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Abstract

Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by a progressive 
increase in pulmonary vascular resistance caused by pulmonary vascular remodeling, which ultimately leads 
to right-sided heart failure. PAH remains incurable, despite the development of PAH-targeted therapeutics 
centered on pulmonary artery relaxants. It is necessary to identify the target molecules that contribute to 
pulmonary artery remodeling. Transient receptor potential (TRP) channels have been suggested to modu-
late pulmonary artery remodeling. Our study focused on the transient receptor potential ion channel sub-
family M, member 7, or the TRPM7 channel, which modulates endothelial-to-mesenchymal transition and 
smooth muscle proliferation in the pulmonary artery. In this review, we summarize the role and expression 
profile of TRPM7 channels in PAH progression and discuss TRPM7 channels as possible therapeutic targets. 
In addition, we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps sinensis (OCS), 
on PAH progression, which partly involves TRPM7 inhibition.
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Overview of Pulmonary Arterial Hypertension (PAH)

Pulmonary hypertension is an intractable vascular disease characterized by a progressive increase in pul-
monary vascular resistance (PVR). Pulmonary hypertension was divided into five groups according to clini-
cal, hemodynamic, and etiological characteristics and treatment strategy, including idiopathic and heritable 
pulmonary arterial hypertension (PAH) (group 1), PAH due to left heart disease (group 2), PAH due to lung 
diseases and/or hypoxia (group 3), PAH associated with chronic thromboembolism (group 4), and PAH forms 
with unclear or multifaceted origins (group 5). The estimated incidence of primary PAH ranges from 1 to 2 
cases per million people in the general population.

Under physiological conditions, blood flows from the right ventricle to the lungs via the pulmonary artery 
and contributes to the gas exchange. Endothelial cells generate constriction factors, such as endothelin (1), and 
relaxing factors, such as nitric oxide (NO) and prostacyclin (2). Under physiological conditions, endothelium-
derived relaxing factors play an important role in maintaining tissue homeostasis, preventing thrombosis, and 
protecting vessel walls from remodeling. In contrast, PAH is characterized by vasoconstriction and vascular 
wall remodeling, which are associated with intimal and medial thickening and thrombosis, resulting in an in-
crease in PVR and pulmonary arterial pressure (3).

The resultant thickening of the pulmonary arterial wall and narrowing of the vessel diameter increases the 
PVR and pulmonary arterial pressure to over 25 mmHg at rest (4–6). At the 6th World Symposium on Pulmo-
nary Hypertension (Nice, France, 2018), it was recognized that the original hemodynamic definition of PAH 
was arbitrary, and it was recommended that the mean pulmonary artery pressure (MPAP) threshold should be 
lowered to 20 mmHg. Pulmonary arterial wedge pressure (PAWP) and PVR thresholds were ≤15 mmHg and 
>3 Wood units, respectively, as measured using right heart catheterization (7).

Increased cardiac afterload due to increased PVR causes right heart hypertrophy, which eventually results 
in fatal right heart failure. Delaying the progression of right ventricular insufficiency by targeting vasocon-
striction and vascular remodeling is anticipated to alleviate symptoms and improve the survival of patients 
with PAH (8). Before the development of current therapeutic options, idiopathic PAH progressed rapidly, 
leading to right-sided heart failure and death. In a recent study, the survival rates of patients with PAH at 1-, 
2, and 3 years of follow-up were 85.7%, 69.6%, and 54.9%, respectively (9). In Japan, the survival of patients 
with PAH has been significantly improved by more specific treatments; the 3- and 10 year survival showed 
88.2–92.1% and 69.5%, respectively (10, 11).

