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Abstract: Acute lymphoblastic leukemia (ALL) in children or adults is characterized by structural and
numeric aberrations in chromosomes; these anomalies strongly correlate with prognosis and clinical
outcome. Therefore, this work aimed to identify the genes present in chromosomal gain regions
found more frequently in patients with acute lymphoblastic leukemia (ALL) and ALL-derived cell
lines using comparative genomic hybridization (CGH). In addition, validation of the genes found
in these regions was performed utilizing RNAseq from JURKAT, CEM, and SUP-B15 cell lines, as
well as expression microarrays derived from a MILE study. Chromosomes with common gain zones
that were maintained in six or more samples were 14, 17, and 22, in which a total of 22 genes were
identified. From them, NT5C3B, CNP, ACLY, and GNB1L maintained overexpression at the mRNA
level in the cell lines and in patients with ALL. It is noteworthy that SALL2 showed very high
expression in T-ALL, while JUP was highly expressed in B-ALL lineages. Interestingly, the latter
correlated with worse survival in patients. This provided evidence that the measurement of these
genes has high potential for clinical utility; however, their expressions should first be evaluated with
a sensitive test in a more significant number of patients.

Keywords: CGH; leukemia; ALL; biomarker; gene expression; overall survival; RNAseq

1. Introduction

Acute lymphoblastic leukemia (ALL) results from the malignant transformation
and proliferation of hematopoietic stem cells (HSCs) in the bone marrow, blood, and
extramedullary sites, and it is characterized by genetic mutations [1]. It was recently re-
ported that leukemia could also be initiated by leukemic stem cells (LSCs), which, like
normal HSCs, have a cellular reservoir that drives relapse by restarting the disease after
remission [2].

Although there may be predisposing factors to develop the disease, such as the
presence of some syndromes (Down syndrome [3], Fanconi anemia [4], Bloom syndrome [5],
ataxia telangiectasia [6]), or exposure to ionizing radiation [7]) or viruses (Epstein–Barr [8],
cytomegalovirus [9], or human T-cell lymphotropic virus [10]), most people develop the
disease de novo.

While ALL occurs more frequently in children, a high percentage recover; however,
it represents a devastating disease when it occurs in adults [11]. Its global incidence and
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mortality are 5.4/100,000 and 3.3/100,000 inhabitants, respectively [12]. In Mexico, it repre-
sents a serious health problem, since the mortality rate calculated per 100,000 inhabitants is
2.1 in the pediatric population and 5.5 in adults [13].

Although the causes of the disease are not entirely clear, currently, some genes affected
by genetic aberrations have become useful in clinical settings due to their valuable con-
tribution as diagnostic and prognostic markers or for their help in monitoring minimal
residual disease, among other applications [14].

Some typical anomalies useful in a clinical setting for B-ALL, in addition to hy-
perdiploidy and hypodiploidy, are the translocations t(9;22)(q34;q11.2) (BCR-ABL1) [15],
t(12;21) (p13;q22) (ETV6-RUNX1) [16], t(1;19) (q23;p13.3) (TCF3-PBX1) [17], and t(5;14)
(q31;q32) (IGH-IL3) [17]; the rearrangement t(v;11q23) (MLL); the intrachromosomal ampli-
fication of chromosome 21 (iAMP21) [18]; and the deletion of CDKN2A/B [19].

Although T-ALL shares abnormalities with B-ALL, such as the rearrangement of
t(v;11q23) (MLL) or the deletion of CDKN2A/B [20], there are specific gene deregula-
tions in this subtype, such as (1p32) (TAL1), (11p13) (LMO2), (10q24) (TLX1/HOX11),
(5q35) (TLX3/HOX11L2) [21], fusion (9q34) (NUP214-ABL1) [22], mutations of (9q34.3)
(NOTCH1) [23], and loss of (4q31.3) (FBXW7) and (10q23) (PTEN) [24].

In this sense, there is a growing interest and urgency to investigate changes in the
genome that may be of clinical utility. Karyotyping is one of the routinely used techniques
to identify these anomalies, but it has some limitations, such as the fact that it cannot detect
genetic changes of less than 5 to 10 Mb and that it takes between 4 and 10 days to culture
cells, visualize chromosomes, and carry out analysis, in addition to the fact that a good
result depends on the quality of the chromosome preparation and the skill and experience
of the cytogeneticist [25,26].

Currently, there are new molecular biology strategies that allow the determination
of genomic alterations with greater sensitivity, such as molecular karyotyping, known as
comparative genomic hybridization (CGH), which is characterized by allowing, with a high
resolution, the identification of small numerical aberrations in a genome [27]. CGH can
detect chromosomal gain or loss imbalances with much higher resolution than conventional
karyotyping [28]. In addition, RNA sequencing (RNAseq) has also become one of the best
strategies for analyzing the transcriptomes of individuals because it is sensitive and specific
with a more profound resolution, and it provides less background noise, as well as a
dynamic range of gene expression [29].

Therefore, the objective of this study is to identify the common chromosomal gain
regions most frequently found in bone-marrow-derived samples from patients with ALL
and the leukemia-derived cell lines JURKAT and CEM using CGH arrays; to validate
expressions at the transcriptome level of the genes included in the chromosomal gains
using RNAseq and microarray expression analysis; and to correlate the gene expressions
with overall survival.

