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Introduction
Breast cancer has been the most common incident form of 
female cancer worldwide and exerts a considerable economic 
burden.1,2 Therefore, both postoperative follow-up and eventual 
cure of breast cancer represent important epidemiologic, social, 
and public health issues. Concurrent with the successful survi-
vorship efforts in terms of female breast cancer diagnosis and 
treatment, many patients with breast cancer are being over-
treated for the disease given the lack of sufficiently accurate 
prognostic and predictive information.3 Improving triage deci-
sions for individual patients requires precise measures of the 
time to death from breast cancer versus when the patient would 
die from a competing cause. However, most studies have focused 
on either the overall risk of death or breast cancer–specific 

survival with relatively short-term follow-ups after treatment, 
leaving uncertainty about the long-term risks of death from 
breast cancer in the presence of other acting causes.

In this article, a carefully formulated mixture model for 
competing risks is implemented for the regression analysis of 
long-term cause-specific mortality with a set of sociodemo-
graphic and clinicopathologic concomitant variables within a 
large-scale population-based cohort of women diagnosed with 
breast cancer that underwent surgery. In the 2 death outcome 
settings outlined here, there can be 3 coefficients for each pre-
dictor, 1 describing how the predictor affects long-term cause-
specific mortality and 2 describing how it affects the conditional 
latency for each cause of death, which allowed for various 
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ABSTRACT

BACKGROUND: Research into long-term cause-specific mortality of women diagnosed with breast cancer is important because it allows 
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with extension and lymph node status appearing to be confounded with the effects of both type of surgery and radiotherapy status. The 
score obtained from combining a set of predictors showed to be an accurate predictive biomarker.

CONCLUSiONS: In cause-specific mortality of women diagnosed breast cancer, prognosis appears to depend on both sociodemographic 
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KEYWORDS: Breast carcinoma, causes of death, hazards models, logistic model, risk assessment, risk factors

RECEivED: February 8, 2017. ACCEPTED: April 21, 2017.

PEER REviEW: Three peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 355 words, excluding any confidential comments to the academic editor.

TYPE: Original Research

FUNDiNG: The author(s) disclosed receipt of the following financial support for the research, 
authorship, and/or publication of this article: This work was supported by stipend grants from 

Conacyt, Universidad Autónoma Metropolitana-Iztapalapa, and Universidad Autónoma de 
San Luis Potosí, Mexico.

DECLARATiON OF CONFLiCTiNG iNTERESTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDiNG AUThOR: Gabriel Escarela, Departamento de Matemáticas, 
Universidad Autónoma Metropolitana–Unidad Iztapalapa, AT-351, Av San Rafael Atlixco 
No.186, Col Vicentina, C.P. 09340, Mexico City (CDMX), México.  Email: ge@xanum.uam.mx

711429 BCB0010.1177/1178223417711429Breast Cancer: Basic and Clinical ResearchEscarela et al
research-article2017

https://uk.sagepub.com/en-gb/journals-permissions
mailto:ge@xanum.uam.mx


2 Breast Cancer: Basic and Clinical Research 

useful epidemiologic interpretations for each risk factor. The 
risk score in the long-term cause-specific mortality component 
of the most parsimonious mixture model was employed to 
define a predictive biomarker which helps to both quantify the 
severity of the disease and discriminate patients with different 
risk levels of ultimate death from breast cancer, providing a 
potential decision-support tool for triage based on important 
characteristics of the patient’s health and demographic status.

Materials and Methods
Data

The cohort used in this study was obtained from the US 
National Cancer Institute’s Surveillance, Epidemiology, and 
End Results (SEER) program, which is a high-quality epide-
miologic surveillance system consisting of population-based 
cancer incidence and survival data covering up to 26% of the US 
population. Since records began in 1973, the registries of all 
newly diagnosed cases of breast cancer found within the defined 
geographic regions of the SEER program routinely collect 
information on sociodemographics, clinicopathological charac-
teristics of the tumor, site-specific surgery, postoperative radia-
tion status, date of cancer diagnosis, date of death, and cause of 
death. The cases of female breast cancer considered in this study 
were registered in 1990 in the SEER Registries located in 
Alaska, California, Connecticut, Georgia, Hawaii, Iowa, 
Michigan, New Mexico, Utah, and Washington. Excluded were 
cases diagnosed by death certificate or autopsy and with surgery 
of other regional sites, distant sites, or distant lymph nodes.

