalyzer does. ML-
PAnalyzer then continues with the metric having the
lowest signal-to-noise ratio providing the most accu-
rate results.

3.3.3. DNA concentration check
All MLPA kits contain concentration control frag-

ments (CCF) which can be recognized by the pres-
ence of 4 fragments at regular distances whose lengths
always co-vary together. Amplification products of
MLPA CCFs of 64, 70, 76 and 82 bp probes will be
prominent if the amount of sample DNA is very low.
In contrast, the fifth control band of 92 bp is ligation-
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Fig. 1. MLPAnalyzer system data flow. MLPA relative fluorescent signals (y-axis) ordered on probe length (x-axis) in the different stages of
processing for a reference (left) and a test sample (right). The complete MLPA process consists of: the MLPA reaction, capillary electrophoresis,
data filtering, signal-to-noise determination, quality control, probe bias correction, slope correction, normalization, ratio confidence determination
and the creation of plots and reports.
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Fig. 2. Analysis of the concentration control probe fragment (64, 72, 76, 82 bp) relatively to the 92 ligation dependent probe indicates if sufficient
DNA was available during the MLPA reaction to create reliable results.

dependent and should have a signal similar to most
other MLPA amplification products (Fig. 2). MLPA
CCFs are currently investigated by examination of the
individual electropherograms. The MLPAnalyzer auto-
matically detects and compares the concentration and
ligation-dependent control fragment signals, providing
a simple DNA concentration check, ensuring analysis
of only reliable runs. Users will be notified when the
DNA concentration was found to be too low, but may
choose to normalize the data anyway if all probe sig-
nals are present.

3.4. Dealing with sample to sample variation

Sample to sample variation or more specific, struc-
tural differences between reference and sample runs
causes normalization problems. Before commencing
with the actual data normalization, each reference and
sample run needs to be corrected for possible slop-

ing artifacts. The MLPAnalyzer first pre-normalizes all
data, dealing with the probe-wise biases, where after
a regression analysis determines the amount of signal
sloping and corrects for it.

3.4.1. Correcting for probe-wise bias by
pre-normalization

Each MLPA probe is multiplied during the amplifi-
cation reaction with a probe specific efficiency, mainly
determined by the sequence of the probe, resulting
in a probe specific bias. The extent of this bias will
be estimated automatically by the MLPAnalyzer for
each probe using the reference runs, assuming these
were performed on normal human DNA. Optimally,
all MLPA probes produce similar signal intensities, re-
flecting 2 genomic copies. A linear systematic probe
length effect on the signal is expected, probe signal
intensities can therefore be regressed linearly on the
probe lengths, to determine the predicted signals. Cor-
rection factors for these probe specific biases are then
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computed per reference run, by dividing the actual
probe signal through its predicted signal, based on the
least of squares method [14]. The final probe-wise cor-
rection factor is then determined by taking a median of
the calculated values over all reference runs which are
later applied to all runs taking out the probe bias effect
for the coming slope normalization.

3.4.2. Correcting for tailing effects
Caused by a decreasing efficiency of amplification

of the larger MLPA probes, a systematic probe length
effect or size to signal drop can be seen in all MLPA
electropherograms. This effect may be enhanced by
sample contaminants or evaporation during the hy-
bridization reaction. Signal sloping may further be in-
fluenced by injection bias of the capillary system and
diffusion of the MLPA products within the capillaries.
In addition, the peak heights will be more affected by
diffusion of the MLPA products than peak areas, but
are influenced less by the presence of shoulder peaks
than peak areas. In conclusion, each separated MLPA
run may exhibit a run specific signal decrease which
needs to be adjusted, before normalization. In practice,
MLPA data are rarely corrected for this effect that can
induce false deletions of the longer probes.