2. Materials and Methods
2.1. Sample Collection

The present study used bone marrow samples from ALL patients without prior
treatment that were isolated by density gradient centrifugation with Ficoll-Paque™ PLUS
(GE Healthcare, Chicago, IL, USA) and cryopreserved in liquid nitrogen from a previous
study by the working group; the age, gender, leukemia classification, immune phenotype,
and blast percentage of each patient included in this study are visualized in Table 1 of the
research published by Zavala et al. [30]. The collection of the samples and project execution
were approved by the IMSS National Scientific Research Commission under registration
numbers R-2012-785-056, R-2019-1305-039, and R-2020-785-015.

2.2. Cell Line Culturing

Cell lines derived from T-ALL (JURKAT and CEM) and B-ALL (SUP-B15) were cultured in
25 cm2 culture flasks (Corning, Cat No. TM 3815) in RPMI 1640 (Cat.11875-093) supplemented
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with 10% inactivated fetal bovine serum (FBS) and 100 U/mL penicillin/1 mg/mL streptomycin
(all products purchased from Life Technologies Corporation, Thermo Fisher Scientific, Waltham,
MA, USA) at 37 ◦C in a 5% CO2 atmosphere. The cell lines used in this study are commercially
available at the ATCC and were kindly donated by Prof. Dr. Henning Walczak (DKFZ-
Heidelberg, Germany). Authentication was performed by Multiplexion GmbH (https://www.
multiplexion.de accessed on 17 October 2022).

Table 1. Primer sequences used to evaluate JUP expression by qPCR.

Gene Forward Reverse Size amplicon

JUP AGCAGCCCTACACGGATG GATGTTCTCCACCGACGAGTA 161 bp

RPS18 CGATGGGCGGCGGAAAA CAGTCGCTCCAGGTCTTCACGG 283 bp

RPLP0 CCTCATATCCGGGGGAATGTG GCAGCAGCTGGCACCTTATTG 100 pb

2.3. DNA Extraction and Array CGH

Genomic DNA was obtained using a Quick-gDNA™ MiniPrep kit (Zymo Research,
Cat. D3006, CA, USA) according to the manufacturer’s instructions. DNA was stored
at 4 ºC until use. Sample preparation and hybridization were performed as described in
detail in the NimbleGen Arrays User Guide (Roche Applied Science, Penzberg, Germany).
Briefly, 1 µg DNA from each leukemia-derived sample was taken and labeled with Cy3
(cyanine 3), and the reference DNA provided by the kit was labeled with Cy5 (cyanine
5). Subsequently, DNA probes were hybridized on a NimbleGen HG18 WG CGH Array
(3 × 720 K microarrays v2.0; Roche Applied Science). After 72 h of hybridization, slides
were washed and spin-dried in a SlideWasherTM12 (CapitalBio Corporation, Beijing, China)
machine, and scanning was executed using an MS 200 NimbleGen Microarray Scanner
with a resolution of 2 µm (Roche Applied Science).

The values of the Log2 ratios of the probes (Cy3/Cy5), signal intensities, and chromo-
somal gains and losses were calculated and visualized using DEVA software, version 1.2.1
(Roche Applied Sciences).

In brief, local polynomial regression fitting (LOESS) spatial normalization was per-
formed, followed by Qspline normalization of the intensities of all microarrays. After ratio
calculation of the test and reference samples, all data from all containers were merged into
a single container. Next, a segment tree was built using SegMNT, with 500 as a maximum
number of segments, a minimum number of differences between segments of 0.2 (Log2), a
minimum number of probes in segments of 5, a permutation number of 10, and stringency
for the percentile of 0.9.

Finally, the genes present in the gain regions were identified utilizing the UCSC
Genome Browser database (https://genome.ucsc.edu/ accessed on 1 September 2022) with
the GRch/38hg 38 genome version as reference. The raw and processed data obtained in
this study were already deposited in the Gene Expression Omnibus (GEO) NCBI database
repository under accession number GSE185274. To increase the certainty of our findings,
we included samples derived from the bone marrow of adult patients with ALL without
prior treatment (available under accession number GSE75671) [31]. The samples of the
patients were randomly downloaded, and their corresponding IDs were as follows: GSM
1963398-1963506 (T-ALL) and GSM 1963449-1963457 (B-ALL). A detailed description of the
microarray analysis can be found in the study of Castro et al. [32].

2.4. Circos Plot Representation of Genomic Data

The circular multitrack plots shown in were generated using genome-wide DNA copy
numbers normalized to Log2 utilizing R, version 4.1.3, and RStudio software (2021.09.0).
The libraries utilized were Circlize (https://cran.r-project.org/web/packages/circlize/
index.html accessed on 17 October 2022), RColorBrewer (https://cran.r-project.org/web/
packages/RColorBrewer/index.html accessed on 17 October 2022), GenomicRanges (https:

https://www.multiplexion.de
https://www.multiplexion.de
https://genome.ucsc.edu/
https://cran.r-project.org/web/packages/circlize/index.html
https://cran.r-project.org/web/packages/circlize/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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//bioconductor.org/packages/release/bioc/html/GenomicRanges.html accessed on 17
October 2022), data.table (https://cran.r-project.org/web/packages/data.table/index.
html accessed on 17 October 2022), RLumShiny (https://cran.r-project.org/web/packages/
RLumShiny/index.html accessed on 17 October 2022), and grDevices (https://uribo.github.
io/rpkgshowcase/graphics/grDevices.html accessed on 17 October 2022). To discriminate
between a region with or without gain, we use a cutoff point of 1.5.