The competing risks considered in this study were death 
from breast cancer and death from other causes, whereas the 
predictors used in the regression model were age at diagnosis, 
race (white, black, and other), marital status (unmarried: never 
married, separated, divorced, or widowed and married: married 
and common-law married), location health status (whether the 
state the patient was diagnosed in had an America’s Health 
Ranking value under 0.5 in 1990 or not),4 histologic type (duct, 
lobular, and other), size of tumor (less than 2 cm and 2 cm and 
greater), grade (I and II: well or moderately differentiated tumor 
cells and III and IV: poorly differentiated, undifferentiated, or 
anaplastic tumor cells), estrogen receptor status (positive or bor-
derline and negative), laterality (right and left), extension (local-
ized: in situ or without underlying tumor or no evidence of it, 
confined to breast tissue and fat and further extension: invasive 
components, extensive skin involvement, inflammatory carci-
noma, further extension, or metastasis), lymph node status (no 
node involvement and node positive), surgery (breast preserv-
ing: codes 10-38 and mastectomy: codes 40-78), and postopera-
tive radiotherapy status (no radiation and radiation).

Statistical methods

Because a considerable number of patients were still alive at the 
end of the 20-year follow-up, the use of the conventional 

logistic regression to estimate the proportion of patients who 
eventually die from either cause was prohibitive. To estimate 
such proportions along with the corresponding conditional 
hazard rates, a mixture model for competing risks was used to 
simultaneously estimate the underlying cumulative incidence 
functions (CIFs), which are defined as follows:

F t j tj ( ) { }= Pr death from cause within time

where j = 1 and j = 2 denote breast cancer and other causes, 
respectively. In the present setting, the CIF for cause j is given 
by the product of the probability of eventually dying from cause 
j and the conditional cumulative distribution function of cause 
j.5 The former, referred here as the logistic component, was speci-
fied with a logistic regression model as follows:
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where δ and δ are, respectively, the parameters corresponding 
to the intercept and the vector of coefficients, and x is a vector 
of predictor variables, whereas the latter, referred here as the 
conditional component for risk j, was specified with a parametric 
Cox proportional hazards model with a Weibull baseline survi-
vor function as follows:
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where S0j(t) is the Weibull survival distribution for risk j, βj is 
the corresponding vector of coefficients, and z is a vector of 
predictors; here, the Weibull model for each risk was parame-
terized as in the function pweibull of the R language,6 and x 
may contain some or all of the variables in z, as well as other 
variables not included in z. The choice of a Weibull model over 
other competing survival distributions was based chiefly on its 
flexibility.7 The type of estimators used in this study was 
obtained with maximum likelihood,5 the corresponding log-
likelihood function was maximized using the function nlm of 
the R language,6 and the resulting hessian was employed to 
estimate the asymptotic covariance matrix.

To adjust for the fluctuating changes of age at diagnosis as a 
continuous regressor in both the incidence and the conditional 
cause-specific mortality, an orthogonal polynomial of second 
degree of age at diagnosis was included in each component in 
the mixture model. Also, a propensity score was included in the 
mixture model to adjust for differences in preoperative patient 
background; here, the propensity score was estimated using a 
parsimonious multivariate logistic regression model with 
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indication for treatment as the outcome variable and using as 
many significant regressors as possible. The variable coding 
scheme for the factors used in this study was treatment con-
trasts,8 which creates a dummy variable for each nonbaseline 
level of a factor and sets the coefficient of the baseline level in 
each categorical variable equal to 0; here, the first category of 
each factor described above was set as the baseline level.

It was assumed that the missing data mechanism was missing 
at random, which specifies that the probability that a data value 
is missing depends on values of variables that were actually 
measured. The method employed here for dealing with the miss-
ing data was multiple imputation, and in the model to impute 
each regressor included as many significant auxiliary variables as 
possible, which tends to minimize bias and make the missing at 
random mechanism more plausible.9 The inference procedure 
consisted of the generation of multiple stochastically enhanced 
data sets using the mice package in the R language,10 then each 
completed data set was analyzed using the model described 
below for complete data, and finally, the results were combined 
using Rubin rules.11 Grade had a large proportion of missing 
values and a χ2 test showed that it was highly correlated with 
ER, which is consistent with other cross-sectional findings.12,13 
To improve the quality of the enhanced data sets and avoid mul-
ticollinearity, grade was used in the multiple imputation process 
and then removed from the data analysis.

