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Abstract 23 

 24 

DNA methylation (DNAme) is a major epigenetic factor influencing gene expression 25 

with alterations leading to cancer, immunological, and cardiovascular diseases. 26 

Recent technological advances enable genome-wide quantification of DNAme in large 27 

human cohorts. So far, existing methods have not been evaluated to identify 28 

differential DNAme present in large and heterogeneous patient cohorts. We developed 29 

an end-to-end analytical framework named “EpiMix” for population-level analysis of 30 

DNAme and gene expression. Compared to existing methods, EpiMix showed higher 31 

sensitivity in detecting abnormal DNAme that was present in only small patient 32 

subsets. We extended the model-based analyses of EpiMix to cis-regulatory elements 33 

within protein-coding genes, distal enhancers, and genes encoding microRNAs and 34 

lncRNAs. Using cell-type specific data from two separate studies, we discovered novel 35 

epigenetic mechanisms underlying childhood food allergy and survival-associated, 36 

methylation-driven non-coding RNAs in non-small cell lung cancer.  37 

 38 

 39 

 40 

 41 

 42 

 43 
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Main text 47 

 48 

DNA methylation (DNAme) is one of the major epigenetic marks in humans. It is 49 

defined as the addition of a methyl (CH3) group to DNA that occurs primarily at the 50 

cytosine of cytosine-guanine dinucleotide (CpG) sequence. DNAme regulates various 51 

biological processes by affecting gene expression, and aberrant DNAme plays a 52 

critical role in the development and progression of many human diseases1–3. Recent 53 

experimental methods based on microarrays or next-generation sequencing have 54 

enabled genome-wide quantification of DNAme at single-nucleotide resolution. Due to 55 

its quantitative and cost-effective nature, microarray-based technology has emerged 56 

as the method of choice for profiling DNAme in large human cohorts. For example, 57 

The Cancer Genome Atlas (TCGA) project has used the microarray technology to 58 

generate DNAme profiles in over 10,000 specimens representing 33 cancer types. 59 

The Gene Expression Omnibus database (GEO) and other public repositories also 60 

host a large number of DNAme datasets across cancers and other complex diseases.  61 

 62 

Over the last decade, a number of computational approaches have been developed 63 

to identify genes that are abnormally methylated in human diseases. Some methods 64 

are tailored to the analysis of DNAme data from bisulfite sequencing4–7, while others 65 

are designed for array-based data or can be adapted to both data platforms8–12. Many 66 

existing methods identify differentially methylated loci by comparing all samples from 67 

an experimental group versus samples in a control group. This type of comparison 68 

works well when the experimental population is assumed to be homogenous. However, 69 

when the study population is large, abnormal DNAme may be present in only a subset 70 
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of the patients, and this intra-population variation has been observed in cancers and 71 

many other diseases13–15. In cases where abnormal DNAme occurred in only a small 72 

subset of the patients, existing methods are not capable of capturing the signals of 73 

differential methylation. Therefore, there is a critical need to use a statistical approach 74 

to model the distribution of DNAme in large patient cohorts, and to identify the patient 75 

subsets with differential DNAme profiles. This epigenetic subtyping can be essential 76 

to improve personalized diagnosis, treatment and drug discovery.   77 

 78 

Furthermore, gene expression in mammalian cells is a result of a complex process 79 

coordinated by a broad range of genomic regulatory elements16,17. In many studies, 80 

CpG sites were mapped to genes based on linear genomic proximity. This mapping 81 

logic assumes that the transcriptional activity can be affected only when the genes are 82 

overlapped or close to the differentially methylated sites. However, emerging evidence 83 

has shown that distal enhancers, which may locate at a great linear genomic distance 84 

from their target genes, play a critical role in orchestrating spatiotemporal gene 85 

expression programs18. Abnormal DNAme at enhancers was frequently reported in 86 

cancers and many other diseases19,20. Therefore, the analysis of enhancer 87 

methylation can improve our understanding of how gene expression is regulated 88 

across physiological and pathological conditions.  89 

 90 

Existing computational tools focus on the DNAme analysis of protein-coding genes. 91 

Besides protein-coding genes, non-coding RNAs, such as microRNAs (miRNAs) and 92 

long non-coding RNAs (lncRNAs), play an important role in regulating cell 93 

functions21,22. Recent studies have shown that DNAme is a major epigenetic 94 
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mechanism regulating non-coding RNA expression23,24. With existing methods, it is 95 

challenging to decipher how DNAme regulates non-coding RNA expression.  96 

 97 

Here, we present EpiMix, a comprehensive analytical framework for population-level 98 

analysis of DNAme and gene expression. EpiMix utilizes a model-based 99 

computational approach to identify abnormal DNAme at diverse genomic elements, 100 

including cis-regulatory elements within or surrounding protein-coding genes, distal 101 

enhancers, and genes encoding miRNAs and lncRNAs. In two separate studies, we 102 

showed that EpiMix identified novel methylation-driven pathways in T cells from 103 

childhood food allergy and methylation-driven non-coding RNAs in non-small cell lung 104 

cancer patients. To improve usability, we disseminated EpiMix’s algorithms in 105 

Bioconductor25, enabling end-to-end DNAme analysis. Furthermore, we developed a 106 

web tool for interactive exploration and visualization of EpiMix’s results 107 

(https://epimix.stanford.edu). Overall, EpiMix can be used to discover novel epigenetic 108 

biomarkers for disease subtypes and therapeutic targets for personalized medicine. 109 

 110 

Results 111 

 112 

Overview of EpiMix Workflow 113 

 114 

EpiMix is an end-to-end analytical framework for modeling DNAme at diverse genomic 115 

elements and for identifications of differential DNAme associated with gene 116 

expression. The EpiMix framework consisted of four functional modules: (1) data 117 

downloading, (2) preprocessing, (3) DNAme modeling and (4) functional analysis 118 
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(Fig.1). To analyze DNAme at functionally diverse genomic elements, we 119 

implemented four alternative analytic modes: "Regular," "Enhancer", "miRNA" and 120 

"lncRNA." Both the Regular and Enhancer modes aimed to detect differential DNAme 121 

associated with the expression of protein-coding genes. The Regular mode analyzed 122 

DNAme sites within or immediately surrounding the genes, while the Enhancer mode 123 

specifically analyzed DNAme at distal enhancers. The miRNA and lncRNA modes 124 

were built for the detection of DNAme affecting the expression of miRNAs and 125 

lncRNAs. After the methylation-driven genes were identified, users could perform 126 

comprehensive exploratory analyses using the functional analysis module. The 127 

functional analysis module was built with both in-house developed methods and 128 

integrating existing computational tools to enable diverse functional analyses and 129 

visualization of the differential DNAme.   130 
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Fig.1 Overview of EpiMix workflow. EpiMix includes four modules: Downloading, Preprocessing, Methylation 131 
modeling and Functional analysis. Data from public repositories (i.e., TCGA and GEO) can be automatically 132 
downloaded and preprocessed by EpiMix. Alternatively, users can input their own custom datasets. The 133 
preprocessing module includes functions for quality control, batch effect normalization, and missing value 134 
imputation. To model DNAme, EpiMix enables four alternative analytic modes: Regular, Enhancer, miRNA and 135 
lncRNA. Each mode uses a custom algorithm to analyze DNAme at a specific type of genomic element. One major 136 
output from the methylation modeling is a matrix of functional CpG-gene pairs, illustrating the differentially 137 
methylated CpGs whose DNAme states were associated with gene expression. After the differentially methylated 138 
genes have been identified, users can perform diverse analytical tasks with EpiMix’s functional analysis module. 139 
This includes pathway enrichment analysis, genome-browser style visualization, gene regulatory network analysis, 140 
epigenetic biomarker discovery and identification of methylation-associated disease subtypes. 141 

 142 
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Identifications of abnormal DNAme present in small sample 143 

subsets 144 

 145 

To assess the sensitivity of EpiMix in identifications of differential DNAme that was 146 

present in only specific patient subsets, we performed simulation experiments. We 147 

used a dataset that jointly profiled DNAme data and messenger RNA abundance in 148 

human naïve CD4+ T cells26. The dataset contains quiescent T cells and antigen- 149 

activated T cells from 103 human subjects. The DNAme data were obtained from 150 

Infinium MethylationEPIC array, and the messenger RNA expression data were 151 

obtained from RNA-Seq.  We randomly sampled a subset of CpGs (n = 300) from the 152 

quiescent group as baselines, such that the average beta values of the selected CpGs 153 

ranged from 0.1 to 0.9. Then, for each CpG, we randomly selected a subset of samples 154 

from the activation group and combined them with the baseline group (Fig.2a and 155 