2.5. RNA Dataset Analysis

RNA sequencing of JURKAT and CEM cell lines was performed using the NovaSeq
6000 Illumina platform (service from Novogene Bioinformatics Technology Co., Ltd., in
Beijing, China). These sequences were deposited in the GEO NCBI repository (https:
//www.ncbi.nlm.nih.gov/gds with public access on 31 October 2021) and identified
with accession number GSE189641 [33]. To contrast with our data, additional datasets
were downloaded from JURKAT (SRP370930) [34], CEM (SRP319983) [35], and SUP-B15
(SRP319983 and SRP189893) [36]. Finally, peripheral blood derived from clinically healthy
subjects (SRP281919) [37] and nonleukemia adult bone marrow data (SRP114952) [38] were
also included as controls. It is important to mention that, since JURKAT and CEM were de-
rived from peripheral blood, each cell line was compared with peripherical blood controls
of similar ages. Regarding SUP-B15, this cell line was derived from the bone marrow of an
8-year-old child, so the controls used were nonleukemia bone marrow samples.

A bioinformatic analysis was carried out as follows: raw reads were analyzed using
the Galaxy Europa open-source platform (usegalaxy.eu) and RStudio software (2021.09.0)
utilizing Rsubread library (https://bioconductor.org/packages/Rsubread/ accessed on 18
June 2022). First, the FastQC tool (version 0.73 with galaxy0) was used to determine the
quality of the sequences [39]. Subsequently, the Trimmomatic tool (version 0.38.1) [40] was
used to remove ambiguous nucleotides. Clean reads were then aligned using Rsubread
and human genome version hg38 (vs. 38) to obtain BAM files that were then used to count
reads with the featureCounts tool (version 2.0.1 with galaxy2) [41].

Gene expression analysis was performed with DESeq2 (version 2.11.40.7 with galaxy1) [42]
using FPKM (fragments per million kilobases) for normalization. The heatmap2 tool (Version
3.0.1) [43] was used to build HeatMaps using Log10 (value + 1) data transformation and the
Euclidean distance method. Genes depicted in the HeatMaps had a fold change greater than 1,
with statistical significance at an adjusted p-value ≤ 0.05.

2.6. Evaluation of JUP Expression by Quantitative PCR

Total RNA was isolated from peripherical mononuclear cells derived from individuals
without leukemia and from JURKAT, CEM, and SUP-B15 cell lines with a Quick-RNA
mini prep plus kit (Cat. No. R1058, Zymo Research, Irvine, CA, USA). Afterward, cDNA
was obtained with a Transcriptor First Strand cDNA Synthesis Kit (Cat. No. 04379012001,
Roche Diagnostics, Basel, Switzerland). qPCR assays were performed with a LightCycler
2.0 (Roche Diagnostics) instrument using a LightCycler FastStart DNA Master plus SYBR
Green I kit (Cat. No. 03515869001, Roche Diagnostics). The sequences of the primers used
to amplify JUP and the reference genes (RPLP0 and RPS18) are represented in Table 1.

2.7. Expressions of Genes Included in Gain Regions in Patients from the MILE Project

To analyze the expression of each gene in patients with ALL, we used the open-access
NCBI GEO database with access number GSE13159 [44,45] and R2 Genomics Analysis and
Visualization Platform (http://r2.amc.nl accessed on 1 September 2022). This database is
derived from a microarray design (Affymetrix HG-133 Plus 2.0) that includes samples from
adults with ALL without treatment. Expressions of the 22 genes identified in the common
gain regions were evaluated by comparing controls (n = 71) with B-ALL (n = 427) or T-ALL
(n = 165) samples. A one-way ANOVA was applied, and the expressions were transformed
into Log2.

https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/RLumShiny/index.html
https://cran.r-project.org/web/packages/RLumShiny/index.html
https://uribo.github.io/rpkgshowcase/graphics/grDevices.html
https://uribo.github.io/rpkgshowcase/graphics/grDevices.html
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://bioconductor.org/packages/Rsubread/
http://r2.amc.nl
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2.8. Tree Plots of Expressions of Genes with Gains in Normal Hematopoiesis versus
Leukemia Lineages

Hierarchical trees for each gene were constructed using BloodSpot, an online database of gene
expression profiles and transcriptional programs for healthy and malignant hematopoiesis [46]
available at www.bloodspot.eu accessed on 17 October 2022. The files used for the analysis
were GSE13159 for the leukemia lineages (MILE project) [44] and GSE24759 for normal human
hematopoiesis (DMAP project) [47].

2.9. Survival Analysis

The association between overall survival and gene expression was calculated using
the Kaplan Scan tool, available in Statistical Software Environment R, version 2.4.1 (http:
//www.r-project.org accessed on 17 October 2022), by utilizing the GEO NCBI database
with access number GSE34861 [48], which corresponds to adult B-ALL samples. Data with
p < 0.05 were taken as statistically significant.