The main model choice criterion for the identification of 
the appropriate covariates to be included in both the logistic 
and Cox models was based on the Bayesian information crite-
rion (BIC). The value of the BIC for a specific mixture model 
is given by BIC = −2 × l(θ) + np × log(n), where l denotes the log-
likelihood function, θ is the vector with the maximum likeli-
hood estimators, np is the number of parameters in the model, 
and n is the size of the cohort. The criterion consists on choos-
ing the model for which BIC is the smallest. Backward elimi-
nation was employed to arrive at the best fitting model in each 
imputed data set. The problem of variable selection was 
addressed with the “impute, then select” strategy, which involves 
initially performing multiple imputation and subsequently 
applying Bayesian variable selection to each of the enhanced 
data sets.14 The variables included in the final model appeared 
in at least 50% of the selected models obtained in the imputed 
data sets.15 Both the variable selection process and the com-
bined results were based on 100 enhanced data sets.

Patients with worse pathologic features at diagnosis were 
expected to be more likely to undergo mastectomy or postop-
erative radiotherapy, or both, and thus, any treatment compari-
sons is confounded by differences in severity of breast cancer 
between patients and, therefore, highly susceptible to bias. The 
methodology used for handling the confounding in this non-
randomized observational study consisted on interpreting the 
effects of surgery, radiation status, and variables whose 2-way 
interactions with surgery and radiation turn out to be signifi-
cant as causal effects and the remaining effects in the regres-
sion analysis as risk factors effects.

Results
Patient characteristics

The cohort studied here consists of n = 16 511 female patients 
who were diagnosed with unilateral primary breast cancer dur-
ing 1990 and underwent surgery. The end of follow-up was 
December 31, 2011. Among the 16 511 women, 5670 had 
breast-preserving surgery (BPS) and 10 841 underwent mastec-
tomy. Patient characteristics according to surgical treatment 
with or without postoperative radiotherapy are summarized in 
Table 1.

Although the proportions of patients who died from breast 
cancer with and without radiotherapy after BPS are similar, 
patients with radiation after BPS had a better survival rate at 
the end of the follow-up; however, the proportion of women 
who died from breast cancer after mastectomy and postopera-
tive radiation exceeded more than 2 times the proportion of 
women who only had mastectomy and had the lowest survival 
rate at the end of the study. Women without radiation after 
surgery were more often 59 years old or above, whereas women 
with postoperative radiation were less often in the 71+ years 
age group, which suggests that radiotherapy was administered 
more discriminatively among elderly patients. Patients were 
mainly of white ethnicity and most of them were married. 
Roughly, around half of the patients were diagnosed in each 
category of the location health status. Ductal carcinoma was 
the most common type of breast cancer. The proportions of 
tumor sizes 2 cm or larger were similar between patients with 
or without radiation after BPS but, among patients who had 
mastectomy, the proportion was larger for those that under-
went postoperative radiation. The tumors of patients with 
postoperative radiotherapy appeared more likely to be of higher 
histologic grade and estrogen positive or borderline. There is a 
negligible excess of left-sided disease in women. Patients were 
more frequently diagnosed with a confined cancer. Most of 
patients who underwent BPS had no axillary lymph node 
involvement, whereas positive node involvements were particu-
larly frequent among patients who used radiation after mastec-
tomy; in addition, BPS patients had relatively frequent missing 
characteristics of size of tumor, grade, ER, and lymph node 
involvement, particularly among patients without postopera-
tive radiotherapy.

To explore possible differences between the subtypes of 
breast cancer according to age at diagnosis, Figure 1 displays 
age-specific incidence rates for duct, tubular, and other sub-
types of breast cancer. Although the plots show similar shapes, 
they exhibit bimodal densities with inflection points around 
menopause, suggesting the presence of pathologies with 2 dif-
ferent age-dependent etiologies.

Regression results

In the best fitting mixture model, the interaction between type 
of surgery and radiotherapy status was significant in both 
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Table 1. Patient characteristics according to surgical treatment and postoperative radiotherapy status of women diagnosed with breast cancer in the 
SEER Registries in 1990.

