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Abstract.
Background: Detailed pathology analysis and morphological quantification is tedious and prone to errors. Automatic image
analysis can help to increase objectivity and reduce time. Here, we present the evaluation of the DeePathology STUDIOTM

for automatic analysis of histological whole-slide images using machine learning/artificial intelligence.
Objective: To evaluate and validate the use of DeePathology STUDIO for the analysis of histological slides at high resolution.
Methods: We compared the DeePathology STUDIO and our current standard method using macros in AxioVision for the
analysis of amyloid-� (A�) plaques and microglia in APP-transgenic mice at different ages. We analyzed density variables
and total time invested with each approach. In addition, we correlated A� concentration in brain tissue measured by ELISA
with the results of A� staining analysis.
Results: DeePathology STUDIO showed a significant decrease of the time for establishing new analyses and the total analysis
time by up to 90%. On the other hand, both approaches showed similar quantitative results in plaque and activated microglia
density in the different experimental groups. DeePathology STUDIO showed higher sensitivity and accuracy for small-sized
plaques. In addition, DeePathology STUDIO allowed the classification of plaques in diffuse- and dense-packed, which was
not possible with our traditional analysis.
Conclusion: DeePathology STUDIO substantially reduced the effort needed for a new analysis showing comparable quan-
titative results to the traditional approach. In addition, it allowed including different objects (categories) or cell types in a
single analysis, which is not possible with conventional methods.
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INTRODUCTION

In clinical routine, pathologists use visual evalu-
ation, semi-quantitation, and morphology for diag-
nostics. However, this approach is subjective and may
lead to discrepancies in the diagnosis and, there-
fore, treatment approach. In addition, in clinical
and preclinical research, data from images must be
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quantitative to allow statistical analysis, needed for
characterization of pathological changes and eval-
uation of potential new treatments. This translates
to cell or plaque counting, intensity quantification,
or shape classification. This approach, when man-
ually performed, is tedious and prone to errors. In
addition, it requires investment of time and is, there-
fore, often avoided, lacking published studies of this
crucial information [1]. Thus, several groups have
developed semi-automatic approaches that reduce the
time invested but need experts in computer science for
the design and validation of every analysis performed.
However, for comparison of results there is a need
for increased reproducibility among users. The use
of macros in imaging software can help to increase
objectivity in the analysis but input from the user is
still needed, which may be a source of variability.

In this study, we present the first evaluation
of DeePathology STUDIO (DeePathology Ltd.,
Ra’anana, Israel) that allows automatic morphologi-
cal analysis of histological images using deep learn-
ing. Deep learning offers the possibility of perform-
ing image analysis without the need of self-designing
complex algorithms or previous knowledge of pro-
gramming. DeePathology STUDIO uses deep learn-
ing methodologies that do not need large amounts of
images to reach a high prediction accuracy.

In order to evaluate and validate the use of Dee-
Pathology STUDIO for the analysis of histologi-
cal slide images, we have compared two strategies
for the analysis of amyloid-� (A�) deposition and
microglia activation in a �-amyloidosis mouse model
of Alzheimer’s disease [2]. First, we analyzed stained
brain sections using the AxioVision software package
v4.8 (Zeiss Microsystems GmbH, Jena, Germany)
and in-house specific programmed macros used for
routine assessment in our laboratory [3–10]. Then, we
used the same slides for the analysis in DeePathology
STUDIO software previously trained with our slides.

To assess the differences between conventional
analysis using image segregation/geometrical tools
and morphological analysis using deep learning sup-
port, we compared the overall results obtained in the
two analyses, the variables that were analyzed, and
the total time invested with each approach.

MATERIAL AND METHODS

Animals

APP-transgenic (APPtg) mice (APPPS1–21 [2])
were housed in the animal care facility of the

Department of Comparative Medicine at the Uni-
versity Hospital in Oslo (Norway) with a 12 h/12 h
light/dark cycle at a mean temperature of 22◦C
with free access to food and autoclaved water. All
experiments performed were conducted according
the European Union Directive and regional laws and
were approved by the local animal ethics committee.