Methods), such that the final proportions of samples from the activation group in the 156 

combined dataset ranged from 3% to 50%, and the mean differences in beta values 157 

between the activated and the baseline samples ranged from 0.1 to 0.7. We then 158 

compared the DNAme of the synthetic populations to the baseline population (Fig.2a).  159 
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 160 
Fig.2 a, Design of the simulation study. The dataset contained experimentally purified naïve CD4+ T cells from 103 161 
human subjects. Cells from each subject were divided into half and either activated with the T-cell antigen or left 162 
resting in the media. The baseline group contained quiescent samples from all 103 subjects. The experimental 163 
group contained quiescent samples from all subjects and the antigen-activated samples from N subjects, where N 164 
ranged from 3 to 103. We compared the DNAme of the experimental group to the baseline group and tested 165 
whether EpiMix can detect the signals of differential methylation. b, Correlation between the delta beta values and 166 
the minimum detection threshold for the prevalence (left axis) and actual count (right axis) of the activated samples 167 
in the experimental group. The simulation was repeated 300 times using a different CpG site at each time, and the 168 
mean detection threshold was shown. c, Density plots showing the mixture models when delta beta was 0.1 and 169 
the differential methylation was present in 3%, 5% and 25% of the experimental group. d, Density plots showing 170 
the mixture models when delta beta was 0.3 and the differential methylation was present in 3%, 5%, and 25% of 171 
the experimental group. e) Number of differentially methylated CpGs detected by different methods when the 172 
differential methylation was present in from 3% to 25% of the population. For all methods, the same set of CpGs 173 
were used, and the total number of CpGs at each prevalence was 2,700.     174 
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 175 

We found that the sensitivity of EpiMix was determined by the magnitude of differences 176 

in DNAme between the quiescent and the activated subjects. When the delta beta was 177 

0.1, EpiMix detected differential DNAme that was present in 3% to 25% of the synthetic 178 

population, with a mean minimum detection threshold of 11.0% (absolute sample 179 

count = 13) (Fig.2b, c). When the delta beta was 0.2 or higher, the minimum detection 180 

threshold ranged from 3% to 10%, with a mean threshold of 3.4% (absolute sample 181 

count = 4) (Fig.2b, d). These results indicated that EpiMix was able to detect abnormal 182 

DNAme that was present in only small subsets of a tested population, and the 183 

sensitivity was positively correlated with the magnitude of differences in DNAme.  184 

 185 
Next, we compared the performance of EpiMix with other existing methods in 186 

identifications of differential DNAme, including Minfi10, iEVORA27 and RnBeads12,28. 187 

When the differential DNAme was present in 3% of the population, EpiMix detected 188 

the differential methylation signals at 1,747 CpG sites, whereas the other methods did 189 

not capture any differential DNAme (Fig.2e). When the differential DNAme was 190 

present in 5% of the population, EpiMix identified 3.1 times more differentially 191 

methylated CpGs than iEVORA, and 3.6 times more CpGs than Minfi and RnBeads. 192 

Minfi and RnBeads only detected CpGs with high magnitude differences in DNAme, 193 

with an average delta beta of 0.6. In contrast, EpiMix detected CpGs with delta beta 194 

ranging from 0.1 to 0.7, with an average threshold of 0.3. When the prevalence of 195 

differential DNAme was 15% or higher, EpiMix detected similar numbers of CpGs to 196 

the other three methods. These results indicated that EpiMix had higher sensitivity to 197 

detect differential DNAme that was present in only small sample subsets. 198 

 199 
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Modeling of DNA methylation at cis-regulatory elements within 200 

protein-coding genes 201 

 202 

To test the Regular mode of EpiMix, we used the complete, real dataset from antigen-203 

activated T cells and quiescent T cells (n = 103 subjects per group)26. In the activated 204 

T cells, 1,090 CpGs were differentially methylated compared to the quiescent cells. 205 

Integrative analysis with RNA-seq data showed that the differentially methylated CpGs 206 

were functionally associated with the expression of 748 protein-coding genes 207 

(Supplementary Table 1). Of the differentially methylated CpGs, 746 (68.4%) CpGs 208 

associated with 504 genes were hypomethylated and 327 (30.0%) CpGs associated 209 

with 238 genes were hypermethylated (Fig.3a). This result indicated that antigens 210 

induced a widespread loss of DNAme. Gene ontology (GO) analysis showed that the 211 

hypomethylated genes were associated with lymphocyte proliferation (e.g., CCND2, 212 

CCND3, CDK6, CDK14), T cell activation (e.g., BCL2, CCL5, HLA-DPA1, HLA-DRB1), 213 

glycoprotein biosynthesis (e.g., AGO2, ALG9, B3GNT5, B4GALT5) and cytokine 214 

receptor activity (IL1R1, IL1R2, IL21R, IL23R) (Supplementary Table 2). This result 215 

confirmed that EpiMix identified differential DNAme associated with T cell activation. 216 

 217 

Many of the CpGs were differentially methylated in only a subset of the patients. For 218 

instance, the Human Leukocyte Antigen DRB1 (HLA-DRB1) gene was 219 

hypomethylated in the antigen-activated T cells from 25% of the subjects, whereas the 220 

majority (75%) of the subjects had a normal methylation state similar to the quiescent 221 

T cells (Fig.3b). As expected, gene expression levels of HLA-DRB1 were significantly 222 

increased in the hypomethylated compared to the normally methylated subjects 223 

(Fig.3c). Overall, the prevalence of hypomethylation ranged from 5.9% - 100%, with 224 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2023.01.03.522660doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522660
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 
 

 

a mean prevalence of 69.6% (Fig.3d). The prevalence of hypermethylation ranged 225 

from 5.8% - 100%, with a mean prevalence of 47.3% (Fig.3e). These results indicated 226 

that the antigen-induced response in T cells varied between different individuals. 227 

 228 

We next investigated the genomic distribution of the differentially methylated CpGs. 229 

Thirty-nine percent (39.5%) of the CpGs were located at the promoters, and 56.4% 230 

were located at introns (Supplementary Fig.1a). Using publicly available chromatin 231 

immunoprecipitation-sequencing (ChIP-seq) data of human naïve CD4+ T cells, we 232 

found that the abnormal DNAme was significantly enriched at active promoters 233 

marked by H3K4me3 and H3K27ac, active enhancers marked by H3K4me1, and to a 234 

lesser extent, actively transcribed gene bodies marked by H3K36me3 235 

(Supplementary Fig.1b). These results demonstrated that EpiMix was able to identify 236 

aberrant DNAme at lineage-defining cis-regulatory elements.  237 

 238 

To allow users to investigate the genomic locations and chromatin states associated 239 

with the differentially methylated sites, EpiMix enables genome browser-style 240 

visualization. We illustrated this functionality with hypomethylation in two regions of 241 

the interleukin-receptor gene IL21R (Fig.3f). The first region was located at the 242 

promoter, which overlapped with DNase I hypersensitivity sites and activating histone 243 

modifications (i.e., H3K4me1, H3K4me3 and H3K27ac). The second region was 244 

located at the three-prime untranslated region, enriched with histone modifications 245 

marking for active enhancers (i.e., H3K4me1 and H3K27ac). In concordance with this 246 

DNA hypomethylation, IL21R expression levels were significantly increased 247 

(Supplementary Table 1, Wilcoxon rank-sum test, P < 3.19E-08). 248 

 249 
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Fig.3 Identifications of differential DNAme resulting from antigen-induced T cell activation. a, Proportions 250 
of the hypo-, hyper- and dual methylated CpGs in antigen-activated T cells. The dual methylated CpGs refer to the 251 
CpGs that were hypomethylated in some individuals, while hypermethylated in some other individuals.  b, Mixture 252 
model of a CpG associated with the HLA-DRB1 gene, and c, HLA-DRB1 gene expression levels in different 253 
mixtures. Red indicates hypomethylation (n = 26), while blue indicates normal methylation (n = 77). Gene 254 
expression levels were compared with Wilcoxon rank-sum test. d-e, Density plots showing the prevalence 255 
distribution of the d) hypo- and e) hyper-methylated CpGs f, Genome-browser style visualization of the chromatin 256 
state, DM values, and transcript structure of the IL21R gene. The hypomethylated CpGs were labeled in red.  The 257 
differential methylation (DM) value represents the mean difference in beta values between the hypomethylated 258 
subjects versus the normally methylated subjects. DM = 0: normal methylation; DM < 0: hypomethylation.  259 

 260 
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Identification of functional DNA methylation at distal enhancers in food allergy 261 