3. Results
3.1. Chromosome Gains in ALL-Derived Samples

Microarrays of CGHs were performed in two ALL-derived cell lines (JURKAT and
CEM) and in 10 samples derived from the bone marrow of ALL patients to determine
chromosome gains. As described in Table 2, the patients’ ages in the study ranged from 16
to 77 years, and most were male (7 out of 10). All the analyzed samples showed gains in at
least two chromosomes; the most frequent chromosome gain was found for chromosome
17 (8 out of 12), followed by chromosomes 14 and 22 (6 out of 12).

Table 2. Description of chromosomes that presented gain alterations in patients with ALL, including
JURKAT and CEM leukemia-derived cell lines.

Sample Sex Age Type of
Leukemia Chromosome with Gains

JURKAT M 14 T-ALL 1,3,5,6,11,13,15,17,22

CEM F 4 T-ALL 5,8,11,12,13,14,15,16,17,18,19,20,21,X

M5 F 49 Pre-B-ALL 3,5,7,9,10,11,12,13,14,15,16,17,18,19,20,22

M12 M 77 T-ALL-T 1,14,17

M13 M 65 T-ALL 7,14,17

M15 M 17 Pre-B-ALL 5,14,15,19,21,22

M19 M 45 Pre-B-ALL 14,17

M28 M 16 B-LLA 4,14,17,Y

M29 F 50 B-LLA 1,6,8,10,14,15,17,18,19,22,X

M32 F 31 T-LLA 14,17

M34 M 20 B-LLA 1,12,14,15,16,17,18,19,22,X

M35 M 16 B-LLA 7,9,10,12,14,15,17,19,22,Y

3.2. Common Chromosome Gains in ALL-Derived Samples

Once it was determined that chromosomes 14, 17, and 22 contained the most frequent
gains, we continued to determine each patient’s gain regions. After the regions were
determined, we identified regions that overlapped in at least six samples, a condition
fulfilled only for chromosomes 14, 17, and 22. Table 3 shows the start and end positions of
the gains in each of the samples, as well as the sizes of the altered regions. Additionally,
images obtained with DEVA v 1.2 of the common gain zones in each sample are visualized in
Figures 1–3 for chromosomes 14, 17, and 22, respectively, including an ideogram containing
the specific common gain regions.

www.bloodspot.eu
http://www.r-project.org
http://www.r-project.org
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Figure 1. Comparative genomic hybridization images of gains observed for chromosome 14. The 

ideogram for chromosome 14 shows the common gain region on the q11.2 arm with dotted lines. 

Representative images of each patient or cell line were obtained with DEVA software; gains are 

indicated by red arrows, and signal intensity values (ratios) were normalized to Log2. The size scale 

is shown in megabases (Mb). The patient ID is included in the lower-right margin of each image. 

Figure 1. Comparative genomic hybridization images of gains observed for chromosome 14. The
ideogram for chromosome 14 shows the common gain region on the q11.2 arm with dotted lines.
Representative images of each patient or cell line were obtained with DEVA software; gains are
indicated by red arrows, and signal intensity values (ratios) were normalized to Log2. The size scale
is shown in megabases (Mb). The patient ID is included in the lower-right margin of each image.
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Figure 2. Comparative genomic hybridization images of gains observed for chromosome 17. The 

ideogram of chromosome 17 shows the common gain region on the q21.2 arm with dotted lines. 

Representative images of each patient or cell line were obtained with DEVA software; gains are 

indicated by red arrows, and signal intensity values (ratios) were normalized with Log2. The size 
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Figure 2. Comparative genomic hybridization images of gains observed for chromosome 17. The
ideogram of chromosome 17 shows the common gain region on the q21.2 arm with dotted lines.
Representative images of each patient or cell line were obtained with DEVA software; gains are
indicated by red arrows, and signal intensity values (ratios) were normalized with Log2. The size
scale is shown in megabases (Mb). The patient ID is included in the lower-right margin of each image.
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indicated by red arrows, and signal intensity values (ratios) were normalized to Log2. The size scale 

is shown in megabases (Mb). The patient ID is included in the lower-right margin of each image. 

To improve the certainty of our results, we analyzed data from the GSE75671 study, 

which contained CGH arrays of bone marrow from adult patients with ALL and was per-

formed with the same platform and Genome CGH arrays used in our study. From the 18 

samples analyzed (nine T-ALL and nine B-ALL), eight and seven out of nine presented 

gain regions in T-ALL and B-ALL patients, respectively, for chromosome 14. Regarding 

chromosome 17, we identified nine (T-ALL) and five (B-ALL) samples and, in chromo-

some 22, four and five, respectively (as visualized in Figure 4). Normalized Log2 values 

for each patient are shown in Supplementary Table S2. 

Figure 3. Comparative genomic hybridization images of gains observed for chromosome 22. The
ideogram for chromosome 22 shows the common gain region on the q11.21 arm with dashed lines.
Representative images of each patient or cell line were obtained with DEVA software; gains are
indicated by red arrows, and signal intensity values (ratios) were normalized to Log2. The size scale
is shown in megabases (Mb). The patient ID is included in the lower-right margin of each image.