Several causative conditions have been suggested in the pathogenesis of certain types of PAH. Portal 
hypertension (12), human immunodeficiency virus infection (13, 14) and appetite-suppressant drugs such as 
fenfluramine (15, 16) have been proposed as the causative conditions for a type of associated PAH. More than 
20 years ago, a genetic predisposition to a heterozygous mutation in the bone morphogenetic protein receptor 
type II (BMPR2), a member of the transforming growth factor β (TGF-β) superfamily receptor, was discov-
ered in heritable PAH. At least 16 other genes have been identified in patients with hereditary PAH, including 
activin A receptor type II-like 1 (ACVRL1), SMAD1, SMAD4, SMAD9, and caveolin 1 (CAV1) (17). How-
ever, in most cases of PAH, the precise mechanism of pathogenesis is poorly understood and may vary among 
cases. Endothelial-to-mesenchymal transition (EndoMT) of pulmonary artery endothelial cells (PAECs) and 
increased proliferative activity of pulmonary arterial smooth muscle cells (PASMCs) are the main mechanisms 
underlying pulmonary vascular remodeling (18–21). The transcription factors hypoxia-inducible factor (HIF), 
CCAAT-enhancer-binding protein (CEBP), runt-related transcription factor (RUNX), activator protein-1 (AP-
1), C-terminal binding protein-1 (CtBP1), forkhead box M1 (FoxM1), pyruvate kinase muscle-2 (PKM2), nu-
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clear factor-kappa B (NF-κB), β-catenin, twist family basic helix–loop–helix transcription factor 1 (TWIST1), 
and SLUG have been suggested to contribute to pulmonary vascular remodeling in PAH development and 
progression (7).

Pulmonary Artery Remodeling in PAH

The major remedies for the current treatment of PAH are prostacyclin analogs, endothelin receptor an-
tagonists, and phosphodiesterase type 5 inhibitors (8). These vasodilators target pulmonary vasoconstriction 
in PAH. Vascular remodeling is another critical condition that contributes to the pathogenesis and progression 
of PAH. Therefore, our study focused on vascular remodeling, which may serve as a therapeutic target for the 
development of novel PAH treatment strategies.

EndoMT is a biological process in which endothelial cells progressively change their endothelial pheno-
type to a mesenchymal or myofibroblastic phenotype (22). It contributes to vascular fibrosis and angiogenesis, 
which are often closely associated with cardiac neovascularization, atherosclerosis, arteriosclerosis, and PAH 
(19, 23). In the pulmonary artery in cases of PAH, most cells within various intimal lesions show a phenotype 
of myofibroblasts that are positive for smooth muscle-type α actin (α-SMA) but negative for endothelial mark-
ers, such as nitric oxide synthase (eNOS), vascular endothelial cadherin, and cluster of differentiation (CD) 31 
(24–26). Among the various pathological insults to endothelial cells, including oxidative stress (15, 27), me-
chanical stress (28) and inflammatory cytokines (29), TGF-β is one of the most relevant inducers of EndoMT 
in PAH as it augments myofibroblast transformation in numerous cell types and contributes to tissue fibrosis. 
Several TGF isotypes, such as TGF-β1, TGF-β2, and TGF-β3 (30), contribute to angiogenesis (31, 32). The 
canonical TGF-β signaling pathway commences with the binding of TGF-β to the TGF-β type 2 receptor (TGF-
βR2), which phosphorylates and activates the type 1 receptor (TGF-βRl) via its constitutive kinase activity. 
Activated TGF-βRl phosphorylates the transcription factors SMAD-2 and SMAD-3, which in turn promotes 
collagen synthesis (33, 34). Fibrotic diseases are characterized by EndoMT. In particular, upregulation of 
mesenchymal markers, such as α-SMA and type 1 collagen, and downregulation of endothelial markers, such 
as vascular endothelial (VE)-cadherin, caused by the TGF-β/Smad signaling pathway, have been shown (35).

The proliferation of PASMCs is another key element in vascular remodeling during PAH progression 
(36). PASMCs derived from patients with PAH show enhanced proliferation compared with those derived 
from patients without PAH (37). Increased proliferative activity is associated with the increased activity of 
cyclin-dependent kinases. Moreover, the calcineurin/nuclear factor of activated T-cell signaling pathway has 
been reported to contribute to increased proliferation and decreased apoptosis in PASMCs derived from PAH 
model rats (38).

The aforementioned signaling pathways that contribute to EndoMT and the proliferation of PASMCs are 
assumed to be good targets for the treatment of PAH, especially when focusing on vascular remodeling.