BREAST PRESERVING MASTECTOMy

 (n = 5670, 34.3%) (n = 10 841, 65.7%)

 NO RADIATION, NO. (%) RADIATION, NO. (%) NO RADIATION, NO. (%) RADIATION, NO. (%)

Characteristic 2415 (42.6) 3255 (57.4) 9981 (92.1) 860 (7.9)

vital status

 Alive 816 (33.8) 1490 (45.8) 3513 (35.2) 200 (23.3)

 Dead from breast cancer 430 (17.8) 536 (16.5) 2201 (22.0) 455 (52.9)

 Dead from other causes 1169 (48.4) 1229 (37.7) 4267 (42.8) 205 (23.8)

Sociodemographic characteristics

Age at diagnosis

 <48 490 (20.3) 766 (23.5) 1901 (19.1) 254 (29.5)

 48 to 59 398 (16.5) 767 (23.6) 1966 (19.7) 200 (23.3)

 59 to 71 556 (23.0) 1023 (31.4) 2996 (30.0) 260 (30.2)

 71+ 971 (40.2) 699 (21.5) 3118 (31.2) 146 (17.0)

Race

 White 2113 (87.5) 2871 (88.2) 8735 (87.5) 711 (82.7)

 Black 192 (8.0) 230 (7.1) 694 (7.0) 87 (10.1)

 Other 110 (4.5) 154 (4.7) 552 (5.5) 62 (7.2)

Marital status

 Unmarried 1100 (45.5) 1126 (34.6) 4126 (41.3) 339 (39.4)

 Married 1197 (49.6) 2074 (63.7) 5641 (56.5) 501 (58.3)

 Missing 118 (4.9) 55 (1.7) 214 (2.2) 20 (2.3)

Location health status

 Ranking Value ⩽ 0.5 1124 (46.5) 1576 (48.4) 4725 (47.3) 435 (50.6)

 Ranking Value > 0.5 1291 (53.5) 1679 (51.6) 5256 (52.7) 425 (49.4)

Tumor characteristics

Site

 Duct 1802 (74.6) 2708 (83.2) 8099 (81.1) 662 (77.0)

 Lobular 298 (12.3) 175 (5.4) 779 (7.8) 73 (8.5)

 Other 315 (13.1) 372 (11.4) 1103 (11.1) 125 (14.5)

Size of tumor

 <2 cm 1350 (55.9) 2172 (66.7) 4583 (45.9) 146 (17.0)

 ⩾2 cm 647 (26.8) 814 (25.0) 4163 (41.7) 616 (71.6)

 Missing 418 (17.3) 269 (8.3) 1235 (12.4) 98 (11.4)

Grade

 I and II 515 (21.3) 1008 (31.0) 2342 (23.5) 168 (19.5)

 III and IV 337 (14.0) 698 (21.4) 2281 (22.8) 379 (44.1)

 Missing 1563 (64.7) 1549 (47.6) 5358 (53.7) 313 (36.4)
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Figure 1. Histogram and density curve of age at diagnosis for duct, lobular, and other subtypes of carcinomas in women diagnosed with breast cancer in 

1990.

BREAST PRESERVING MASTECTOMy

 (n = 5670, 34.3%) (n = 10 841, 65.7%)

 NO RADIATION, NO. (%) RADIATION, NO. (%) NO RADIATION, NO. (%) RADIATION, NO. (%)

Estrogen receptor status

 Positive or borderline 879 (36.4) 1834 (56.4) 5218 (52.3) 506 (58.8)

 Negative 258 (10.7) 515 (15.8) 1558 (15.6) 197 (22.9)

 Missing 1278 (52.9) 906 (27.8) 3205 (32.1) 157 (18.3)

Laterality

 Right 1175 (48.7) 1611 (49.5) 4839 (48.5) 406 (47.2)

 Left 1240 (51.3) 1644 (50.5) 5142 (51.5) 454 (52.8)

Extension

 Localized 2134 (88.4) 3078 (94.6) 9075 (90.9) 560 (65.1)

 Further extension 220 (9.1) 151 (4.6) 809 (8.1) 277 (32.2)

 Missing 61 (2.5) 26 (0.8) 97 (1.0) 23 (2.7)

Lymph node status

 No node involvement 1556 (64.4) 2523 (77.5) 6768 (67.8) 194 (22.6)

 Lymph node + 258 (10.7) 532 (16.3) 2912 (29.2) 604 (70.2)

 Missing 601 (24.9) 200 (6.2) 301 (3.0) 62 (7.2)

Table 1. (Continued)
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components in the mixture model, extension had significant 
2-way interactions with surgery and radiation in the logistic 
and conditional components, respectively, whereas the interac-
tion between lymph node status and radiation status was sig-
nificant in the logistic component only, which may suggest that 
although the choice of surgery and radiation were mainly based 
on the staging information, postoperative radiotherapy tended 
to be given when lymph nodes were present. Both extension 
and lymph node status appear to be confounded with the 
effects of type of surgery and radiotherapy status; therefore, 
type of surgery, radiotherapy status, extension, and lymph node 
status were regarded as causal effects.