For histology assessment, mice were killed at dif-
ferent time points (75, 100, 125, and 150 days of
age) aiming to have a wide distribution of plaque
density and microglia activation. After cervical dis-
location, mice were perfused with ice-cold PBS and
brains were removed. One hemisphere was fixed in
paraformaldehyde (PFA 4% in PBS) and the other
hemisphere was snap frozen in liquid nitrogen.

Immunostaining

Formalin-fixed hemispheres from APPtg mice
were embedded in paraffin and cut in 4-�m-thick
coronal sections. Slices were stained using a BOND-
MAX® automated immunostaining system (Leica
Biosystems GmbH, Germany). Sections (approxi-
mately Bregma –2.0 mm) were stained for microglia
(IBA1, 1:1,000, Wako, 019–19741), and A� (anti-
human A� clone 4G8; 1:2,000, HiSS Diagnostics,
SIG-39220-1000). Sections for A� staining were pre-
treated 5 minutes with 98% formic acid before being
stained. After staining, tissue sections were digitized
at 230 nm resolution using a Pannoramic MidiII slide
scanner (3DHistotech, Budapest, Hungary) [3, 4,
10–12].

Image analysis

Stained slides were analyzed semi-automatically
using two different approaches.

First, AxioVision software was used to program
macros for labelling with IBA1 and 4G8 primary anti-
bodies, respectively, based on a procedure described
by Scheffler et al. [9]. Regions of interest were
defined including parietal, somatosensory, auditory,
and temporal cortices. Then, the software segre-
gated the image according to the staining intensity,
which is recognized in the green channel. After-
wards, the investigator manually separated adjacent
objects and discarded false positives. The software
provided the number of objects (cells or plaques,
depending on the staining) and the size of each
object. These data were used to calculate percent-
age of coverage and average size of cells/plaques.
In addition, A� plaques were categorized as small
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(<400 �m2), medium (400–700 �m2), and large
(>700 �m2) plaques. Finally, results were normalized
to 10 mm2 area to compare density between experi-
mental groups.

On the other hand, the identical brain slides were
analyzed using machine learning (ML) algorithms of
the DeePathology STUDIO software. To this aim, the
software was trained separately to 1) recognize A�
plaques or 2) activated microglial cells. For the train-
ing, we used representative images for each staining.
Then, we created the corresponding categories (back-
ground and diffuse/dense plaques or microglia) and
delineated representative objects for each category.
After delineating a few objects, the built algorithm
is applied and the recognized objects are delineated
by the deep learning algorithm. During the learn-
ing phase, the results are immediately presented to
the user, who can provide additional corrections to
refine the learning. The user can confirm or change the
classification of each individual object as part of the
training. This procedure is repeated until the training
phase is concluded satisfactorily.

In addition, we created two categories for
plaques, differentiating between diffuse and dense-
core plaques. Once the training was completed, brain
slides were analyzed automatically by DeePathol-
ogy STUDIO after delineating the region of interest,
which included the identical areas as for the analy-
sis with the AxioVision software. Differently to the
macro analysis, the ML-based solution was trained to
detect only activated microglia and not isolated pro-
jections. For comparison to the ML-based approach,
we filtered only the objects corresponding to the size
of activated microglia (>60 �m2, set according to ML
calculations).

Learning algorithm in DeePathology Studio

DeePathology STUDIO is a platform that allows
pathologists and researchers to create custom deep
learning-based image analysis for morphological
studies. The STUDIO software has different modes
for creating algorithms that span the different tasks
in Digital Pathology and supports combinations of
them: ‘Regions’ for region segmentation, ‘Cells’ for
detection and classification of cells, ‘Objects’ for
performing Instance Segmentation on other types
of objects, and ‘Tiles’ for analyzing predetermined
larger fields for pattern/tissue recognition.

The starting point for using DeePathology STU-
DIO is data annotation of the objects of choice in the
‘objects’ mode, done interactively in parallel to the

Fig. 1. Example images of automatic analysis with DeePathol-
ogy STUDIO for A� (above; anti-A� (clone 4G8) staining) and
microglia (below; anti-Iba1 staining). A� analysis was trained
to distinguish between diffuse- (green) and dense-packed (pink)
plaques. Microglial analysis was set to detect only activated
microglia but no isolated projections or resting microglia.

training of the algorithm. Active Learning is used to
suggest objects/cells what could be annotated next.
The annotation in general is done by running the
algorithm multiple times, and then, either correcting
the results or adding the results to the previous train-
ing set, generating a growing collection of training
objects.