The MLPAnalyzer allows several different options
to correct for sloping effect in different situations.
First, for every run the amount of sloping of signal in-
tensities will be approached by a function where the
log-transformed pre-normalized signals of the refer-
ence probes or all probes are regressed linearly on the
probe lengths. Slope and intercept can then be deter-
mined using the least squares method (LS) or least
of median squares method (LMS). Least of squares
method is set as default and minimizes the error de-
viation which is more accurate when only small error
values occur [14], prior to applying the LS method,
large outliers are therefore identified and ignored in
the subsequent calculation. For the LMS, the estimator
must yield the smallest value for the median of squared
residuals computed for the entire data set making this
method very robust in the presence of outliers, but less
precise than the LS. The LMS algorithm used in the
MLPAnalyzer was adapted from Rousseeuw [10]. Af-
ter determining the slope and intercept, signal inten-
sities are predicted for each probe. The probe length-
related values can then be obtained by calculating the
distance of each log transformed pre-normalized signal
to its predicted signal.

3.5. MLPA normalization

Determination of a single ratio per test probe in
a sample requires us to have a single reference sig-
nal value for each probe. Reference signal values for
every probe in the MLPAnalyzer will therefore be de-
termined by calculating the average (or median) of ref-
erence signal values in all reference runs, after correc-
tion for probe bias and slope.

Classical normalization methods, such as global nor-
malization, have proven to be powerful [18]. However,
because of the relative low numbers of targets in an
MLPA experiment, these methods are also sensitive to
bias. To circumvent this problem MLPAnalyzer makes
use of the designated reference probes in the MLPA
mixes. These reference probes are targeted to regions
which are known to be diploid in both reference and
test samples. Each reference probe signal will be used
as a normalization constant, thereby determining the
ratio (DQ) of each test probe between reference and
test sample. The MLPAnalyzer may furthermore use
each probe in the MLPA mix as a normalization con-
stant, although it may be best to use both approaches.
The median of all produced ratios, estimates the fi-
nal probe ratio, or ploidy status of the sample test
probe sequences in a MLPA mix. The robustness of
the normalization thus depends on the number of ref-
erence probes, their chromosomal locations, and the
origin of the samples that are being used. In general,
when analyzing tumor DNA, more reference probes
are required, than when germ line DNA from patients
with cytogenetic disorders are tested, provided refer-
ence probes are carefully selected. It is recommended
to have at least 8 reference probes in a probe set, which
allows 3 reference probes to be aberrant without com-
promising the used normalization factor.

3.6. Dealing with MLPA probe variation

MLPA probes all have their own characteristics and
therefore yield a level of variation which is unique for
each probe. This probe variation may furthermore be
influenced by sample contaminations and should there-
fore be measured within each MLPA experiment on the
reference runs. Final probe ratios are furthermore influ-
enced by the normalization factor used, which usually
is a combination of different probes. By adding these
two factors, the MLPAnalyzer provides a measurement
of variation on all calculated probe ratios, which aids
in results interpretation.
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3.6.1. Ratio confidence interval
The quality of the normalization constant will be as-

sessed by calculating the median of absolute deviations
(MAD) of each independent DQ to the final median ra-
tio per probe. The presence of multiple reference runs
is used to calculate the intrinsic variation of each probe,
by normalizing each separate reference run back to the
defined reference signals, either the average or median
of all. The final standard deviation of each calculated
ratio per MLPA probe in a sample can then be deter-
mined by the sum of the MAD value and the intrinsic
probe variation. 95% confidence intervals are further-
more computed by multiplying the final standard devi-
ation according to the Student’s t distribution.

The average and median value over all calculated
MAD values will furthermore be computed per run,
which will indicate the quality of the normalization for
that run. Discrepancy on estimated DQ by the used ref-
erence probes will thus lead to an increase of the aver-
age/median MAD value, indicating a poor normaliza-
tion.

3.7. Results ordering and visualization

Since chromosomal aberrations often span larger re-
gions [27], ordering probe data by Map View loca-
tions (NCBI, Map view version 36) results in cluster-
ing of probes targeting the same region. Aberrations
can be recognized more easily this way and probes tar-
geting the same region may confirm each other’s re-
sult. MLPA data should always be confirmed by repli-
cate experiments. Results are finally displayed as bar
graphs or XY plots, Map view locations can be dis-
played on the x-axis, and ratio results on the y-axis and
the standard deviations are displayed as error-bars to
enhance result interpretation (Fig. 4).