To improve the certainty of our results, we analyzed data from the GSE75671 study,
which contained CGH arrays of bone marrow from adult patients with ALL and was
performed with the same platform and Genome CGH arrays used in our study. From the
18 samples analyzed (nine T-ALL and nine B-ALL), eight and seven out of nine presented
gain regions in T-ALL and B-ALL patients, respectively, for chromosome 14. Regarding
chromosome 17, we identified nine (T-ALL) and five (B-ALL) samples and, in chromosome
22, four and five, respectively (as visualized in Figure 4). Normalized Log2 values for each
patient are shown in Supplementary Table S2.
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Figure 4. Circular multitrack plot representation of genomic data. The circos plots show ideograms of
Log2-normalized genomic data from chromosome 14 (A,B), chromosome 17 (C,D), and chromosome
22 (E,F). Each level of the diagram represents a patient, and common zones of gain are highlighted
with black arrows. As appropriate, the chromosome size scale is shown in megabases (Mb) or
kilobases (Kb); (A,C,E) represent data from T-ALL; (B,D,F) represent data from B-ALL.
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Table 3. Description of chromosomal gains found in each of the samples analyzed. Chr: chromosome;
Pb: base pairs.

Sample ID Chr Position of Gain Pb Size (Pb)

JURKAT
17 41,757,408–42,009,906 252,498

22 14,507,171–30,395,708 15,888,537

CEM 17 36,734,811–46,367,425 9,632,614

M5 22 19,825,156–20,037,430 212,274

M12 14 21,444,377–21,624,239 179,862

M13
14 21,441,167–21,723,152 281,985

17 41,755,952–42,135,245 379,293

M15 22 19,718,309–20,037,430 319,121

M19 17 35,353,354–42,945,517 7,592,163

M28
14 21,441,167–22,013,159 571,992

17 40,964,001–43,704,741 2,740,740

M29
17 41,307,415–43,247,247 1,939,832

22 19,720,528–20,037,430 316,902

M32
14 21,424,744–21,961,837 537,093

17 40,741,630–43,408,899 2,667,269

M34
14 21,444,229–22,055,727 611,498

22 19,797,537–20,037,970 240,433

M35

14 21,441,167–22,046,172 605,005

17 41,526,491–42,128,942 602,451

22 15,567,273–26,691,944 11,124,671

3.3. Identification of Genes Located in Regions of Chromosomal Gain

To identify genes present in chromosomal gain regions, we utilized UCSC Genome
Browser (version GRch38/hg 38), and the following six genes were recognized for chro-
mosome 14: TOX4, METTL3, RAB2B, SALL2, OR10G3, and TRAV1-1. For chromosome 17,
the common gain region was determined to include 10 genes: FKBP10, P3H4, DNAJC7,
NT5C3B, CNP, ACLY, JUP, KLHL11, KLHL10, and TTC25-ODAD4. Finally, six genes were
found in the common gain zone established for chromosome 22: RTL10-C22orf29, TXNRD2,
COMT, ARVCF, GNB1L, and TANGO2. All these genes can be visualized in Supplementary
Figures S1–S3. In addition, the characteristics of each gene are described in Supplementary
Table S1, including gene symbol, official full name, function, relationship with any kind of
cancer, and reported gene alteration.

3.4. Expressions at mRNA Level of 22 Genes in JURKAT, CEM, and SUP-B15 Cell Lines

Derived from the RNAseq analysis, heatmaps were created from JURKAT (T-ALL),
CEM (T-ALL), and SUP-B-15 (B-ALL) cell lines versus nonleukemia controls (detailed in
Materials and Methods). As observed in Figure 5, the P3H4, NT5C3B, CNP, ACLY, RTL10,
COMT, and GNB1L genes maintained overexpression in the three cell lines, regardless
of subtype. Interestingly, JUP mainly had a high expression in SUP-B15, while SALL2
mainly had a high expression in JURKAT and CEM. For data validation, JUP expression
was further determined by qPCR; as shown in Supplementary Figure S4, JUP expression
was very high in SUP-B15 cells (changes of 46.9-fold taking RPS18 as reference gene and
28.7-fold taking RPLP0), while in CEM and JURKAT, it was almost undetectable.
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Figure 5. Normalized expression heatmaps (FPKM) of genes present in gain regions of chromosomes
14, 17, and 22 in the JURKAT, CEM, and SUP-B15 cell lines. The dendrogram depicts groups according
to expression similarities. The samples included are: SC-PB—sample controls from peripheral
blood; and SC-BM—sample controls from bone marrow. Data 1–4 in each of the cell lines represent
independent sequencing; JURKAT4 and CEM4 were derived from our RNA sequencing (GSE189641).

3.5. Expressions of 22 Genes in ALL Patients

The relative expression at the RNA level of each gene was determined using acces-
sible microarray expression databases from the MILE project, as described in Materials
and Methods. As observed in Figure 6A,B, seven genes showed statistically significant
higher expressions in B-ALL and T-ALL patients compared with healthy individuals
(METTL3, NT5C3B, CNP, JUP, KLHL10, KLHL11, and GNB1L), while SALL2 and ACLY were
overexpressed only in T-ALL patients. The gene that was found to be most significantly
overexpressed in B-ALL was JUP. Unexpectedly, TOX4, DNAJC7, TTC25/ODAD4, TXNRD2,
and TANGO2 were underexpressed in ALL patients. No significant differences were found
in other genes.
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Figure 6. (A,B) Expressions of gain region genes in healthy individuals compared with ALL patients.
Analysis of each gene was performed using the MILE project dataset. Boxplots show expressions
at the RNA level in B-ALL or T-ALL subtypes, including ANOVA p-values. Numbers shown in
parentheses correspond to the number of individuals analyzed for each gene. 2Log: gene expression
transformed into logarithm with base 2.