Role of Transient Receptor Potential (TRP) 
Channels in PAH Pathophysiology

Intracellular Ca2+ signaling contributes not only to vasoconstriction but also to many events of vascular 
remodeling, such as EndoMT, migration, proliferation, and production of extracellular matrix. An influx of 
extracellular Ca2+ and release of intracellularly stored Ca2+ are the main mechanisms underlying the increase 
in intracellular calcium concentration ([Ca2+]i). Calcium entry involves various plasmalemmal Ca2+ channels, 
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including the superfamily of stretch-activated channels. Stretch-activated channels are nonselective Ca2+-per-
meable cation channels. Some transient receptor potential (TRP) channels and members of the Piezo channel 
superfamily serve as stretch-activated channels.

The TRP channel superfamily is a group of non-selective cation channels that are permeable to mono- and 
divalent cations such as Na+, K+, Cs+, Li+, Ca2+, and Mg2+ (39). TRP channels were initially discovered during a 
study on Drosophila phototransduction (40, 41). Twenty-eight distinct members of the TRP channel superfam-
ily have been identified, 20 of which are expressed in mammals. All members of the TRP channel superfamily 
share a six-transmembrane structure, comprising 553–2022 amino acid residues. The development of X-ray 
diffraction analysis and electron microscopy is helpful in elucidating the structure of TRP channels (42, 43). 
Based on their structural differences, TRP channels can be categorized into six types: ankyrin (TRPA), ca-
nonical (TRPC), melastatin (TRPM), polycystin (TRPP), vanilloid (TRPV), and mucolipin (TRPML).

The expression of TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPV3, 
TRPV4, TRPM2, TRPM3, TRPM4, TRPM7, and TRPM8 has been detected in the pulmonary arteries of 
rats, mice, and humans. More precisely, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, 
TRPV2, TRPV4, TRPM1, TRPM3, TRPM4, TRPM6, TRPM7, and TRPM8 have been detected in PAEC (39).

The expression of TRPC channels was reported to be upregulated in PASMCs of PAH model mice, and 
these channels contribute to an increase in [Ca2+]i (44). Table 1 summarizes the influence of various PAH-
inducing conditions on the expression of TRP channels, with the exception of TRPM7. The enhanced expres-
sion and function of TRP channels in PAH highlight their importance as potential targets for pharmacological 
interventions.

The involvement of TRPM7 channels in cardiovascular remodeling has been reported (45–52). TRPM7 
channels are activated by oxidative, mechanical, and osmotic stress, thereby contributing to various physiolog-

Table 1. Altered expression of TRPCs, TRPMs (except for M7), and TRPVs in PAH-related conditions
Cell or tissue (animal species) PAH-related stimulation TRP channel Expression Ref.

PASMC (rat) Hypoxia C1, C6 Upregulation (44)
PASMC (rat) Hypoxia C1, C6 Upregulation (81)
Pulmonary artery (rat) MCT C1, C4 

C3
Upregulation (C1, C4)
Downregulation (C3)

(82)

PASMC (mouse) Hypoxia C1 Upregulation (83)
Lung (rat) Chronic intermittent hypoxia C1, C4, C6 Upregulation (84)
PASMC (human) Hypoxia C6 Upregulation (85)
PASMC (human) Hypoxia C6 Upregulation (86)
PASMC (rat) Hypoxia C1, C6 Upregulation (87)

Pulmonary artery (rat) Hypoxia 
MCT

M8 Downregulation (88)

PASMC (rat) Hypoxia M8 Downregulation (89)
PASMC (rat) Hypoxia M2 Upregulation (90)

Pulmonary artery (rat) Hypoxia V4 Upregulation (91)
Lung (rat) Hypoxia V3 Upregulation (92)
Lung microvascular endothelial cell (rat) SuHx V4 No changing, but regulate 

migration and proliferation
(93)

Adventitia (rat) Hypoxia 
MCT

V4 Upregulation (94)

PASMC: pulmonary arterial smooth muscle cell; MCT: monocrotaline; SuHx: Sugen5416 + hypoxia.
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ical events, such as inflammation, fibrosis, cell migration, contraction, and cell growth (53). The TRPM7 chan-
nel is a non-selective cation channel with unique features of divalent (Ca2+, Mg2+) conductance and a structure 
involving the alpha-kinase domain in its C-terminal region (54, 55). Mg2+ permeability in TRPM7-transfected 
cell lines is reportedly slightly higher than that of Ca2+, while the relative permeability of Na:Ca:Mg is esti-
mated to be 1:1.23:1.29 (56, 57). Moreover, the difference between intracellular and extracellular Ca2+ concen-
trations ([Ca2+]o / [Ca2+]i ≥ 104) was much larger than that of Mg2+([Mg2+]o / [Mg2+]i ≥ 2). Endogenous TRPM7 
currents are typically small; this is particularly true for Mg2+ currents because the driving force (Nernst po-
tential) for Mg2+ across the plasma membrane is much smaller than that for Ca2+ (58, 59).