 262 

To demonstrate the Enhancer mode of EpiMix, we used the same CD4+ T cell 263 

dataset26. In this dataset, 82 human subjects were diagnosed with food allergy and 21 264 

subjects were non-allergic controls. The differential response of T cells to antigen-265 

induced activation between different individuals may be associated with the allergic 266 

status. We then characterized allergy-associated changes in DNAme by comparing 267 

antigen-activated T cells from the allergic patients to those from the non-allergic 268 

controls. Using a permutation approach (Supplementary Fig.2 and Methods), we 269 

identified 107 differentially methylated enhancers that were functionally linked to the 270 

expression of 119 genes. The number of target genes of each enhancer ranged from 271 

1 to 3, resulting in 131 significant enhancer-gene pairs (Supplementary Table 3). 272 

This result is consistent with the previous studies showing that enhancers typically 273 

loop to and are associated with the activation of 1 to 3 promoters29,30. Of the functional 274 

enhancers, 21/107 (19.6%) enhancers associated with 24 genes were 275 

hypomethylated, 82/107 (76.7%) enhancers associated with 92 genes were 276 

hypermethylated (Fig.4a). This result indicated that there was a global gain of DNAme 277 

at enhancers in food allergy.  278 

 279 

The genomic distance between enhancers and their target genes ranged from 4.5 kb 280 

to 1.7 Mb, with a median distance of 148 kb (Fig.4b). In a previous study, Jin et al. 281 

used high-throughput chromosome conformation capture (Hi-C) assay to investigate 282 

promoter-enhancer interactions and demonstrated that approximately 25% of the 283 

enhancer-promoter pairs are within a 50 kb range and approximately 57% spans 100 284 

kb or greater genomic distance, with a median distance of 124 kb31. Another study by 285 
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Rao et al. showed that the distance between enhancers and promoters spans from 40 286 

kb to 3 MB, with a median distance of 185 kb32. Our data agree with these 287 

experimentally generated results. To further characterize the enhancer-gene linkage, 288 

we investigated how often did the functional enhancers associate with the nearest 289 

gene promoter. We ranked the 20 adjacent genes of each enhancer by their genomic 290 

distance to the enhancer. Fig.4c showed that only 6.1% of the times did the enhancer 291 

associate with the nearest promoter, whereas the majority of the enhancers skipped 292 

one or more intervening genes to associate with promoters farther away. In line with  293 

Fig. 4 Identifications of differentially methylated enhancers associated with food allergy. a, Proportions of 294 
the hypo-, hyper- and dual methylated enhancers in children with food allergy. b, Distribution of the linear genomic 295 
distance between enhancers and their gene targets. c, For each functional enhancer, the 20 adjacent genes were 296 
ranked by genomic distance. Bars show the proportions of the functionally linked genes in each rank. d, Mixture 297 
model of the LDLR gene (top panel) and LDLR gene expression levels in different mixtures (bottom panel). Red 298 
indicates normal methylation (n = 72), while blue indicates hypermethylation (n = 10). Gene expression levels were 299 
compared by Wilcoxon rank-sum test. e, Integrative visualization of the chromatin states and the adjacent genes 300 
of the hypermethylated enhancer shown in panel d. The genes in the functional CpG-gene pairs are shown in red, 301 
while the others are shown in black. f, Enriched TF motifs and odds ratios for the differentially methylated enhancers. 302 
To find significantly enriched motifs, we used all the distal CpGs as the background and the functional enhancers 303 
as the targets. 304 
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this result, a previous study using the chromosome 5C assay showed that only ~7% 305 

of the time did the distal elements loop to the promoter of the nearest gene, whereas 306 

the majority of enhancers bypass the nearest promoter and loop to promoters farther 307 

away33. These results confirmed that EpiMix identified true distal cis-regulatory events. 308 

 309 

The genes linked to the differentially methylated enhancers were related to the lipid 310 

metabolism (LDLR, CAT, LPIN2, SREBF1, PIK3C2B) and T cell activation (CASP3, 311 

MALT, PRKCZ, SMAD3). Fig.4d showed that the enhancer linked to the LDLR gene 312 

was hypermethylated in 12.2% of the allergic patients, and the gene expression of 313 

LDLR was significantly decreased in the hypermethylated patients. Integrative 314 

visualization (Fig.4e) showed that the hypermethylated enhancer overlapped with the 315 

Dnase I hypersensitivity site and was enriched with histone modifications marking for 316 

active enhancers, including H3K4me1 and H3K27ac, and to a lesser extent, H3K4me3 317 

and H3K9ac. The LDLR gene encodes a low-density lipoprotein receptor that 318 

transports cholesterol from the blood into the cell, which plays a critical role in 319 

regulating T cell lipid metabolism34. Our results suggested that T cells from a small 320 

subset of the allergic patients may have an abnormal lipid metabolic profile due to 321 

enhancer hypermethylation.  322 

 323 

Enhancers are enriched for sequences bound by site-specific transcription factors 324 

(TFs). Hypermethylation of enhancers suppresses gene transcription by decreasing 325 

the binding affinity of TFs35,36. We then carried out motif enrichment analysis of the 326 

differentially methylated enhancers. We identified significant enrichment of binding 327 

sites for Jun-related factors (JUN, JUND), Fos-related factors (FOS, FOSL1, FOSL2, 328 

FOSB), BATF-related factors (BATF, BATF3), and Interferon-regulatory factors (IRF2, 329 
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IRF5, IRF7) (Fig.4f and Supplementary Table 4). These results agree with the 330 

evidence showing that Jun-related factors, BATF-related factors and Interferon-331 

regulatory factors play a critical role in regulating the immune gene activation in T cells, 332 

and dysregulation of their activity causes aberrant immune response37,38. Our results 333 

demonstrated that the abnormal DNAme at enhancers affected the target gene 334 

response of these TFs and increased the subsequent risk for developing food allergy.  335 

 336 

Identification of methylation-driven miRNAs in human lung cancer 337 

 338 

Similar to protein-coding genes, miRNA-coding genes are transcriptionally regulated 339 

by DNAme39,40. To demonstrate the miRNA mode of EpiMix, we used a lung 340 

adenocarcinoma dataset containing DNAme and miRNA expression profiles of 457 341 

tumors and 32 adjacent normal tissues41. The DNAme data were acquired from the 342 

HM450 array, and the gene expression data were obtained from high-throughput 343 

microRNA sequencing (miRNA-Seq).  344 

 345 

Both tumors and normal tissues from the lung are composed of multiple cell types, 346 

majorly including epithelial cells, fibroblasts, hematopoietic cells and endothelial cells. 347 

Studies have shown that DNAme profiles are cell-type specific42,43. When using data 348 

collected at the tissue (“bulk”) level for DNAme analysis, the differential DNAme may 349 

result from variations in cell-type proportions between different individuals. To resolve 350 

the confounding effects from intra-tumoral heterogeneity,  we used previously 351 

validated computational methods to decompose tissue compositions and to infer cell-352 

type-specific methylomes and transcriptomes (Supplementary Fig. 3 and 353 

Methods)44,45. We then applied EpiMix to the deconvoluted data of each individual cell 354 
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type. In epithelial cells, we identified 272 differentially methylated CpGs functionally 355 

associated with the expression of 92 miRNA genes (Fig.5a and Supplementary 356 

Table 5). In fibroblasts, we found 12 hypomethylated CpGs functionally associated 357 

with the expression of 3 miRNA genes (Supplementary Fig. 4a-b). Although we 358 

discovered 9 differentially methylated CpGs in hematopoietic cells and 6 CpGs in 359 

endothelial cells, none of the differential DNAme were functionally correlated with 360 

gene expression. We further compared the differentially methylated gene lists 361 

identified using data from bulk tissues versus the ones using individual cell types. Over 362 

80% of the differentially methylated genes identified in epithelial cells could also be 363 

identified using data from bulk tissues (Supplementary Fig. 4a-b). These results 364 

demonstrated that, although tumors are composed of multiple cell types, the majority 365 

of differential methylation events occurred in epithelial cells.  366 

 367 

We next focused our analysis on the deconvoluted data of epithelial cells. Of the 272 368 

differentially methylated CpGs, 138 (50.8%) CpGs associated with 66 genes were 369 

hypomethylated and 55 (20.2%) CpGs associated with 37 genes were 370 

hypermethylated. Sixty-five percent (63.6%) of the functional CpGs were located at 371 

the promoters, and this proportion was significantly higher than randomly selected 372 

CpGs (Supplementary Fig.1c, Fisher’s exact test, P = 0.003). Using publicly available 373 

ChIP-seq data of lung, we further determined that the differentially methylated regions 374 

were enriched with histone modifications (i.e., H3K27ac, H3K4me1 and H3K4me3) 375 

marking for actively transcribed promoters and enhancers (Supplementary Fig.1d). 376 