3.6. Hierarchical Trees in Normal Hematopoiesis and Different Leukemia Lineages of the
Gain Genes

Once we identified the genes with statistically significant high expressions in B-ALL
or T-ALL patients, we were interested to know the expression of each gene during normal
hematopoiesis and to compare it with the expressions in all the leukemia lineages. Each
gene was analyzed utilizing BloodSpot, as detailed in Materials and Methods. After evalu-
ation, we determined that evident differences were observed just in SALL2 and JUP since,
during normal hematopoiesis, both genes were highly expressed only in hematopoietic
stem cells (HSCs) (Figure 7A,C, respectively); this was a relevant difference between healthy
bone marrow and the leukemia lineages. As shown in Figure 7B, SALL2 was strongly ex-
pressed principally in T-ALL samples, followed by ALL t(12;21) and ALL hyperdiploid
samples. However, JUP was principally found to be highly expressed in ALL t(12;21), ALL
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hyperdiploid, and ALL t(1;19), followed by Pro- and Pre-B-derived samples. In addition,
moderate expressions were observed in some AML subtypes, as seen in Figure 7D.
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3.7. Relationship between Highly Expressed Genes and ALL Patients with Poor Survival 

Figure 7. Hierarchical trees of SALL2 and JUP using BloodSpot. Expressions of SALL2 (A) and
JUP (C) during the hematopoietic process. The expression scale is indicated in each graph from
red (higher expression) to blue (lower expression). Full names are included from left to right:
HSC-CD1—hematopoietic stem cell_CD133+CD34dim; HSC-CD—hematopoietic stem cell_CD38-
_CD34+; DC—dendritic cell; CD8+Cen—CD8+Central memory; CD4+Cen—CD4+Central mem-
ory; CFU—colony-forming unit; NK—natural killer; CMP—common myeloid progenitor; MEP—
megakaryocyte/erythroid progenitor; Eryth C—erythroid _CD34+CD71+GlyA-, erythroid _CD34-
CD71+GlyA-, erythroid _CD34-CD71+GlyA+; Gra—granulocyte; GMP—granulocyte/monocyte
progenitor; Gran. (N . . . —granulocyte neutrophilic metamyelocyte. Expressions of SALL2 (B) and
JUP (D) in different leukemia subtypes. CLL—chronic lymphoblastic leukemia; CML—chronic
myeloid leukemia; MDS—myelodysplastic syndromes.

3.7. Relationship between Highly Expressed Genes and ALL Patients with Poor Survival

Since we saw relevant differences in the SALL2 and JUP expressions in leukemia pa-
tients in contrast to healthy bone marrow samples, we determined whether the expressions
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of these genes were related to better overall survival. Since survival studies require a long
follow-up period and we do not yet possess these data in our working group, we decided
to search for a free database containing this information. After an exhaustive search, only
one free database on the follow-up of adult B-ALL patients was found (as described in
Materials and Methods). After Kaplan–Meier curve analysis, as shown in Figure 8, the high
expression of JUP was statistically significantly associated with poorer overall survival.
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Figure 8. Overall survival probability analysis of JUP using data derived from microarray expressions
of adults with B-ALL. Kaplan–Meier survival curves represent the relationship of the probability of
survival over time (measured in months) divided into high- and low-expressing groups. The cutoff
point was calculated according to expression level (raw) for separate individuals with high (red) and
low (blue) gene expressions.

4. Discussion

Acute lymphoblastic leukemia (ALL) involves the disruption of differentiation in
a clonal lymphoid population in the early stages [11] that can invade the bone marrow,
blood, and extramedullary sites [49]. ALL is mainly a genetic disease because most patients
present chromosomal alterations, and the characterization of these anomalies has become a
valuable tool in clinical settings since some genes are used as prognostic and diagnostic
markers [50], or even therapeutic targets [14,51]. Thus, this study aimed to determine the
genes present in the most frequent gain regions in cell lines and cells derived from ALL
patients by employing CGH microarrays. We found that the most affected chromosomes
in at least 50 percent of the analyzed samples were 14, 17, and 22 (Table 2). Usvasalo et al.
reported frequent increase in the number of copies in chromosomes 1, 5, 8, 10, 14, and 21
in patients with ALL [52]. In addition, assays performed in other studies agree with our
findings because they also show gains in chromosomes 14, 17, and 22 [53–55]. These results
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were consistent when we contrasted the altered gain regions of the three chromosomes with
CGH data (GSE75671) from 18 patients with ALL, as seen in Figure 4 and Supplementary
Table S2 [31].

Regarding the results visualized in Table 2, it is noteworthy to mention that, just by
looking at the gains, some patients had alterations in more than half of their chromosomes.
The majority of malignant diseases have some underlying form of instability; chromosomal
instability (CIN) is one of the characteristics of cancer, and it includes the loss or amplifica-
tion of driver genes, focal rearrangements, extrachromosomal DNA, micronuclei formation,
and activation of innate immune signaling [56], among others, which can drive phenotypic
adaptation during tumor evolution [57].

In this study, it was of our interest not only to identify gains in genes, but also to
validate their expressions at the mRNA level. As expected, we found genes that had
already been widely reported, which validated our study. However, the originality of this
work is that we identified genes that had not been previously linked to leukemia or any
other cancer type, as seen in Supplementary Table S1. Of the 22 genes identified in the
chromosomal gain regions, those that maintained high expressions in leukemia-derived
cell lines and in ALL patients (Figures 5 and 6A,B) were NT5C3B, CNP, ACLY, JUP, KLHL11,
RTL10, and GNB1L.