Ca2+ permeation via TRPM7 channels is associated with several important events such as those related 
to tissue remodeling. Ca2+ influx via TRPM7 contributes to angiotensin II-induced cardiac fibrosis (60) and 
epithelial-to-mesenchymal transition and migration in breast cancer cells (61). TRPM7-mediated activation of 
extracellular signal-regulated kinase (ERK) 1/2 and signal transducer and activator of transcription 3 (STAT3) 
essentially plays important roles in these processes. Similarly, TRPM7 may contribute to endothelial remodel-
ing. Indeed, TRPM7 channel activation has been shown to induce EndoMT by increasing [Ca2+]i in sepsis (62). 
TRPM7 also plays a critical role in EndoMT of PAECs. In addition, TRPM7-mediated Ca2+ influx enhances 
endothelial cell migration (63).

The TRPM7 channel, which is associated with shear stress, regulates physiological and pathophysiologi-
cal events such as cell migration, differentiation, and fibrogenesis (64–66). Shear stress-induced by fluid flow 
upregulates TRPM7 channel expression and activates it in vascular smooth muscle cells derived from the 
aorta (67). This indicates that vessel damage caused by shear stress triggers TRPM7 channel upregulation and 
activation. In the pulmonary artery, TRPM7 and TRPV4 are required for shear stress-induced Ca2+ increases 
in [Ca2+]i in PASMCs (51). TRPM7 is also responsible for the shear stress-induced Mg2+ influx. Moreover, the 
shear stress-induced Mg2+ increase observed in PASMCs derived from patients with PAH was greater than that 
observed in normal PASMCs (51). Accordingly, TRPM7 expression in PASMC was remarkably higher in PAH 
lungs than in non-PAH lungs. The TRPM7 channel is involved in platelet-derived growth factor BB (PDGF-
BB)-induced proliferation of hepatic stellate cells (68). PDGF-BB is known to promote proliferation and mi-
gration of human PASMCs (69). The miR-1181/STAT3 axis has been suggested to contribute to the PDGF-BB-
induced proliferation and migration of PAMSCs. TRPM7 activation induces STAT3 phosphorylation in glioma 
cells (70). In the lungs of patients with PAH, increased STAT3 phosphorylation has been implicated in the 
proliferative and survival phenotypes of cells that comprise plexogenic lesions (71). STAT3 is a cytoplasmic 
transcription factor. Upon phosphorylation of its tyrosine 705 residue in response to cytokines, such as inter-
leukin-6 (IL-6) and PDGF (69, 72), STAT3 translocates to the nucleus and binds to DNA after dimerization, 
thereby regulating gene expression (73). In contrast, the IL-6/STAT3 axis modulates TRPM7 function (74).

Extracts of Medicinal Mushroom Ophiocordyceps sinensis 
Ameliorate PAH Partially via TRPM7 Inhibition

In addition to the current therapeutic agents for PAH, it is necessary to develop highly safe agents that 
target vascular remodeling. Therefore, we explored these agents as ingredients in natural herbal medicines. 
FTY-720, which is synthesized from a component derived from the medicinal mushroom Isaria sinclairii, is 
now known to be a TRPM7 inhibitor (Supplementary Fig. 1) (75, 76). Another medicinal mushroom, Ophio-
cordyceps sinensis (OCS), known as Yarsagumba, has long been used as a folk remedy for altitude sickness, 
which is usually encountered above 4,000 m sea level (77). OCS enhances cardiopulmonary function and 
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exerts therapeutic effects on fibrotic lesions and malignant tumors (78, 79). Therefore, we examined the thera-
peutic effects of OCS and FTY-720 on the pathophysiology of PAH (45). We observed that the OCS extract 
ameliorated PAH and suppressed TRPM7 channel activity. However, the specific ingredients of OCS targeting 
the TRPM7 channel are undefined. Figure 1 summarizes the proposed mechanism underlying the therapeutic 
effects of OCS in PAH, based on our own investigation.