The prevalence of hypomethylation ranged from 1.1% to 66.7%, with a mean 377 

prevalence of 18.0% (Fig. 5b). Similarly, the prevalence of hypermethylation ranged 378 

from 2.6% to 83.7%, with a mean prevalence of 24.9% (Fig. 5c). These results 379 
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indicated that the majority of differential DNAme associated with miRNA genes 380 

occurred in less than 25% of the patient population. 381 

Fig. 5 Identifications of differentially methylated miRNA-coding genes in human lung cancers. a, Proportions 382 
of the hypo-, hyper- and dual methylated CpGs of miRNAs in lung cancer. b-c, Density plots showing the 383 
prevalence distribution of the differentially methylated miRNAs in lung cancers (n = 457), (b) prevalence of 384 
hypomethylation and (c) prevalence of hypermethylation. d, Mixture model of the MIR30A gene (left panel) and 385 
Kaplan-Meier survival curves of patients in different mixtures (right panel). Red indicates normal methylation and 386 
blue indicates hypermethylation. Gene expression levels were compared by Wilcoxon rank-sum test. e, Mixture 387 
model of the MIR1292 gene (left panel) and Kaplan-Meier survival curves of patients in different mixtures (right 388 
panel). Red indicates hypomethylation and blue indicates normal methylation. f-g-h, Network visualization of (f) 389 
the gene targets of miR-34a, (g) differentially methylated miRNAs related to the cell cycle pathway, and (h) focal 390 
adhesion pathway. Blue squares: miRNAs, green circles: protein-coding genes targeted by miRNAs. 391 

 392 

MicroRNAs play an important role in regulating cell proliferation, invasion and cancer 393 

metastasis46,47. We next investigated whether the DNAme of miRNAs were associated 394 

with patient survival. Of the 92 methylation-driven miRNAs, we identified 22 miRNAs 395 

whose methylation states were significantly correlated with patient survival 396 
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(Supplementary table 6, log-rank test, P < 0.05). Half (11/22, 50%) of the survival-397 

associated miRNAs were hypomethylated and the others (11/22, 50%) were 398 

hypermethylated. Some of the miRNAs, such as MIR29C48, MIR30A49, MIR34A50 and 399 

MIR148A51, were known to be associated with lung cancer survival. For instance, 400 

MIR30A, a tumor suppressor miRNA49, was hypermethylated in 8.6% of the patients, 401 

and the hypermethylated patients showed a significantly worse survival than the 402 

normally methylated patients (Fig.5d, Hazard Ratio = 1.50, P = 0.001). In addition, 403 

EpiMix identified many new survival-associated miRNAs. For instance, MIR1292 was 404 

hypomethylated in 8.6% of the patients, and the hypomethylated patients showed 405 

significantly worse survival (Fig.5e, Hazard Ratio = 1.39, P = 0.0008). These results 406 

demonstrated that EpiMix was able to identify survival-associated miRNAs that were 407 

differentially methylated in only small subsets of the patients, and this feature can be 408 

used to discover novel epigenetic biomarkers for prognosis. 409 

 410 

To gain systematic insight into the biological functions of the methylation-driven 411 

miRNAs, we queried miRTarBase52 to obtain experimental validated target genes of 412 

the miRNAs. We then performed pathway analyses of the target gene list. The 413 

differentially methylated miRNAs were related to Wnt signaling pathway, cell cycle, 414 

p53 signaling, focal adhesion and apoptosis (Fig.5f-h and Supplementary Table 7). 415 

These results provided mechanistic insights into how abnormal DNAme of miRNAs 416 

was involved in the development and progression of lung cancer. The data also 417 

suggested that targeting miRNA expression can be a therapeutic strategy to inhibit 418 

tumor progression and to improve patient survival.  419 

 420 

Identification of methylation-driven lncRNAs in human lung cancer 421 
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 422 

To demonstrate the lncRNA mode of EpiMix, we used the same lung adenocarcinoma 423 

dataset41, and we aimed to identify differentially methylated lncRNA genes in tumors 424 

compared to normal tissues. Compared to protein-coding genes, lncRNAs are shorter, 425 

lower-expressed, less evolutionarily conserved, and expressed in a more tissue-426 

specific manner53. To precisely quantify lncRNA expression from RNA-Seq, we used 427 

our previously developed pipeline54. With this pipeline, we combined the transcriptome 428 

annotations from GENCODE and NONCODE55. Raw sequencing reads were aligned 429 

to the combined transcriptome reference and quantified using the Kallisto-Sleuth 430 

algorithm56,57. Using this pipeline, we were able to detect the expression of 2,475 431 

lncRNAs in both tumors and normal tissues. This number was three times higher 432 

compared to the lncRNAs detected by the traditional STAR-HTSeq pipeline. We then 433 

computationally deconvoluted bulk DNAme data and lncRNA expression data to cell-434 

type-specific data (Supplementary Fig. 3). Since over 95% of the functional 435 

differential DNAme was found in epithelial cells (Supplementary Fig. 4c-d), we next 436 

focused our analysis on epithelial cells.  437 

 438 

EpiMix identified 397 CpGs functionally associated with the expression of 132 439 

lncRNAs in epithelial cells (Fig.6a and Supplementary Table 8). Of these CpGs, 146 440 

(36.8%) CpGs associated with 69 genes were hypomethylated and 187 (47.1%) CpGs 441 

associated with 73 genes were hypermethylated. Seventy-two percent (72.0%) of the 442 

functional CpGs were located at the promoters, and this proportion was significantly 443 

higher than randomly selected CpGs (Supplementary Fig.1e, Fisher’s exact test, P 444 

< 0.0001). The differentially methylated regions were enriched with histone 445 
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modifications marking for actively transcribed promoters and enhancers, including 446 

H3K27ac, H3K4me1 and H3K4me3 (Supplementary Fig.1f).  447 

 448 

The majority of differential methylation was identified in less 50% of the patients. The 449 

prevalence for hypomethylation ranged from 1.8% to 53.0%, with a mean value of 19.8% 450 

(Fig.6b). Similarly, the prevalence for hypermethylation ranged from 0.6% to 68.2%, 451 

with a mean value of 18.9% (Fig.6c). For instance, one of the hypermethylated 452 

lncRNAs was LINC00881. LINC00881 was hypermethylated at CG11931463 in 15.7% 453 

of the patients and CG00673344 in 7.9% of the patients (Fig.6d). Both CpGs were 454 

located within the promoter (Fig.6e). Integrative analysis with clinical data showed that 455 

LINC00881 hypermethylation was associated with significantly worse patient survival 456 

(Figs.6f, log-rank test, P < 0.001). These data demonstrated that many lncRNAs were 457 

differentially methylated in only a subset of the lung cancer patients. In addition, EpiMix 458 

was able to identify survival-associated lncRNAs that were differentially methylated in 459 

small patient subsets. 460 

 461 

One of the major outputs from EpiMix is a differential methylation or “DM” value matrix, 462 

which reflects the homogeneous subpopulations of samples with a particular 463 

methylation state (Fig.6g). An application of the DM value matrix is to identify DNAme-464 

associated subtypes, where patients are clustered into robust and homogenous 465 

groups based on their differential DNAme profiles. Using unsupervised consensus 466 

clustering, we discovered five DNAme subtypes (S1–S5) (Fig.6h). S5 contained a 467 

significantly higher proportion of females (89/133 = 66.9%) compared to S1 (54/120 = 468 

45.0%), S2 (36/74 = 48.6%) and S4 (16/50 = 32.0%) (Fig.6i, Fisher’s exact test, P < 469 