As the interactive annotation advances, the plat-
form creates an initial version of the algorithm. The
user can run the generated algorithm on a selected
field of view, assess the performance of the gener-
ated algorithm and provide feedback on the detections
to correct mistakes. It is also possible to add new
data from the detections to the training set. The train-
ing mode can be switched off during analysis and be
resumed adding new slides and annotations if needed.

Quantification of amyloid-β

Additionally, we performed quantification of brain
A� using an electrochemiluminescence immunoas-
say. To this aim, we homogenized contralateral hemi-
spheres to the ones used for histology. Then, soluble
and insoluble A� fractions were extracted in TBS
and guanidine buffer respectively. Enzyme linked
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immune sorbent assays (ELISAs) were performed
for the quantification of TBS and guanidine buffer
soluble A�42 levels using the V-PLEX Plus A�42
Peptide (4G8) Kit and a MESO QuickPlex SQ120
machine according to manufacturer’s recommen-
dations (K150SLG, Mesoscale Discovery, USA).
Results were normalized to sample protein concentra-
tion, which was calculated using a spectrophotometer
(ScanDrop, Analytikjena AG, Germany). Brain A�42
content was calculated as pg/mg total protein.

Statistics

Differences were analyzed by ANOVA testing fol-
lowed by Dunnet’s post-hoc test with 75 days as
control group. Data are presented as mean ± standard
deviation (SD). Correlation coefficient between
analysis methods were analyzed using Pearson’s cor-
relation test. Differences were considered statistically
significant when p value was less than 0.05.

RESULTS

To assess the accuracy and efficiency of DeePathol-
ogy STUDIO in comparison to our standard Axio-
Vision procedure, we calculated the average time
needed for the analysis for each case.

The use of the DeePathology STUDIO showed a
significant reduction of the time needed per anal-
ysis as compared to AxioVision image segregation
and manual cleanup. First, programming the macros
for AxioVision analysis needed approximately 20 h
for A� (4G8) and Iba1 staining, respectively. On
the other hand, the ML training with DeePathology
STUDIO took 4 h for plaque detection and 6 h for
microglia detection using eight different slides as a
subset of the experimental samples. For the detec-
tion of A� plaques, we needed 8–10 min per sample
using DeePathology STUDIO while we needed 60 to
90 min with our standard protocol. For the analysis
of activated microglia, we invested 8 to 10 min per
sample using DeePathology STUDIO.

After automatic outline, an experienced researcher
supervised each slide analysis and the amount of
non-detected objects (false negatives) was noted.
ML-based analysis showed an average rate of
false negative of 1.19% (average of three (3.04)
missed plaques of a total average of 214 big
(>70 �m2) plaques per animal). The false negative
rate was proportional to the density of objects, show-
ing a similar percentage in each experimental group.

Table 1
Comparative table of the time spent by the user in analyzing one
slide using AxioVision or DeePathology STUDIO depending on
the staining analysed.∗ Microglia analysis differed between both
programs. Analysis with AxioVision detected all activated and
resting microglia as well as their cell projections. Analysis by
DeePathology STUDIO was more specific and only outlined the

cells of interest (activated microglia)

AxioVision DeePathology
v4.8 STUDIO

A� plaques Programming ≈20 h ≈4 h
Detection 60–90 min 6–9 min

microglia Programming ≈20 h ≈6 h
Detection 90–120 min∗ 8–10 min∗

Accuracy of assessing Aβ plaques

Comparing AxioVision software and DeePathol-
ogy STUDIO, both analyses showed an increase of
the coverage and number of A� plaques with age in
APPtg mice (Fig. 2).

In DeePathology STUDIO analysis, coverage sig-
nificantly increased constantly from 1.7 ± 0.1% at
75 days of age up to 5.4 ± 0.1% at 150 days of age
(p < 0.05 at every age when compared to the younger
group). In addition, we observed an increase of plaque
numbers in parallel to the coverage, from 308 ± 19
plaques/10 mm2 at 75 days of age until 907 ± 143
plaques/10 mm2 at 150 days of age (p < 0.05 when
comparing to the youngest group).