There is limited information about two of the genes mentioned above: NT5C3B (5′-
nucleotidase, cytosolic IIIB), which has until now only been involved in processes of
the respiratory tract and atherosclerosis [58,59], and KLHL11 (Kelch-like family, member
11) [60], part of the Kelch family, which has only been related to paraneoplastic encephalitis
with an oncological profile [61]. To date, neither of these genes has been associated with
leukemia or other types of cancer; therefore, delving into the mechanisms of these genes in
the context of leukemia is of great importance and provides a new research perspective.

Regarding CNP, the enzyme 2′,3′-cyclic nucleotide 3′ phosphodiesterase [62], it has
until now only been linked to glioblastoma multiforme (GBM); CNP-positive patients had
better survival rates than individuals with CNP-negative tumors [63]. Although we focused
on showing genes whose high expressions had poor prognoses in leukemia, it is important
to mention that these results were consistent with our findings in B-ALL, since high CNP
expression correlated with better overall survival (data not shown).

Concerning ACLY, which translates the enzyme ATP citrate lyase and is responsible
for the synthesis of cytosolic acetyl-CoA [64], an association with ALL has also not been
reported; however, in AML, there was evidence that patients with low levels of this gene
had favorable prognoses [65]. In other types of cancer, ACLY upregulation has been shown
to promote metastasis and invasion and to inhibit apoptosis in prostate [66], colon [67],
breast [68], and esophageal cancer cells [69]. Specifically, it was proposed as a predictive
and recurrent biomarker in breast cancer [68]. In contrast, the opposite was observed when
we analyzed the survival curves in B-ALL samples (data not shown).

In relation to JUP/Plakoglobin, a gene that produces the protein γ-catenin and is homol-
ogous to β-catenin [70], it was reported to be necessary for maintaining the “BCR-ABL1”
genetic abnormality (through regulation of MYC and BIRC5/survivin) in B-ALL, being
proposed as a potential therapeutic target [71]. In addition, γ- and β-catenin were essential
for maintaining leukemic stem cells in AML [72], while γ-catenin has also been found to be
overexpressed in ovarian [73] and gastric cancer [74]. JUP expression in prostate cancer
is controversial since changes depending on the stage [75]. In our study, JUP was found
to be highly expressed in the SUP-B15 cell line and B-ALL individuals (Figures 5 and 6A,
respectively); moreover, its high expression yielded a significant correlation with worse
overall survival in B-ALL (Figure 8). It is essential to highlight that our results support its
great utility in clinical settings, not only as a prognostic marker, but also as a therapeutic
target since, additionally, the hierarchical tree analysis demonstrated its high expression
only in HSC during normal hematopoiesis and in diverse B-ALL phenotypes (Figure 7).

Another gene that we found to have a high expression was RTL10, also known as
C22orf29 (retrotransposon gag-like 10). This gene translates to a BH3 protein, a motif that is
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part of the proapoptotic proteins Bad, Bik, and PUMA. The role of the BH3 protein in ALL,
individually or as a motif of proapoptotic proteins, has not been described; nevertheless,
PUMA levels were elevated in chronic lymphoblastic leukemia (CLL) [76]. These data cor-
relate with our findings in ALL; however, no correlation was found between its expression
and survival (data not shown).

In our study, we found overexpression of GNB1L (G protein beta 1 subunit) in the cell
lines and ALL patients; however, there are no reports in the literature that have studied
the expression of this gene in any type of cancer. Most studies on GNB1L are related to
psychiatric disorders reported, for example, in schizophrenia [77] and autism [78]. Only
one report exists in which alterations in copy number variations (CNVs) were found in
hepatocellular carcinomas, but only in 18 out of 98 patients [79]; thus, we considered this
gene as another prominent candidate for further functional studies in ALL.

Concerning SALL2 (spalt-like transcription factor 2), which is a member of the spalt/sal
family of transcription factors associated with cell differentiation, development, and stem-
ness [80], its expression in cancer is still controversial. In a transcriptome and genome
analysis performed for children and adults with ALL, the fusion of SALL2 with TCR-α (TRA-
SALL2) was one of the most recurrent fusions reported in this pathology [81]. In addition,
high expressions of SALL2 have been found in esophageal cancer [82], breast cancer [83],
testicular cancer [84], and glioblastoma [85]. In contrast, losses or reduced expressions
have been reported in HL-60 and primary acute myeloid leukemia samples [86], as well
as in ovarian [87] and oral cancer [88]. Since we found that SALL2 was overexpressed in
T-ALL-derived cells and because, during normal hematopoiesis, its expression is limited to
HSCs, we believe that the expression of this gene could be useful as a lineage marker and
as a potential therapeutic target.