Although the interaction effects between the polynomial of 
age and either surgery or radiation status had significant effects 
in the conditional survival component of the best fitting mix-
ture model, such significances turned out to be artificial and 
negligible at best, which is an indication that the effects are in 
fact spurious and thus were removed from the best fitting model. 
Neither the 2-way interactions between the risk factors nor the 
main effects of the propensity score, location health status, and 
laterality turned out to be statistically significant in any of the 
components in the mixture model and were removed from the 
model as well. The resulting most parsimonious model can then 
lead to various useful epidemiologic interpretations for each 
coefficient when the remaining factors and interactions are con-
stant, which enables to better understand the way in which the 
corresponding risk factor is associated with both the cause-specific 
proportion and the conditional hazard rates of mortality.

Figure 2 shows fitted and 95% confidence bands curves of 
the effects of the second-degree polynomial of age at diagnosis 
in the 3 components of the mixture model. The display at the 
top shows the effect of age as changes of log odds in the logistic 
component, f(age), which corresponds to the eventual death 
from breast cancer. It can be noticed that the change in log 
odds exhibits an ample width of the confidence bands for 
patients diagnosed before perimenopause that gradually nar-
rows down with age within this range; here, a constant func-
tion, that is, a straight line parallel to the x-axis, can 
straightforwardly be superimposed in between the confidence 
bands, revealing that this group of younger patients share simi-
lar risks of eventual death from breast cancer. The fitted change 
of log odds decreases with age for patients diagnosed after 
menopause, and the corresponding confidence bands remain 
relatively narrow until the early 80s and then expand for older 
ages, always showing a decreasing path and thus indicating that 
the probability of eventual death from breast cancer decreases 
as age increases among this group of older patients. The impact 
of age on the eventual death from breast cancer can be illus-
trated by comparing the odds ratio of a patient aged 45 years 
with respect to a patient aged 75 years, which is exp[f(45)]/
exp[f(75)] = 1.50; that is, the odds of a patient in her mid-40s 
eventually dying from breast cancer is 50% higher than that of 
a patient in her mid-70s.

The display in the middle of Figure 2 depicts the effects of 
age on the conditional hazard rate corresponding to breast can-
cer. The curve follows a U-shaped pattern reaching the mini-
mum around menopause, which indicates that given that a 
patient will eventually die from breast cancer, the conditional 
hazard rate of breast cancer decreases as age increases for 
patients diagnosed before perimenopause and then it increases 
for patients diagnosed after menopause. The display at the bot-
tom of Figure 2 shows the effects of age on the conditional 
hazard rate corresponding to other causes. Much of the curve 
resembles a straight line, indicating that given that a patient 
will eventually die from other causes, the corresponding condi-
tional hazard rate increases with age, as expected, which is 
emphasized by the width of the confidence bands.

Table 2 shows parameter estimates for the most parsimoni-
ous mixture model. For the categorical variables, the coeffi-
cients in the first column can be interpreted as the change in 
log odds of eventual death from breast cancer in comparison 
with the baseline group when the remaining regressors are 

Figure 2. Fitted and 95% confidence bands of the effects of the 

orthogonal polynomial of age at diagnosis in the logistic component (top), 

the conditional component of death from breast cancer (BC) (middle), and 

the conditional component of death from other causes (bottom) for the 

most parsimonious mixture regression model.
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fixed, whereas the coefficients in the last 2 columns can be 
interpreted as the conditional log hazard ratios for breast can-
cer (second column) and other causes (third column) in com-
parison with the baseline group when the remaining regressors 
are fixed. In the following description, 95% confidence inter-
vals will be used when applicable. The results show that all 
coefficients associated with the orthogonal polynomials of age 
at diagnosis were individually significant. The coefficients cor-
responding to race show evident disparities in breast cancer 
mortality among the 3 racial groups considered in this study, 
particularly with respect to black women. The proportion of 
black women who eventually die of breast cancer is higher 
than that of white women, with 15% to 54% higher odds than 
white patients, whereas the proportion of deaths from breast 
cancer for other ethnicities is lower than that for white women, 
with 14% to 42% lower odds than white patients. When it 