4. Results (MLPA to CGH correlation)

To validate MLPAnalyzer, we compared previously
obtained array CGH results of cell lines: HT29,
SW116, RKO, SNU4, HCT116 and COLO320 to
MLPA results of the same cell lines. Both methods
for DNA copy number profiling produced compara-
ble ratios (Figs 3–5), confirming the validity of MLPA
in combination with MLPAnalyzer. The average Pear-
son moment correlation coefficient over all probes was
0.42, indicating an average overall positive correla-
tion. Notably, DNA copy number ratios obtained with
MLPA were higher in most experiments than the CGH

ratios (Fig. 4), as previously has been found by Postma
et al. [2].

Most MLPA probes showed a Pearson moment cor-
relation coefficient greater than 0.3 (70%), while some
MLPA probes showed little or no correlation. The neg-
ative correlations found on the MYC, WISP1, CDX2,
FLT3 and SRC are due to the high amplifications found
in the COLO320 cell lines by MLPA, which were not
found by CGH. Other low correlations, such as for the
MLPA probes between 41.1–51.4 MB located on chro-
mosome 13, may be explained by a large difference
in target position between the probes and clone, which
was for some as large as 8 Mb.

The COLO320 cell line MLPA data was further-
more analyzed twice using two different normalization
strategies (Fig. 3); once all signals were normalized to
the reference probes (MLPA C) and secondly against
all probes (MLPA P). The large difference in results
shows the importance of the chosen reference probes
for the MLPA normalization. The reference probe nor-
malization method assumes that the probes located at
chromosomes 2, 4, 12 and 16 are normal, while in fact
all but the probes targeting 4q were gained, as shown
by the CGH results. This discrepancy among the refer-
ence probes causes in an increase of the probe related
MAD values and thus an increase in the probe ratio re-
lated standard deviation. The average MAD value over
the complete run was furthermore found to be higher
than 0.8, indicating that the used reference probes were
not optimal for normalization of this run.

The population normalization method uses a median
of all probes as a normalization factor, showing the
gains of the earlier chosen reference probes at chromo-
somes 2, 4p, 12 and 16, also confirmed by CGH. When
the population normalization method was used, the av-
erage MAD value was also found to be higher than 0.8.
This was however expected for population normaliza-
tion, since changes in the used probes (all) are also ex-
pected. Final results for this cell line should thus be de-
termined subjectively by evaluation of the ratio results
of the different methods to the expected aberrations.

5. Discussion

MLPA analysis of small series of samples can eas-
ily be performed by visual inspection of the peak pat-
tern of a patient superimposed over a peak pattern of
a reference [3]. This can be adequate for genetic dis-
eases where the MLPA probes target for the exons of a
single gene and both samples and reference DNA are
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Fig. 3. Copy number changes for genes located at chromosome 8p, 8q, 13q, 20p, 20q and reference genes (chromosomes 2, 4, 12p and 16p) located throughout the genome as determined by
MLPA and CGH of the cell lines: HT29, HCT116, Colo320, SNU4, SW116 and RKO. Copy number increases are depicted in green (>1.2); copy number decreases in red (0.8); and normal
copy numbers in blue (0.8–1.2). The displayed map view locations may differ for the CGH results, as the closest available clone results to the MLPA probe locations were taken. MLPA C,
refers to the normalization method, reference probes normalization, while MLPA P refers to a normalization method which uses all probes (population). The displayed standard deviations (SD)
are the results of the reproducibility test, displayed PPMC values are the correlation results between each MLPA probe and the closest available raw CGH clone based on the 5 performed cell
lines.
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Fig. 4. MLPA result graph created by the MLPAnalyzer of a HT29 cell line (red bars). Map view locations (NCBI) are displayed on the x-axis
and ratio results on the y-axis. Standard deviations of each MLPA probe are displayed as error-bars. CGH raw ratio results of the closest available
clones are displayed in blue bars.