This increase was also seen with the semi-
automatic standard protocol with AxioVision soft-
ware obtaining similar values to the ML analysis
for the plaque coverage (75 days: 1.7 ± 0.3%; 150
days: 6.0 ± 1.1%). However, although the AxioVi-
sion analysis also detected an increase in the plaque
number with age, the increase was not as pro-
nounced as with DeePathology STUDIO, especially
in the late time points (150 days: 634 ± 96 versus
907 ± 143 plaques/10 mm2 with ML). Correlation
studies indicated that the sensitivity of DeePathol-
ogy STUDIO analysis is comparable to the analysis
using the in-house macro in AxioVision show-
ing similar distribution of plaque density (r = 0.98,
p < 0.001) and plaque number (r = 0.93, p < 0.001;
Fig. 2D,2G).

When classifying the plaques by size in small,
medium, and large plaques, it showed similar dis-
tribution in large and medium plaques with both
analysis methods (r = 0.99 and r = 0.92, respectively
(Fig. 3). However, the detection of small plaques
differed: DeePathology STUDIO showed a better
detection of small plaques with age while the macro
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Fig. 2. Comparison between DeePathology STUDIO and AxioVision analysis for A� plaques in animals of 75, 100, 125, and 150 days of
age. A) Representative images of A� (4G8 antibody) immunostaining with hematoxylin counterstaining at the different experimental ages.
Plaque coverage shows similar evolution in DeePathology STUDIO (B) and AxioVision (C), increasing with age. Both analyses show high
correlation (D). Although both analyses show increased number of plaques with age, DeePathology STUDIO (E) detected higher plaque
density than AxioVision (F), being more noticeable at later ages. Nevertheless, they showed high correlation also for plaque density (G).
Data shown as mean ± SD (∗p < 0.05).

analysis showed only a subtle increase in older mice
(r = 0.77).

In addition, classification of objects allowed by
DeePathology STUDIO showed an increase of
both dense-cored and diffuse plaques in older ani-
mals as compare to younger animals (166 ± 16
diffuse plaques/10 mm2 at 75d versus 772 ± 168
diffuse plaques/10 mm2 at 150d; Fig. 4). Differ-
entiation of diffuse and dense-cored plaques is
not possible to be performed with our AxioVision
macros.

To evaluate the accuracy of each method mea-
suring A� plaques, we compared the results from
each method to insoluble A� concentration in the
same animals measured by ELISA. Both analyses
showed a high correlation between percentage cov-
erage (r = 0.88 and r = 0.87, respectively) and in the

number of plaques to A�42 concentration measured
by ELISA (r = 0.88 versus r = 0.85; Fig. 5).

Accuracy of assessing activated microglia

DeePathology STUDIO analysis of Iba1 immunos-
taining in APP mice showed an increase of
activated microglia (100d: 1557 ± 228 versus 150d:
2487 ± 249 microglial cells/10 mm2) finding no sig-
nificant differences between 75 and 100 days of age
(Fig. 6). Similarly, macro semi-automatic analysis
reported an increase of activated microglia (100d:
1165 ± 217 versus 150d: 1877 ± 194 microglial
cells/10 mm2) in older APP animals. Both approaches
showed high correlation in the detection of acti-
vated microglia at the different mouse ages analyzed
(r = 0.93).
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Fig. 3. Dot plots showing plaque density categorized by size: small (<400 �m2; upper row), medium (400–700 �m2; middle row), and
big plaques (>700 �m2; low row) in the different experimental groups according to DeePathology STUDIO (left column) and AxioVision
(middle column). Both analyses show high correlations (right column) for big and medium plaques. Detection of small plaques differed
between the two methods. DeePathology STUDIO enables a higher identification of small plaques compared to AxioVision analysis. Data
shown as mean ± SD (∗p < 0.05).

Fig. 4. Dense- and diffuse-packed plaques distribution according to age performed by DeePathology STUDIO. Diffuse plaques show
continuous growing while dense plaques do not change significantly after 100 days of age. Data shown as mean ± SD (∗p < 0.05).