0.01). In addition, patients from S5 had significantly better survival than patients of S2 470 
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(Fig.6j, log-rank test, P = 0.007). We benchmarked the clustering results from using 471 

the DM value matrix versus using the raw DNAme data (beta values) of the 472 

differentially methylated CpGs. The patient subsets identified using raw DNAme data 473 

had low cluster consensus (Supplementary Fig.5), and no significant association was 474 

found between patient subsets and survival outcome. These results demonstrated that 475 

the DNAme subtypes discovered by EpiMix had prognostic values.  476 

 477 

To investigate the biological functions of the differentially methylated lncRNAs, we 478 

utilized ncFANs, a functional annotation tool for lncRNAs58. We identified 4,552 479 

protein-coding genes functionally associated with 76 lncRNAs. GO analysis showed 480 

that the protein-coding genes were primarily associated with DNA replication, cell 481 

cycle and regulation of cell activation (Fig.6k and Supplementary Table 9). These 482 

results indicated how differential methylation of lncRNAs were involved in the 483 

regulation of lung cancer development and progression.  484 

 485 

 486 

 487 
 488 
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 489 
Fig. 6 Identifications of differentially methylated lncRNA-coding genes in human lung cancers. a, 490 
Proportions of the hypo-, hyper- and dual methylated CpGs of lncRNA genes in epithelial cells from lung cancers 491 
compared to normal tissues. b-c, Density plot showing the prevalence distribution of the (b) hypo- and (c) hyper-492 
methylated lncRNAs in the lung cancer cohort (n = 457). d, Mixture models of the LINC00881 gene at two different 493 
CpG sites. Red indicates normal methylation and blue indicates hypermethylation. e, Integrative visualization of 494 
the transcript structure, DM values and chromatin state associated with the LINC00881 gene. DM = 0: normal 495 
methylation; DM > 0: hypermethylation. f, Kaplan-Meier survival curves of patients in the normally methylated and 496 
the hypermethylated mixtures. Red indicates normal methylation and blue indicates hypermethylation. g, 497 
Schematic representation of the DM value matrix. The rows correspond to CpG sites, and the columns correspond 498 
to patients. DM values represent the mean differences in DNAme levels between patients in each mixture 499 
component identified in the experimental group compared to the control group. At each CpG site, patients in the 500 
same mixture component have the same DM values. DM < 0: hypomethylation, DM = 0: normal methylation, DM > 501 
0: hypermethylation. h, Consensus matrix showing patient clusters based on the DM values of lncRNAs. i, 502 
Proportions of male and female patients in different patient clusters (n1 = 120, n2 = 74, n3 = 72, n4 = 50, n5 = 133). 503 
j, Kaplan-Meier survival curves of patients in different patient clusters. k, Top 20 enriched GO terms of the 504 
methylation-driven lncRNAs in lung cancer. DM: differential methylation. 505 

 506 

Discussion 507 

 508 
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In this study, we present EpiMix, a comprehensive analytic framework for population-509 

level analysis of DNAme and gene expression. We packaged the EpiMix algorithms 510 

in R, enabling end-to-end DNAme analysis. To enhance the user experience, we also 511 

implemented a web-based application (https://epimix.stanford.edu) for interactive 512 

exploration and visualization of EpiMix’s results (Fig.7). EpiMix contains diverse 513 

functionalities, including automated data downloading, preprocessing, methylation 514 

modeling and functional analysis. The seamless connection of EpiMix to data from the 515 

TCGA program and the GEO database enables DNAme analysis on a broad range of 516 

diseases. Here, we showed that EpiMix identified novel methylation-driven pathways 517 

in food allergy and lung cancer. However, EpiMix is not limited to these disease areas 518 

and can be easily applied to any other diseases.  519 

Fig. 7 Screenshots of the EpiMix web application. a, Interactive data filters and visualization of functional CpG-520 
gene pair matrix. b, Visualization of the mixture model of the SLC16A4 gene in lung cancer. c, Genome-browser 521 
style visualization of the lncRNA gene LINC00881 in lung cancer. d, Kaplan-Meier survival curves of patients with 522 
different methylation states of the miRNA gene miR-34a in lung cancer. 523 
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EpiMix uses a beta mixture model to decompose the DNAme profiles in a patient 524 

population. Using EpiMix, we can resolve the epigenetic subtypes within the patient 525 

population and pinpoint the individuals carrying differential DNAme profiles. In this 526 

study, we identified five DNAme subtypes in lung cancers using the DM values of 527 

lncRNAs. Patients of subtype 2 had worse survival than patients of subtype 5, 528 

indicating that the DNAme subtypes discovered by EpiMix had prognostic values. The 529 

biological interpretation of DNAme subtypes requires the integration of data from other 530 

modalities, such as genetic mutations, lifestyle history, and other etiological features.   531 

 532 

In addition, EpiMix was able to detect abnormal DNAme that was present in only small 533 

subsets of a patient cohort. In our simulation study, EpiMix detected more differentially 534 

methylated CpGs compared to existing methods, when the differential methylation 535 

occurred in only a small patient subset. Using the real lung cancer dataset (n = 457), 536 

we identified miRNAs that were differentially methylated in only 1.1% of the patient 537 

population and lncRNAs differentially methylated in 0.6% of the patient population. We 538 

showed that over half of the miRNAs and lncRNAs were differentially methylated in 539 

only less than 20% of the patients. This unique feature of EpiMix to detect differential 540 

DNAme in small patient subsets enables us to identify novel epigenetic mechanisms 541 

underlying disease phenotypes. It can also be used to discover new epigenetic 542 

biomarkers and drug targets for improving personalized treatment.  543 

 544 

Another feature of EpiMix is its ability to model DNAme at functionally diverse genomic 545 

elements. This includes cis-regulatory elements within or surrounding protein-coding 546 

genes, distal enhancers, and genes encoding miRNAs and lncRNAs. To model 547 

DNAme at distal enhancers, we selected the enhancers from the ENCODE and 548 
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ROADMAP consortiums, in which enhancers of over a hundred human tissues and 549 

cell lines were identified using the chromatin-state discovery (ChromHMM)59. Since 550 

enhancers are cell-type specific, EpiMix allows the users to select enhancers of 551 

specific cell types or tissues. In this study, we selected the enhancers of human blood 552 

and T cells, leading to the discovery of 40,311 CpG of enhancers. In addition to 553 

enhancers, many other regulatory elements were identified from the ROADMAP 554 

studies59. These include active transcription start site proximal promoters, zinc finger 555 

protein genes, bivalent regulatory elements, polycomb-repressed regions and many 556 

others. By customizing the “chromatin state” parameter of EpiMix, users can target the 557 

DNAme analysis to any of these regulatory modules. 558 

 559 

Despite the critical biological functions of non-coding RNAs, there are no existing tools 560 

that specifically analyze DNAme regulating their transcription. To analyze DNAme of 561 

miRNA genes, we utilized the miRNA annotation from miRBase, the largest and 562 

consistently updated knowledge base of miRNAs60. In addition, we selected CpGs at 563 

miRNA promoters by using a recent database that integrates the information of miRNA 564 

TSSs from 14 genome-wide studies across different human cell types and tissues61. 565 

This led to the discovery of 17,192 CpGs associated with 1,484 miRNAs in the HM450 566 

array and 23,379 CpGs associated with 1,759 miRNAs in the EPIC array. With miRNA-567 

Seq data provided, EpiMix can select differential DNAme that was associated with 568 

miRNA expression. Different from profiling protein-coding gene expression, measuring 569 

miRNA expression requires special library preparation strategies that capture small 570 

RNAs from total RNAs62. Users are preferentially needed to supply miRNA expression 571 

data obtained from proper library preparation strategies.  572 

 573 
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Similarly, custom methods are needed to accurately quantify lncRNA expression from 574 

RNA-Seq. We adopted the data processing pipeline developed from our previous 575 

study54. With this pipeline, we combined the transcriptome annotations from 576 

GENCODE and NONCODE. Raw sequencing reads were aligned to the combined 577 

transcriptome reference and quantified using the Kallisto-Sleuth algorithm56,57. Using 578 

this pipeline, we detected the expression of over 2,400 lncRNA genes. In this study, 579 

we have used our pipeline to generate lncRNA expression profiles for all the cancers 580 

in the TCGA database, and users can retrieve these data with EpiMix. Note, if users 581 

plan to use EpiMix on non-TCGA datasets, they are encouraged to use this pipeline 582 

to profile lncRNA expression.  583 

 584 

Future work will aim to extend the use of EpiMix to whole-genome bisulfite sequencing 585 

and to further improve the scalability. Furthermore, the rapid development of single-586 

cell technologies enables co-assay of DNAme and gene expression in thousands of 587 

cells. EpiMix can be used to identify differential DNAme that was present in only small 588 

subsets of a cell population. Therefore, a joint analysis of single cell methylome and 589 

transcriptome holds great promise for substantiating our goals, and the analytical 590 

framework presented here will be a valuable component for future research and 591 

applications.  592 

 593 

Methods 594 

 595 

Data downloading  596 

 597 
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The downloading module enables automated data downloading from the GEO 598 

database and TCGA project. Alternatively, users can supply custom datasets 599 

generated from their own studies. To retrieve data from GEO, we utilized the getGEO 600 

function from the GEOquery R package (version 2.62)63. In this study, we downloaded 601 

DNAme data and gene expression data using GEO accession number GSE114135. 602 

The DNAme data were beta values ranging from 0 to 1, representing the proportion of 603 

the methylated signal to the total signal. The gene expression data were TMM values. 604 