On the other hand, there were two genes in which overexpression was determined in
leukemia-derived cell lines but was not confirmed in patients: COMT and P3H4 (Figure 4).
With respect to COMT, this gene translates catechol-O-methyltransferase, an enzyme in-
volved in the metabolic degradation of catecholamines, which normally exhibit low activity
in leukocytes [89]; in pediatric ALL patients, the COMT-“rs4680” polymorphism was as-
sociated with mercaptopurine-induced hepatotoxicity [90]. In endometrial (rs4680) [91]
and breast cancer (val158 met) [92], some polymorphisms of COMT have been evaluated;
however, no significant associations have been found. In contrast, as we observed in the
leukemia-derived cell lines, Hashimoto et al. found that COMT had low levels in patients
and cell lines of prostate cancer; moreover, the restoration of its expression in DuPro and
DU145 led to the suppression of migration and an increase in apoptosis [93]. Regarding
P3H4 (prolyl 3-hydroxylase family member 4), no association has been described with any
type of leukemia; however, in lung and bladder cancer, the upregulation of mRNA and
protein levels have been associated with the promotion of proliferation, migration, and
invasiveness [94,95]. On the contrary, in kidney cancer, P3H4 helped reduce cell invasion
through miR-133a and miR-1a [96].

In addition, we found two genes statistically significantly overexpressed in B- and
T-ALL patients but not in the cell lines: METTL3 (N6-adenosine-methyltransferase) and
KLHL10 (Kelch-like family member 10). The former methylates primary microRNAs
(pri-miRNAs) that promote the initiation of miRNA biogenesis [97]; alteration in their
function has been related to promoting tumorigenicity, and high expressions have been
observed in cervical [98], colorectal [99], prostate [100], pancreatic [101], ovarian [102], and
esophageal cancer [103]. Furthermore, its overexpressions in bladder [104] and gastric
cancer [105] have been associated with poor prognoses. Interestingly, it was reported
that METTL3 mRNA and protein expression was increased in acute myeloid leukemia
(AML) cells compared to healthy hematopoietic stem and progenitor cells [106], and a
higher expression was reported in pediatric ALL ETV6/RUNX1-positive patients when
compared to controls [107]. Based on these observations, it has been proposed that the
downregulation of this gene could be a therapeutic strategy [108,109]. Regarding KLHL10,
there is limited information about its function, and there are no studies that associate it
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with cancer or any other pathology; to date, it has been related only to spermatogenesis
and male infertility [110,111], and this is the first time that this gene has been associated
with ALL. Therefore, we consider that this gene should also be functionally studied in the
context of this pathology.

Unexpectedly, although our study observed gains in genomic DNA (Figures 1–3),
lower expressions in ALL patients compared to healthy individuals were observed in
TOX4, DNAJC7, TTC25, TXNRD2, and TANGO2 (Figure 6A,B). Regarding TOX4, it was
reported that this gene was highly expressed in AML patients compared with clinically
healthy individuals [112]. In other types of cancer, such as breast and lung cancer, it was
determined that TOX4 was highly expressed [113]; however, it has not yet been linked
to LLA. No association with the expression of DNAJC7 (DnaJ heat shock protein family
(Hsp40) member C7) has been reported; however, the accumulation in serum of DNAJC7
was proposed as a potential biomarker in renal cell carcinoma early detection [114]. In
the case of TTC25, also known as ODAD4 (outer dynein arm docking complex subunit
4), it is characterized by its participation in mucociliary clearance [115]. Interestingly, in
a study where researchers stimulated PBMCs in horses with LPS, overexpression of this
gene was found at the level of the transcriptome, but the reasons were unknown [116].
Regarding thioredoxin reductase 2 (TXNRD2/TRXR2), an important antioxidant enzyme
that controls the levels of cellular reactive oxygen species (ROS), it was identified as
being hypomethylated in CLL [117]. Furthermore, higher levels of this gene have been
observed in hepatocellular carcinomic tissues [118], as well as in NSCLC (non-small-cell
lung carcinoma) [119]. Concerning TANGO2 (transport and organization homolog of the
golgi complex 2), polymorphism in “p. Ser17Ter” was associated with an aggressive profile
of prostate cancer [120]. According to the previously mentioned reports, overexpressions
of these genes would be expected at the transcriptome level. Further studies using other
methodologies are necessary to determine their roles in leukemia.

5. Conclusions

This study identified genes present in common chromosomal gains detected through
CGH microarrays in ALL patients and two classical leukemia-derived cell lines and val-
idated them using expression microarrays and RNAseq. The expressing genes that we
thought could be clinically relevant were SALL2, NT5C3B, CNP, ACLY, JUP, KLHL11, RTL10,
and GNB1L. Of these, it is worth mentioning that a hierarchical tree analysis showed very
high expressions of SALL2 in T-ALL and JUP in B-ALL patients, as well as in HSC, but not
in any other cell lineage generated during normal hematopoiesis. Moreover, it is essential
to highlight that the overexpression of JUP was strongly related to poor overall survival in
B-ALL patients. Deepening the study of these genes are relevant constitutes a fertile field
of research to investigate how their alterations are related to this pathology and to evaluate
with more sensitive tests their application in the diagnosis and prognosis of ALL, as well as
their utility as therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12112788/s1, Supplementary Figures S1–S3 show
genes present in common gain regions visualized with UCSC Genome Browser on Humans (GRCh38
vs. hg38) for chromosomes 14, 17, and 22, respectively. Supplementary Figure S4 shows relative
expressions of JUP in peripheral blood and leukemia-derived cell lines. Supplementary Table S1
presents the main features of 22 genes found with gain, and Supplementary Table S2 shows data of
DNA copy numbers normalized to Log2 for chromosomes 14, 17, and 22 using GSE75671 data.
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