comes to comparing conditional hazard rates, black women 
have worse survival rates than white women, with 10% to 43% 
and 20% to 46% higher conditional risks from breast cancer 
and other causes, respectively, than white patients. Women 
from other ethnicities who eventually die from breast cancer 
do not seem to have different risks in the corresponding con-
ditional hazard rate from white patients, but their conditional 
risks for other causes are 5% to 26% lower than white women. 
Marital status was only significant in the conditional hazard 
rate of death from other causes and the corresponding coeffi-
cient is negative, which indicates that married patients have 
had longer survival only when the eventual cause of death is 
other than breast cancer.

Although the individual coefficients of histologic type did not 
appear to be significant in both the logistic component and the 
conditional mortality from other causes, the conditional breast 

Table 2. Coefficients and SEs for the most parsimonious mixture model.

PREDICTORS LOGISTIC COMPONENT (δ) BREAST CANCER CONDITIONAL 
COMPONENT (β1)

OTHER CAUSES OF DEATH 
CONDITIONAL COMPONENT (β2)

COEFFICIENT SE COEFFICIENT SE COEFFICIENT SE

Intercept −2.017*** 0.071 — — — —

Orthogonal polynomial of age

 First degree −24.85*** 2.780 30.24*** 2.824 163.3*** 2.846

 Second degree −8.035** 2.711 26.37*** 2.486 −4.670* 2.133

Race (white as baseline)

 Black 0.287*** 0.073 0.228*** 0.065 0.279*** 0.050

 Other −0.343*** 0.100 0.010 0.101 −0.182** 0.064

Married — — −0.070 0.045 −0.176*** 0.026

histologic type (ductal as baseline)

 Lobular — — −0.229** 0.077 −0.012 0.046

 Other — — 0.136* 0.065 0.026 0.037

Tumor size ⩾ 2 cm 0.598*** 0.049 0.261*** 0.052 0.170*** 0.028

ER-negative — — 0.604*** 0.053 −0.009 0.038

Further extension 1.295*** 0.124 1.170*** 0.111 0.415*** 0.111

Lymph node + 0.926*** 0.094 0.308*** 0.051 0.277*** 0.033

Mastectomy −0.034 0.077 −0.002 0.083 −0.141*** 0.035

Radiation −0.017 0.083 −0.218* 0.095 −0.174*** 0.043

Mastectomy:further extension −0.672*** 0.143 −0.602*** 0.116 −0.263* 0.116

Radiation:further extension — — −0.268* 0.107 0.054 0.125

Radiation:lymph node + 0.301** 0.107 — — — —

Mastectomy:radiation 0.528*** 0.116 0.415*** 0.111 0.214* 0.089

Abbreviation: SE, standard error.
“:” denotes interaction.
*P value < .05; **P value < .01; ***P value < .001.
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cancer–specific mortality for lobular carcinomas and other sub-
types was associated with, respectively, 8% to 32% lower and 1% to 
30% greater conditional breast cancer mortality risks compared 
with ductal carcinomas. Tumor size had very significant effects in 
all 3 components of the mixture model. As one would expect, breast 
cancer–specific mortality increases for large tumor sizes, with 
tumors 2 cm or larger having 65% to 100% higher odds of eventual 
death from breast cancer and 17% to 44% higher conditional risks 
of breast cancer death than smaller sized tumors; also, tumors 2 cm 
or larger were associated with 12% to 25% higher conditional risks 
of other causes of death compared with smaller sized tumors. 
Estrogen receptor status only turned out to be significant within 
the conditional hazard rate of breast cancer, with ER-negative 
being associated with 65% to 103% greater conditional breast can-
cer mortality risks compared with ER-positive or borderline.