DISCUSSION

In this study, we have used two software tools—
conventional macro programming and machine

learning/artificial intelligence-assisted—for assess-
ing and the quantification of morphological struc-
tures. To be able to compare the performance and
accuracy, we used identical slides and two common
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Fig. 5. Correlation analysis of A�42 concentration measured by (A) ELISA and plaque coverage and (B) plaque density calculated with
DeePathology STUDIO (left) and AxioVision (right). Both analyses show similar high correlation to A� concentration.

Fig. 6. Iba1 immunostaining analysis using DeePathology STUDIO and AxioVision. A) Representative images of Iba1 immunostaining at
the different ages analyzed (75, 100, 125, and 150 days) with hematoxylin counterstaining. Dot plots show activated microglia density in
cortex at different ages in APPtg mice analyzed with DeePathology STUDIO (B) and AxioVision (C). Both analyses show a high positive
correlation (D). Data shown as mean ± SD (∗p < 0.05).
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analytical methods in Alzheimer’s disease research:
immunohistochemical A� plaque and microglia la-
beling.

The analysis with AxioVision software is based
on color detection to recognize the objects of inter-
est (according to the staining used). Afterwards, it
corrects the shape of the objects and needs user
involvement for adjacent objects separation and false
positives exclusion. After user confirmation, the soft-
ware generates a file including size of the ROI,
number of objects and their sizes. On the other hand,
the analysis with DeePathology STUDIO uses deep
learning to detect different objects in an image and
distribute them according to the classification pro-
vided during the training. Our standard analysis needs
user input to discard false positive detections and to
divide fused objects, introducing a potential bias in
the analysis. Contrarily, DeePathology STUDIO is
trained before the analysis and does not need to be
changed afterwards. Thus, DeePathology STUDIO
analysis may be more objective as compared to macro
analysis with user intervention.

ML-supported analysis demonstrated some impor-
tant advantages as compared to our standard analysis
with AxioVision. First, initial settings needed lower
time investment in DeePathology STUDIO to train
the ML algorithm recognize objects of interest com-
pared to the preparation of macros to run in Axio-
Vision. In addition, teaching interface is intuitive
and user-friendly and does not require basic pro-
gramming knowledge. Importantly, DeePathology
STUDIO showed a significant reduction of time
invested in analysis of both amyloid plaques and acti-
vated microglia, respectively, without reducing the
sensitivity, as shown by the high correlation between
both methods in all the variables studied. Thus, this
software platform may increase the potential of anal-
ysis of a laboratory without an increase of resources
employed.

Furthermore, DeePathology STUDIO offers addi-
tional analysis resources as it permits to discriminate
between different types of cells/objects. We could
classify amyloid plaques in dense and diffuse as
packing may change during progression of AD. In
fact, we found different evolution of diffuse and
dense-core plaques with age in the APPtg mice.
This kind of classification was so far not possi-
ble with our in-house macro analysis. Thus, the AI
approach offers the possibility of a more precise anal-
ysis and additional information, enabling evaluation
of more than one variable in the same image and
simultaneously.

However, ML-based approaches also have some
limitations. One limitation of deep learning assisted
analysis is the need of a computational platform
equipped with modern GPUs to facilitate the training
and deployment of the ML-based solutions. In addi-
tion, the resulting analytical algorithm will be as good
as the images and objects presented to the learning
algorithm during the training phase. Changes in inten-
sity or artifacts that have not been provided during the
training phase will reduce the accuracy of the latter
analysis. Thus, the user has to ensure that the images
used for training, and the selection of structures, rep-
resent the variability expected in the experimental
sample.

In conclusion, our study shows the utility of Dee-
Pathology STUDIO to analyze histology images in
preclinical studies to characterize disease models or
evaluate treatments. Mainly, DeePathology STUDIO
reduced the time needed for analysis by 90%, increas-
ing substantially the work force of the group. It also
allowed including different objects or cell types in
one analysis, which is not possible with conventional
methods. Using ML-assisted approaches one can
generate automatic detection algorithms for tissue,
objects and cells that can also be used for supporting
digital pathology in routine pathological diagnos-
tics. However, ML-assisted diagnostics needs always
to be approved by a specialist in pathology if used
for patient-related work and therapeutic decisions to
guarantee its correctness. ML-guided slide analysis
delivers diagnostic suggestions based on morphology
whereas pathological reports always include a com-
bination of multiple morphological and molecular
markers (see for example the current WHO classi-
fication for brain tumors).
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