Other formats of gene expression data are also acceptable (e.g., RPKM, TPM, FPKM 605 

etc.). To retrieve data from TCGA, we used the Broad Institute Firehose tool 606 

(Firehose)64. We downloaded level three DNAme data and gene expression data. The 607 

downloaded data have been preprocessed for several steps, including removing 608 

problematic rows, removing redundant columns, reordering the columns and sorting 609 

the data by gene name. With the Regular mode, we used log-transformed RSEM 610 

values. With the miRNA mode, we used the pri-miRNA expression data with log-611 

transformed RPKM values.  612 

 613 

Preprocessing  614 

 615 

The majority of datasets obtained from the TCGA and GEO databases have already 616 

been preprocessed for a few steps. EpiMix’s contribution to preprocessing includes 617 

missing value imputation, removal of single-nucleotide polymorphism (SNP) probe 618 

and batch effect correction. Users can also select to remove CpGs on sex 619 

chromosomes. We then removed CpGs and samples with more than 20% missing 620 

values, and imputed missing values on the remaining dataset using the k-nearest 621 

neighbor (KNN) algorithm with K = 15.   622 
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 623 

Data from large patient cohorts were typically collected in technical batches. 624 

Systematic variances between technical batches may affect downstream data 625 

analysis and interpretation. To correct batch effects, we implemented two alternative 626 

approaches: (1) an anchor-based data integration approach adapted from the Seurat 627 

package (version 4.0.1)65 and (2) an empirical Bayes regression approach, Combat66. 628 

The anchor-based approach uses canonical correlation analysis and mutual nearest 629 

neighbors to identify shared subpopulations (termed “anchors”) across different 630 

datasets and then uses a non-linear transformation to integrate the data. To identify 631 

the anchors, we used the “vst” method to select the top 10% variable features. 632 

Effective batch effect removal was confirmed using the PCA-based ANOVA analysis. 633 

Alternatively, the batch effect can be corrected with the Combat algorithm58.  We found 634 

that the anchor-based approach was more time efficient compared to the Combat. 635 

When tested on the lung cancer dataset, the former approach completed the batch 636 

correction within 2 hours, whereas the Combat consumed more than 48 hours.  637 

 638 

CpG annotation and filtering 639 

 640 

Regular mode 641 

 642 

The Regular mode aims to model DNAme at cis-regulatory elements within or 643 

immediately surrounding protein-coding genes. We paired each CpG site to the 644 

nearest genes based on the hg38 manifest generated from Zhou et al.67. Unique CpG-645 

gene pairs were identified, where a CpG was either within the gene body or at the 646 

immediately surrounding area. Users can restrict the analysis to the promoters, 647 
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defined as 2 kb upstream and 500 bp downstream (-2000bp ~ +500bp) of the 648 

transcription start sites (TSSs). TSS information was retrieved from Ensembl using the 649 

biomaRt R package (version 2.50.1)68.  650 

 651 

Enhancer mode 652 

 653 

The Enhancer mode aims to model DNAme specifically at distal enhancers. Therefore, 654 

we selected the distal CpGs that were at least 2 kb away from any known TSSs. Users 655 

can customize this distance based on their needs. To select the CpGs within 656 

enhancers, we used the enhancer database established from the ENCODE and 657 

ROADMAP consortiums, in which enhancers of over a hundred human tissues and 658 

cell lines were identified using the chromatin-state discovery (ChromHMM)59. We 659 

looked for the DNA elements associated with the chromatin states of active enhancers 660 

(“EnhA1” and “EnhA2”) and genic enhancers (“EnhG1” and “EnhG2”). Since 661 

enhancers are cell-type specific, EpiMix allows users to select enhancers of specific 662 

cell types or tissue groups. In this study, we selected the enhancers of human blood 663 

and T cells, leading to the discovery of 40,311 CpGs of enhancers. For each CpG, we 664 

retrieved 20 nearby genes as candidate genes targets. This gene number was 665 

determined by the previous studies showing that many of the enhancers can regulate 666 

a gene within a 10-gene distance29,69,70. Genes that are positively regulated by the 667 

enhancers should have a negative relationship between DNAme and gene 668 

expression36,71,72. Therefore, we performed a one-tailed Wilcoxon rank-sum test on 669 

each enhancer-gene pair to select the enhancers whose methylation states were 670 

inversely associated with the gene expression. The raw P value from the Wilcoxon 671 

rank-sum test was adjusted using a permutation approach73, where an empirical P 672 
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value was determined by ranking the raw P value in a set of permutation P values from 673 

testing the expression of a set of randomly selected 1,000 genes (Supplementary 674 

Fig.2).  675 

 676 

miRNA mode 677 

 678 

MicroRNAs are commonly classified into “intergenic” or “intronic” based on their 679 

genomic locations. Intergenic miRNAs are found at previously unannotated human 680 

genome and are transcribed from their own unique promoters as independent entities. 681 

In contrast, intronic miRNAs are believed to share promoters with their host genes and 682 

co-transcribed from respective hosts. Recent evidence shows that some intronic 683 

miRNAs can also be transcribed independently from their host genes, suggesting they 684 

have their own independent promoters74. To select CpGs associated with miRNAs, 685 

we used a combined strategy. First, we obtained the most recent annotation of 686 

miRNAs from miRBase (version 22.1)60. For each miRNA gene, we selected CpGs 687 

that were located within 5 kb upstream and 5 kb downstream. Second, we selected 688 

CpGs at miRNA promoters by using a recent database that integrates miRNA TSS 689 

information from 14 genome-wide studies across different human cell types and 690 

tissues61. We included CpGs located with miRNA promoters defined as 2000 bp 691 

upstream and 1000 bp downstream of the TSSs. This combined feature selection 692 

strategy resulted in the discovery of 17,192 CpGs associated with 1,484 miRNAs in 693 

the HM450 array and 23,379 CpGs associated with 1,759 miRNAs in the EPIC array.  694 

 695 

lncRNA mode 696 

 697 
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The mechanisms for transcriptional regulation of lncRNAs are similar to protein-coding 698 

genes. We first selected lncRNA-coding genes using the GENCODE annotation 699 

(Version 36).  We then selected CpGs associated with each lncRNA based on the 700 

hg38 manifest generated from Zhou et al.67. Unique CpG-gene pairs were identified, 701 

where a CpG was either located within the gene body or at the immediately 702 

surrounding area. This resulted in the discovery of 98,320 CpGs associated with 703 

11,280 lncRNAs in the HM450 array and 184,816 CpGs associated with 15,392 704 

lncRNAs in the EPIC array. Alternatively, users can select to focus the analysis at 705 

lncRNA promoters, defined as 2 kb upstream and 500 bp downstream (-2000bp ~ 706 

+500bp) of the TSSs. The TSS information was retrieved from Ensembl using the 707 

biomaRt R package (version 2.50.1)68. 708 

 709 

CpG site clustering and smoothing (optional features) 710 

 711 

Clustering 712 

 713 

Modeling the DNAme at all individual CpG sites can be computationally expensive. In 714 

addition, it can also lead to overfitting of DNAme data in identifications of patient 715 

subsets. Since the DNAme at adjacent CpGs are strongly correlated, we implemented 716 

an optional feature that allows users to group the correlated CpGs into CpG clusters.  717 

First, we used the average linkage hierarchical clustering algorithm to cluster CpGs of 718 

a single gene into clusters. Then we cut off the hierarchical tree at a Pearson 719 

correlation threshold of 0.4 to define CpG clusters and single CpG sites when they do 720 

not correlate with other sites. For each CpG site cluster, we used the mean levels of 721 

DNAme of the CpGs to represent the cluster DNAme, resulting in potentially multiple 722 
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CpG site clusters representing a single gene. The DNAme modeling can then be 723 

performed at each separate CpG site or CpG site cluster.  724 

 725 

Smoothing  726 

 727 

Smoothing is another technique frequently used in removing noise and increasing 728 

statistical power in analyzing whole-genome bisulfite sequencing data6. This 729 

technique estimates localized DNAme levels using data of adjacent CpGs at a user-730 

specified genomic window. EpiMix allows users to smooth the DNAme data using local 731 

likelihood smoothing75. Since the number of CpGs is lower in array-based data than 732 

in bisulfite sequencing data, using smoothing on array-based data should be taken 733 

with cautions. 734 

 735 

Methylation modeling 736 

 737 

After preprocessing, the methylation data are beta values bounded between 0 and 1, 738 

representing the proportion of the methylated signal to the total signal. When the study 739 

population is large, the beta values can be assumed to come from multiple underlying 740 

probability distributions, in our case, beta distributions. To model the DNAme, we fit a 741 

beta mixture model to the methylation values at each CpG site (or CpG site cluster). 742 