Model and biomarker performance

The prognostic ability of the model is an important feature 
which can be used as a benchmark of model performance for 
validation purposes. In the current cause-specific incidence 
context, a prediction model for an event of interest discrimi-
nates well if it is able to define risk groups to individuals 
according to the probability of eventually experiencing such 
event. To both define a predictive biomarker and assess the 
aforementioned discrimination, the risk score in the logistic 
component of the most parsimonious mixture model, defined 
as R = d + d’x, where d and d are, respectively, the maximum like-
lihood estimators of δ and δ, was taken as the biomarker of 
cause-specific mortality risks; here, multiple imputation was 
employed to obtain the scores when the predictors were par-
tially observed. In this analysis, it was possible to rank the sub-
jects in the data according to the risk score R and then select 
those with the 10% lowest of values of R, which were assigned 
to the low-risk group, those with the following 75% lowest of 
values of R, which were assigned to the medium-risk group, and 
the remaining 15% of values of R, which were assigned to the 
high-risk group.

To assess the predictive fit of the model, it is possible to 
estimate the parameters of the mixture model from a randomly 
chosen half of the data, the training sample, and then to validate 
the CIFs on the other half of the data, the validation sample; 
here, the risk groups are defined using the risk score R in the 
validation sample. Figure 3 displays empirical estimates of the 
CIFs in each risk group in the validation sample, which were 
based on Aalen nonparametric event estimates16,17 and com-
puted using the R language function cuminc of the cmprsk 
package,18 along with the estimated model-based CIFs, which 
were calculated averaging over the linear combination between 
the vector of coefficients and the vector of predictors in each 
component of the most parsimonious mixture model for each 
risk group. The estimators of the 2 methods are comparable for 
each risk group, which suggests that both the fitted mixture 
model and the classification criterion are adequate.

To accurately assess the prediction performance of the 
model for the 3 risk groups, a calibration plot can be used.19 In 
this plot, the nonparametric estimate of the CIF of cause of 
death j at a chosen time t for each risk group is plotted against 
the mean of the predicted CIF of the jth cause of death [Fj(t; 
x1) + Fj(t; x2) + . . . + Fj(t; xk)]/k, where k is the number of subjects 
within the risk group, xi is the vector of predictors for the ith 
individual in the group, j = 1, 2 and Fj(t; xi) was obtained using 
multiple imputation when the corresponding predictors were 
partially observed. Figure 4 shows the calibration plot of the 
CIFs corresponding to follow-up times 2, 5, 10, 15, and 20 for 
the 3 risk groups. For death from breast cancer, the cumulative 
incidence estimates from the most parsimonious mixture 
model correspond rather closely to the empiric cumulative 
incidence estimates for each risk group, whereas for death from 
other causes such relationship is close for the medium-risk and 
high-risk groups and for times 2, 5, and 10 in the low-risk 
group.

In general, it can be concluded that the mixture model gives 
a good fit to the breast cancer data set and that the predictive 
biomarker-based discrimination method proposed here 
achieves a useful ability to both identify and separate women 
with different breast cancer–specific risks.

Discussion
In the present competing risks analysis of 16 511 patients, cur-
vilinear relationships of age at diagnosis, race, marital status, 
histologic type, tumor size, ER status, extension, and lymph 
node status were significant risk factors for the cause-specific 
mortality, whereas extension and lymph node status appeared 
to be significant confounders for both type of surgery and radi-
otherapy status, which had significant effects as well. Location 
health status did not show significant effects in any of the com-
ponents in the mixture model, which suggests that both overall 
lifestyles and living conditions in 1990 did not appear to 
change the risk for any cause-specific mortality. Also, there was 
no evidence that laterality is a risk factor for any cause-specific 
death, which is consistent with previous reports13; of particular 
interest is the fact that the interaction between laterality and 
radiotherapy status did not appear to be important, which is 
consistent with recent research in the sense that radiation ther-
apy for left-sided breast cancer, as delivered in the 1990s, has 
not increased the risk of death from any cause when compared 
with right-sided tumors.20,21

The curvilinear effects of age showed that although patients 
diagnosed before menopause appeared to have similar odds of 
eventual death from breast cancer with respect to age at diag-
nosis, the proportion of women dying from the illness tended 
to decrease with age at diagnosis after menopause; in addition, 
the age at diagnosis effect in the conditional hazard rate of 
breast cancer–specific death showed a parabolic shape with its 
minimum around menopause. Thus, young patients diagnosed 
before menopause had the poorest breast cancer prognosis, 
which is consistent with previous studies22–25; however, despite 
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the fact that older patients are less susceptible to die from their 
cancer, when they die from it, they do so at hazard rates as high 
as their younger counterparts or higher for patients diagnosed 
after 85 years.