In vitro experiments showed that FTY-720 and OCS inhibited TGF-β-induced Smad2 phosphorylation 
and EndoMT in human PAECs and the proliferation of PASMCs derived from patients with PAH. Furthermore, 
inhibition of TRPM7 by the OCS extract and FTY-720, as well as the knockdown of TRPM7 channel expres-

Fig. 1. Proposed mechanism for the therapeutic effects of Ophiocordyceps sinensis (OCS) on vascular 
remodeling in pulmonary hypertension.
In human pulmonary artery endothelial cells (HPAEC), inhibition of TRPM7 channels by OCS 
inhibits the phosphorylation of STAT3 and Smad2, and endothelial-to-mesenchymal transi-
tion (EndoMT). In human pulmonary artery smooth muscle cells (HPASMC), inhibition of the 
TRPM7 channel by OCS inhibits the phosphorylation of STAT3 and Akt and cell proliferation.
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sion, suppressed the phosphorylation of STAT3 and Akt induced by IL-6 in PAECs, which are intracellular 
signaling pathways relevant to the EndoMT. Upregulation of TRPM7 channel expression, colocalized with 
αSMA in the medial wall and occlusive lesions, was also observed in the pulmonary arteries of patients with 
PAH. Furthermore, OCS extracts and FTY-720 induced relaxation in the human pulmonary artery during con-
traction induced by the thromboxane A2 analog, U46619.

In vivo experiments using a rat model of PAH induced by monocrotaline showed that treatment with the 
OCS extract improved survival, right ventricular hypertrophy and dysfunction, and vascular remodeling. In 
PAH rats, TRPM7 channel expression is upregulated in α-SMA-positive cells. Administration of OCS extracts 
also ameliorated pathological progression in a mouse model generated by monocrotaline pyrrole. Furthermore, 
in TRPM7 channel knockout mice, monocrotaline pyrrole-induced increases in the right ventricular pressure 
and muscularization of the pulmonary artery were ameliorated compared with those in wild-type mice.

Our results suggest that targeting TRPM7 may be a novel strategy for PAH treatment, with the aim of 
ameliorating pulmonary artery remodeling. However, other studies have suggested that TRPM7 inhibition 
leads to PAH progression (80). One study showed that PASMCs derived from hypoxia-induced PAH model 
rats exhibited decreased expression of TRPM7 protein, and that TRPM7 knockdown and treatment with waix-
enicin A, a TRPM7 inhibitor, enhanced proliferation and apoptosis in PASMCs, suggesting that the TRPM7 
channel is a negative regulator of PAH progression. Mechanistically, TRPM7 channel-mediated Mg2+ trans-
port underlies attenuation of PAH progression. Furthermore, Mg2+ supplementation was shown to improve 
pulmonary arterial pressure, right heart hypertrophy, and medial wall thickening in a rat model of severe PAH 
(52). Mg2+ supplementation also inhibited PASMC proliferation and migration and enhanced the apoptosis of 
PASMCs. These reports contradict our findings and should thus be considered. The contribution of the TRPM7 
channel to the pathogenesis of PAH may vary depending on the experimental PAH model. In other words, the 
therapeutic effects of targeting TRPM7 may depend on the type of PAH.

Summary

Despite significant advancements in therapeutic strategies over the last two decades, PAH remains an 
incurable disease. The present study proposes OCS, a traditional Chinese medicine, as a new treatment op-
tion for PAH. OCS ameliorates pathological changes in a rodent model of PAH. At least part of the observed 
anti-remodeling effects associated with EndoMT and STAT3 signaling involve the TRPM7 channel. TRPM7 
has been suggested to be a therapeutic target for OCS. In addition, OCS improved PAH by inhibiting the pro-
liferation and contraction of pulmonary artery smooth muscle. Based on these results, OCS may be a novel 
therapeutic agent for PAH.
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