Let 𝑦! 	denote the beta value from subject 𝑖 at a CpG site, where 𝑖	 ∈ {1, … , 𝑛}, and 𝑛 743 

represents the total number of subjects. Let 𝑘	denote the class membership of subject 744 

𝑖, where 𝑘 ∈ {1,… , 𝐾},	and 𝐾 represents the total number of components in the mixture.  745 

Assume subject 𝑖 belongs to component 𝑘 with probability 𝜂", we will have ∑ 𝜂"#
"$% =746 

1. Subsequently, the likelihood contribution from subject 𝑖 is: 747 
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𝑓(𝑌! =	𝑦!) = 	4𝜂"

#

"$%

	
𝑦!&!'%(1 − 𝑦!)(!'%

𝐵(𝛼" , 𝛽")
 748 

 749 

where 𝐵(𝛼" , 𝛽") = 	∫ 𝑡&!'%(1 − 𝑡)(!'%	𝑑𝑡%
)  is the beta function. Since the population 750 

contains 𝑛 subjects, the log-likelihood for the complete dataset is 751 

𝑙(𝛼, 𝛽, 𝜂) = 	4log	{𝑓(𝑌! =	𝑦!)}
*

!$%

 752 

The goal of our modeling is to estimate the 𝛼, 𝛽, 𝜂 parameters of each component that 753 

best fit the methylation values. Let 𝜃 = {𝛼%, 𝛽%, 𝜂% 	… , 𝛼",	𝛽" , 𝜂"}  be a vector of 754 

parameters that define the shape of each component in the mixture. We used the 755 

expectation–maximization (EM) algorithm76 to iteratively maximize the log-likelihood 756 

and update the conditional probability that 𝑦! comes from the 𝑘	𝑡ℎ component.  757 

 758 

To determine the best number of components 𝐾, we used The Bayesian Information 759 

Criterion (BIC) for model selection and to avoid overfitting:  760 

	𝐵𝐼𝐶 = log(𝑛) (3𝐾) − 2	 ×	4log	{𝑓(𝑌! =	𝑦!)}
*

!$%

 761 

This process involves iteratively adding a new mixture component if the BIC improves. 762 

Each mixture component represents a subset of samples for whom a particular 763 

DNAme state is observed.  764 

 765 

Identifications of differentially methylated CpGs 766 

 767 

If data of a control group are provided, we can determine whether a CpG site (or CpG 768 

site cluster) was hypo- or hyper-methylated by comparing its methylation levels in the 769 
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experimental group to its counterpart in the control group. We first performed beta 770 

mixture modeling on each CpG site (or CpG site cluster) to identify the mixture 771 

components using data from the experimental group, and the methylation levels of 772 

each of the mixture components were compared to the mean methylation levels of the 773 

control group. This methodology is based on the assumption that the DNAme profile 774 

is heterogenous across different subjects in the experimental (i.e., disease) group but 775 

is homogenous in the control group. For instance, the DNAme profile is expected to 776 

be different across cancer patients due to the difference in subtypes or driver 777 

mutations, but in normal tissues the DNAme should be relatively homogenous. In 778 

addition, the number of subjects in the experimental group is typically higher than the 779 

control group (e.g., TCGA projects). To determine the significant difference between 780 

the experimental and the control group, we used a Wilcoxon rank-sum to calculate the 781 

P-value, and multiple comparison was corrected with the false discovery rate (FDR). 782 

The Q-value threshold was set to 0.05. In addition, we required a minimum difference 783 

of 0.10 based on the platform sensitivity reported previously77.  784 

 785 

Identifications of differential DNAme that was associated with transcription 786 

 787 

If sample-matched gene expression data are provided, we can select the CpGs whose 788 

methylation states were significantly associated with gene expression. In this study, 789 

we focused on the identification of DNAme that represses gene expression. However, 790 

users have the option to identify DNAme that is positively correlated with gene 791 

expression. For each CpG-gene pair, we used a one-tailed Wilcoxon rank-sum test to 792 

compare the mean levels of gene expression in patients showing an abnormal 793 

methylation state (hypo- or hyper-methylation state) to those with a normal methylation 794 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2023.01.03.522660doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522660
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

37 
 

 

state. If a CpG was hypomethylated, we examined that the hypomethylated patients 795 

have higher gene expression levels compared to the normally methylated patients. 796 

Vice versa, if a CpG was hypermethylated, we tested that the hypermethylated 797 

patients have lower gene expression levels compared to the normally methylated 798 

patients. If a CpG was dual methylated (i.e., some samples were hypomethylated, 799 

while some others were hypermethylated), we tested that the hypomethylated patients 800 

have higher gene expression levels compared to the hypermethylated patients. Since 801 

a gene is typically paired with multiple CpGs, we adjusted the P-value using FDR to 802 

correct multiple comparisons. To select functionally significant CpG-gene pairs, we set 803 

the maximum threshold of the adjusted P-value to 0.01.  804 

 805 

Simulation study 806 

 807 

The goal of the simulation studies was to assess the sensitivity of EpiMix to detect 808 

differential DNAme present in only specific subsets of a population. The studies were 809 

performed by creating synthetic CpG sites and synthetic populations. First, we filtered 810 

CpGs showing statistically similar DNAme levels that fit a unimodal beta distribution 811 

from the activation group and from the quiescent group (n = 103 samples per group). 812 

We then randomly sampled a subset of CpGs (n = 300) from the quiescent group as 813 

the baselines. The average DNAme levels (beta values) of the CpGs in the baseline 814 

group ranged from 0.1 to 0.9, with a mean DNAme level of 0.6. Second, since the 815 

magnitude of changes in DNAme levels can be a critical factor affecting sensitivity, we 816 

created synthetic CpGs. For each CpG of the baseline group, we paired it with a 817 

subset of CpGs from the activation group, such that the differences in the mean beta 818 

values (𝛥𝑏𝑒𝑡𝑎) between the the activation group and the baseline group ranged from 819 
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0.1 to 0.7, where 𝛥𝑏𝑒𝑡𝑎	 ∈ 	 {0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70} . This 820 

resulted in a total of 2,700 synthetic CpGs. Third, since our goal was to detect 821 

differential DNAme that was present in only a subset of the population, we created 822 

synthetic populations. For each synthetic CpG,  we controlled the number of samples 823 

from the activation group to be combined with the baseline group, such that the final 824 

proportion (𝑃) of samples from the activation group in the combined datasets ranged 825 

from 0.01 to 0.50, where 𝑃	 ∈826 

	{0.01, 0.02, 0.05, 0.08, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} . Finally, we ran 827 

the EpiMix algorithm on each synthetic CpG and assessed whether it could pick up 828 

the differentially methylated signals in the synthetic populations.   829 

 830 

Benchmark with existing methods 831 

 832 

We benchmarked the performance of EpiMix with other existing methods, including 833 

Minfi10, iEVORA27 and RnBeads12,28.  834 

 835 

Minfi includes a differential methylation step based on an F-test. We first transformed 836 

beta values to M values, and the differential methylation analysis was performed with 837 

the dmpFinder function. We set the significant P-value and Q-value thresholds to 0.05.  838 

 839 

iEVORA is a two-step algorithm that selects differentially variable and differentially 840 

methylated CpGs. The first step is to identify differentially variable CpGs using a 841 

Bartlett’s test. The Bartlett’s test assesses the equity of variances between the 842 

experimental and the control group. If in the experimental group, there are samples 843 

showing large differences (outliers) in DNAme versus other samples, the Bartlett’s test 844 
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can detect such abnormality. The second step is to select the differentially variable 845 

CpGs that were also differentially methylated. The differential methylation analysis is 846 

performed by comparing the mean levels of DNAme of all the samples in the 847 

experimental group to the control group.  We used the default parameters of the 848 

functions, with a Q-value (FDR) threshold of 0.001 for testing differential variability and 849 