of comparable quality. More complex diseases, MLPA
tests designed for multiple genomic regions, samples
of different quality, and in general larger data sets, re-
quire more complex data analysis strategies. MLPA
has proven to be a very robust technique [1], though
final results can be biased: the environment, methods
and instruments used, may introduce error. Here we re-
port a detailed MLPA data preprocessing and analysis
strategy which takes into account commonly observed
forms of variation in MLPA, such as size to signal
drop and idiosyncratic probe variation. All algorithms
have been implemented in user friendly software pro-
viding a quick, free and accurate MLPA data analysis
tool.

To obtain optimal MLPA results a good normaliza-
tion technique alone is not enough. MLPA data analy-
sis strategies must be contemplated on during exper-
imental design. Key to reliable normalization lies in
the design of the MLPA mix and in the choice and us-
age of test and references samples. Sample and refer-
ence DNA having a common origin, equal DNA con-

centrations and similar extraction procedures are more
easy to compare, and will provide more accurate re-
sults. Furthermore, using multiple reference samples
will provide information on reproducibility of the data
obtained with MLPA probes in the set used and aid in
judging significance of results.

After creating a well-designed experimental setup
and performing all MLPA reactions, MLPA users may
face a number of capillary sequence systems which
can be used for fragment separation, peak-detection,
size calling and intensity quantification. Since capil-
lary sequence devices are commonly used for sequenc-
ing, fragment analysis of MLPA products usually is
performed sub optimally. Optimal run settings are dif-
ferent for each device and should be determined empir-
ically. The quality of each MLPA separation should be
inspected by investigating the overall signal intensity,
the level of signal sloping, the current during the run
and the pattern of the size marker. Capillary fragment
separation troubleshooting protocols are therefore also
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Fig. 5. Scatter plot displaying the MLPA ratio probe results against the closest array-CGH clone ratio results of the highest correlating probe,
KCNK9. The Pearson moment correlation for this probe was 0.99.

included in MLPAnalyzer to optimize MLPA product
separation and detection.

MLPAnalyzer has three different primary copy num-
ber analysis methods, designed for optimal normaliza-
tion of MLPA data of kits designed for tumor sam-
ples, cytogenetic disease and mental retardation (for
the latter two data is not shown). These analysis meth-
ods differ in the probe signals they use for slope cor-
rection and normalization, providing the most robust
analysis method for the expected sample types. MLPA
data processing is however context dependent and a
single setting for general use is not the optimal ap-
proach. Normalization methods should be fine tuned
using advanced settings depending on the MLPA kit
used, sample type and expected pattern of aberra-
tions.

The MLPA and arrayCGH results showed positive
correlations for most probes evaluated. Yet, compar-
ison of DNA copy number alterations measured by
MLPA and arrayCGH is less straight forward than may
be expected. The platforms differ in resolution (MLPA
60-mer probes, arrayCGH 100k BACs), the platforms
do not fully align so data needed to be extrapolated,
and dynamic range of MLPA is higher than that of
arrayCGH. Visual and statistical examination of both
results did however show that both methods produce

alike results, indicating the success of the suggested
analysis strategy.

Earlier versions of MLPAnalyzer have furthermore
already been successfully used in larger data sets [2,
22–26]. In conclusion we found that the MLPAnalyzer
is a useful tool for MLPA data processing, although
users should be aware of the limitations and types of
variation often found during the MLPA process. The
total MLPA data analysis process can be performed in
minutes, including all necessary quality control steps,
DNA copy number calculations and visualizations. It
features applicability for all available MLPA mixes and
new mixes can easily be added. Even though the ML-
PAnalyzer currently runs in a Microsoft Excel envi-
ronment, a stand-alone version is currently under con-
struction, which will also support size calling of files
coming directly from capillary sequence systems.
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