Because age-at-diagnosis did not significantly interact with 
other risk factors and recent research has found evidence of low 
breast cancer risk around menopause,23,26–28 the difference in 
outlook between young and old patients can lead to the specu-
lation that menopause is an important threshold between 2 
age-related etiologic mechanisms, suggesting the need for a 
closer look at age at diagnosis taking due account of menopau-
sal status. As a matter of fact, assessing the risk effects of age at 
diagnosis as yet has to be properly addressed given the conflict-
ing findings regarding age-related breast cancer mortality, par-
ticularly for older patients.26–32 Such discrepancies may have 
arisen not only because of differences in methodologies but 
also because age cutoff points have been defined arbitrarily.33

This study confirms previous epidemiologic findings 
regarding race, particularly when it comes to comparing black 
and white women.34–36 Black women had the worst overall 

prognosis because they were the ethnicity most susceptible to 
die from breast cancer and had the highest conditional hazard 
rates in both causes of death. Although marital status turned 
out to be an important predictor in the mixture model, it failed 
to show any significant association with breast cancer–specific 
mortality. It can then be claimed that although marriage and 
the social support it brings can have a positive impact on the 
survival when the cause of death is different from breast cancer, 
it does not seem to influence the breast cancer outcome, chal-
lenging the findings of previous cancer-specific survival studies 
that claim that unmarried patients are at significantly higher 
risk of death resulting from their cancer.37

The odds of eventual death from breast cancer did not seem 
to differ both among the 3 different cancer subtypes and among 
the 2 ER statuses; however, among patients who ultimately die 
from breast cancer, those with a lobular carcinoma and those 
with an ER-positive or borderline status had considerable bet-
ter survival, which is somehow consistent with previous 
research.38,39 Size of tumor is clearly an important predictor, 
with tumors 2 cm or larger not only being associated with 

Figure 3. Observed (dotted lines) and fitted (solid lines) cumulative incidence functions of death from breast cancer and other causes for 3 risk groups in 

the validation sample.

Figure 4. Calibration plot for the low-risk, medium-risk, and high-risk groups in the validation sample at follow-up times 2, 5, 10, 15, and 20.
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worse breast cancer outcomes than smaller tumors, as expected, 
but also with higher hazard rates when the cause of death is 
different from cancer, which could reflect the endogenous 
long-term side effects of aggressive adjuvant treatments given 
to patients with large tumors in the 1990s.40

The biomarker of breast cancer–specific mortality defined 
here depends on age, race, tumor size, extension, and lymph node 
status, which are readily available at diagnosis and on surgery type 
and radiotherapy status. Although based on simple measures, the 
biomarker offers an accurate tool to determine a patient’s progno-
sis when she is diagnosed with breast cancer and therapy scenar-
ios are considered. Adding the biomarker to clinical criteria has 
the potential to improve risk-based triage and can have a great 
impact on the individualization of the care and management 
strategies, thus optimizing throughput and resources.

The strengths of the data set are the comparatively large 
number of subjects involved and the reasonably long follow-up 
period. These strengths enabled the analysis to investigate the 
data in more detail and with rather more confidence than studies 
with a more modest size and a shorter follow-up period would 
allow; however, although cohort studies offer several important 
advantages over other forms of observational studies, they tend 
to be susceptible to both selection and exposure bias.41

With long-term follow-up studies, there are other impor-
tant tensions to confront. Although the increasing length of a 
follow-up produces confidence to identify the proportion of 
subjects who will eventually die from the disease, a longer fol-
low-up also has the outcome of the cohort originally being 
recruited at a time much more remote from contemporary con-
ditions. Accordingly, it can be questioned whether an analysis 
of patients diagnosed with breast cancer in 1990 provides use-
ful information relevant to those diagnosed in the present year. 
Over the past 3 decades, there has been a considerable develop-
ment of new technologies and improved surgical techniques 
against breast cancer. In addition, given that there have been 
changes in lifestyles that have had influence in delaying meno-
pause in the United States,42 it seems reasonable to speculate 
that the effects of age at diagnosis on either cause of death have 
changed as well.

Although there have been some adjustments in the existing 
regimens and changes in women’s lifestyles, nevertheless, it is 
somehow difficult to believe that anything has happened to chal-
lenge the relationships among clinicopathologic and sociodemo-
graphic variables that have been probed in this study. However, in 
the final analysis, that question can be answered only by conduct-
ing similar research with later cohorts and in other countries to 
chart the boundaries of the results identified here.
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