P-value threshold of 0.05 for testing differential methylation means. In our stimulation 850 

studies, we found that iEVORA was able to identify differentially variable CpGs even 851 

when the abnormal methylation was present in only a small subset of the experimental 852 

group. However, since the algorithm does not identify which subjects were abnormally 853 

methylated, and in the differential methylation step, it still compares the mean levels 854 

of DNAme of the entire experimental group to the control group, the differential 855 

methylation test could not generate statistically significant results.  856 

 857 

RnBeads uses hierarchical linear models as implemented in the limma package to 858 

identify differential methylated CpGs. We set the differential methylation P-value 859 

threshold to 0.05.  860 

 861 

Imputation of cell-type-specific DNAme and gene expression data 862 

 863 

DNAme and gene expression are known to be cell-type specific. When the DNAme 864 

were measured at the tissue (“bulk”) level, the differential DNAme profiles between 865 

patient subjects may result from the differences in tissue compositions. From a clinical 866 

perspective, tissue composition is meaningful in classifications of tumor subtypes and 867 

prediction of treatment response. However, from a biological perspective, users may 868 

be interested in identifying the differential DNAme present in specific cell types. EpiMix 869 
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focuses on the identification of differential DNAme across patient individuals. To 870 

resolve the confounding effect from tissue heterogeneity, we used previously validated 871 

algorithms to infer cell-type proportions and cell-type specific methylomes and 872 

transcriptomes (Supplementary Fig.3). First, we used CIBERSORTx45, a reference-873 

based computational algorithm, to estimate cell-type proportions from bulk gene 874 

expression data in each tumor and normal tissue, and deconvolute bulk gene 875 

expression data into cell-type specific signals. This method leveraged the established 876 

signature gene expression matrices for experimentally purified cells from normal 877 

tissues and lung cancers45. Second, we used Tensor Composition Analysis (TCA)44 878 

to deconvolute bulk DNAme data into cell-type-specific data based on the estimated 879 

cell-type proportions in each tissue. The output from TCA was the methylome of each 880 

cell type in each individual. In addition to these methods, users can leverage other 881 

existing tools to adjust the effects from tissue compositions before inputting the data 882 

to EpiMix78–83. 883 

 884 

Genomic distribution of the differentially methylated CpGs 885 

 886 

Genomic coordinates of the TSSs of the methylation-driven genes were retrieved from  887 

Ensembl using the biomaRt R package (version 2.50)68. Exons and Introns of the 888 

protein-coding genes were retrieved from the TxDb object 889 

(TxDb.Hsapiens.UCSC.hg38.knownGene) (version 3.14)84. The GenomicRanges R 890 

package (version 1.46)85 was used to identify the differentially methylated CpGs 891 

located within promoters, exons and introns.  892 

 893 

Motif enrichment analysis 894 
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 895 

TF binding motifs were retrieved from HOCOMOCO, a comprehensive database for 896 

TF binding sites86. HOMER (Hypergeometric Optimization of Motif EnRichment) was 897 

used to find motif occurrences in a ±250bp region around each differentially 898 

methylated regions (DMRs). We then combined all the DMRs to identify enriched 899 

motifs. Enrichments were quantified using Fisher’s exact test and multiple 900 

comparisons were adjusted with the Benjamini-Hochberg procedure. To calculate the 901 

enrichment Odds Ratio, we used all the distal CpGs as the background probes and 902 

the functional CpGs of enhancers as the target probes. We set the significant P value 903 

cutoff to 0.05 and the smallest lower boundary of 95% confidence interval for Odds 904 

Ratio to 1.1. The enrichment analysis was performed using the get.enriched.motif 905 

function from the ELMER library (version 3.14) in R11. 906 

 907 

Enrichment analysis of chromatin modifications  908 

 909 

Enrichment analysis of histone modifications at the DMRs was performed using the 910 

Genomic Hyperbrowser GSUITE of tools87. A suite of tracks representing different 911 

chromatin features for human naïve T cells (Epigenome ID: E038) and lung 912 

(Epigenome ID: E096) were retrieved from the ENCODE and ROADMAP 913 

consortiums59. To determine which tracks in the suite exhibit the strongest similarity 914 

by co-occurrence to the DMRs, the Forbes coefficient was used to obtain rankings of 915 

tracks, and Monte Carlo simulations were used to define a statistical assessment of 916 

the robustness of the rankings using randomization of genomic regions covered by 917 

the entire HM450 or EPIC array, and compute test statistics.  918 

 919 
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Functional enrichment analysis 920 

 921 

Protein-coding genes  922 

 923 

EpiMix provides an user interface to the enrichGO and enrichKEGG functions of the 924 

clusterProfiler R package (version 4.2.1)88. This enables gene set analysis of the 925 

methylation-driven genes using the gene ontology (GO) and KEGG datasets. Over-926 

represented biological pathways in the methylation-driven genes were identified using 927 

the hypergeometric testing88. Enrichment results can be retrieved in a tabular format 928 

or visualized in several different ways. To perform the GO analysis, we set the 929 

significant P value to 0.05 and Q value to 0.20. Highly similar GO terms were removed 930 

with a cutoff P value of 0.60 to retain the most representative terms.  931 

 932 

miRNAs 933 

 934 

To obtain the target genes of the differentially methylated miRNAs, we queried 935 

miRTarBase with the miRnetR package89. Of the 144 differentially methylated miRNAs 936 

in lung cancer, we identified 7,088 target protein-coding genes of 26 miRNAs. We 937 

simplified this network by selecting the genes that were targeted by at least five 938 

miRNAs. KEGG pathway analysis was then performed on the miRNA target genes 939 

with hypergeometric testing.  940 

 941 

lncRNAs 942 

 943 
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To carry out functional annotation and pathway analysis of the differentially methylated 944 

lncRNAs, we used the ncFANs V2.0 server (http://ncfans.gene.ac/)58. The genes in 945 

the significant CpG-gene pair matrix generated from EpiMix can be directly used as 946 

an input to ncFANs. NcFANs assigns the functions of protein-coding genes to lncRNAs 947 

based on pre-built co-expression networks in various normal tissues and cancers. We 948 

used the co-expression network built in the lung adenocarcinoma dataset from TCGA, 949 

and we set the correlation coefficient between lncRNAs and proteins-genes to 0.4 and 950 

the cutoff of the topological overlap measure similarity to 0.01.  951 

 952 

Biomarker identification and survival analysis 953 

 954 

Patient clinical data were retrieved from TCGA using the Firehose tool64. Alternatively, 955 

users can provide EpiMix with survival data if using their own datasets. We selected 956 

the CpGs with at least two methylation states. For each CpG, we fit a Cox proportional 957 

hazards regression model to assess the effect of methylation states on patient survival 958 

time. The log-rank test was used to compare the survival curve and to calculate the 959 

significant P-value. P < 0.05 was considered as significant. The Kaplan-Meier survival 960 

plots were generated with the survminer R package (version 0.4.9).  961 

 962 

Genome browser-style visualization 963 

 964 

EpiMix enables genome browser-style visualization of the genomic coordinates and 965 

chromatin states of the differentially methylated genes and regions. We implemented 966 

two different forms of visualization. The gene-centric form shows the DM values of all 967 

the CpGs associated with a specific gene (e.g., Fig.3f).  The CpG-centric form shows 968 
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a differentially methylated CpG and its upstream and downstream genes (e.g., Fig.4e). 969 

Users can specify the number of nearby genes to display. Genes whose expression 970 

levels were significantly associated with the DNAme levels of the CpG are shown in 971 

red.  972 

 973 

DNase I sensitivity and histone modification levels were retrieved from the ENCODE 974 

and ROADMAP consortiums59. By providing the Epigenome ID, users can retrieve 975 

data corresponding to the investigated tissue or cell type. In this study, we extracted 976 

the chromatin features for human naïve T cells (Epigenome ID: E038) and fetal lung 977 

(Epigenome ID: E088). The genomic coordinates (X-axis) were established on the 978 

hg19 genome built, and the enrichment signal (Y-axis) represents negative log10 of 979 

the Poisson P-values. Human transcript annotation was retrieved from the TxDb object 980 

(TxDb.Hsapiens.UCSC.hg19.knownGene) (version 3.2.2)90. The genomic coordinates 981 

of the adjacent genes of the differentially methylated CpGs were retrieved from 982 

Ensembl using the biomaRt R package (version 2.50.1)68. The  visualization was 983 

implemented with the karyoploteR package (version 1.20.0)91. 984 

 985 

Identifications of DNAme subtypes  986 

 987 

DNAme subtypes can be discovered by applying consensus clustering to the DM-988 

value matrix, where patients were clustered into robust and homogenous groups 989 

(putative subtypes) based on their abnormal methylation profiles. Consensus 990 

clustering was performed with the ConsensusClusterPlus R package (version 991 

1.58.0)92. We used 1,000 rounds of k-means clustering and a maximum of K = 10 992 
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clusters. Selection of the best number of clusters was based on the visual inspection 993 

of ConsensusClusterPlus output plots. 994 

 995 

Code availability  996 

 997 

EpiMix is available as an R package on Bioconductor 998 

(https://bioconductor.org/packages/devel/bioc/html/EpiMix.html). In addition, we also 999 

developed a web application (https://epimix.stanford.edu) for users to interactively 1000 

visualize and explore the results from EpiMix.  1001 
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