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Simple Summary: Dipeptidyl peptidase (DPP)-4 inhibitor is widely used for type 2 diabetes. Al-
though DPP-4/CD26 has been recognized as both a suppressor and inducer in tumor biology due
to its various functions, how DPP-4 inhibitor affects cancer progression in diabetic patients is still
unknown. The aim of this review is to summarize one unfavorable aspect of DPP-4 inhibitor in
cancer-bearing diabetic patients.

Abstract: DPP-4/CD26, a membrane-bound glycoprotein, is ubiquitously expressed and has diverse
biological functions. Because of its enzymatic action, such as the degradation of incretin hormones,
DPP-4/CD26 is recognized as the significant therapeutic target for type 2 diabetes (T2DM); DPP-
4 inhibitors have been used as an anti-diabetic agent for a decade. The safety profile of DPP-4
inhibitors for a cardiovascular event in T2DM patients has been widely analyzed; however, a clear
association between DPP-4 inhibitors and tumor biology is not yet established. Previous preclinical
studies reported that DPP-4 suppression would impact tumor progression processes. With regard
to this finding, we have shown that the DPP-4 inhibitor induces breast cancer metastasis and
chemoresistance via an increase in its substrate C-X-C motif chemokine 12, and the consequent
induction of epithelial-mesenchymal transition in the tumor. DPP-4/CD26 plays diverse pivotal
roles beyond blood glucose control; thus, DPP-4 inhibitors can potentially impact cancer-bearing
T2DM patients either favorably or unfavorably. In this review, we primarily focus on the possible
undesirable effect of DPP-4 inhibition on tumor biology. Clinicians should note that the safety of
DPP-4 inhibitors for diabetic patients with an existing cancer is an unresolved issue, and further
mechanistic analysis is essential in this field.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of certain cancers
and poor prognosis [1,2]. Mechanistically, hyperinsulinemia, insulin resistance, hyper-
glycemia, dyslipidemia, and chronic inflammation may promote cancer progression in
T2DM patients. Moreover, the long-term use of anti-diabetic agents also potentially influ-
ences tumor behavior in diabetic patients with cancer [3,4]. Although large clinical trials to
determine the safety of anti-diabetic drugs for cardiovascular outcome in diabetic patients
have been performed, such a clinical study usually did not include those patients already
known to have cancer, and observational intervals of trials to verify the impact of anti-
diabetic drugs on cancer progression are rare. Therefore, the safety profile of anti-diabetic
agents on cancer-bearing diabetic patients has never been thoroughly evaluated.
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Dipeptidyl peptidase (DPP)-4 inhibitors are widely used for treatment in T2DM
patients. DPP-4 is characterized as a T-cell differentiation antigen (CD26) and plays a
multifunctional role through its enzymatic and nonenzymatic action. DPP-4 cleaves many
substances, not only incretin hormones; DPP-4 inhibitors potentially increase many growth
factors and chemokines that may induce cancer progression. Besides this, DPP-4 has many
pivotal roles in immune function, inflammation, and antioxidative response. Therefore,
the pleiotropic effects of DPP-4 inhibitors would not always be favorable, especially in
cancer-bearing T2DM patients.

Since other authors have mentioned the favorable effects of DPP-4 suppression for
cancer biology elsewhere [5–10], this review mainly focuses on the undesirable effects of
DPP-4 inhibition in T2DM patients with cancer, including our preclinical data.

2. The DPP-4 Gene Family

This review fundamentally focused on DPP-4 for the Special Issue “CD26 and cancer”
in this journal. However, introducing the general aspect of the biology of the DPP-4 gene
family on cancer could help to understand the whole picture of this interesting peptidase
family regarding cancer biology. Details are fully described elsewhere [11–14].

The DPP-4 gene family, a subgroup of the prolyl oligopeptidase family of enzymes,
specializes in the cleavage of prolyl bonds. Among its family members, DPP-4, DPP-8, DPP-
9, and fibroblast activation protein (FAP) display enzymatic action. The specific substrate
or pathophysiological significance on cancer of DPP-8 and DPP-9 are not elucidated yet,
but some tumor-promoting effects of either DPP-8 or DPP-9 have been reported [15,16]. At
the least. the inhibition of DPP-8 or DPP-9 could potentially influence the immune system
and differentiation of certain cells. FAP is a very closely related enzyme to DPP-4 and
exhibits higher levels in some cancers, especially in cancer-associated fibroblast. Indeed,
the DPP-4 inhibitor linagliptin inhibited FAP as well [17].

DPP-4

DPP-4/CD26 is a cell surface glycoprotein expressed in various types of cells and
tissues. The expression level of DPP-4 is incredibly high in the kidneys and small intestine.
There are two forms of DPP-4: membrane-bound and soluble. The transmembrane protein
domain of DPP-4 is anchored to the cell membrane, and its cytoplasmic domain is located
at the N-terminus. The extracellular lesion of DPP-4 contains highly glycosylated, cysteine-
rich, and catalytic regions. The C-terminal loop of DPP-4 is vital for catalytic efficacy and
dimerization [18]. A soluble form of DPP-4 (sDPP-4) is cleaved off the membrane by matrix
metalloproteases [19] and exists in serum and other bodily fluids.

DPP-4 plays diverse biological functions through enzymatic-dependent and inde-
pendent actions. For the enzymatic action, DPP-4 digests many polypeptides, including
chemokines, neuropeptides, and incretin hormones such as glucagon-like peptide (GLP)-1
and glucose-dependent insulinotropic peptide [20]. Increased incretin hormones by DPP-4
inhibition leads to the glucose-dependent secretion of insulin; thus, the DPP-4 inhibitor
is a widely prescribed drug for T2DM in clinics. DPP-4 also has molecular functions via
interactions with adenosine deaminase, extracellular matrix (ECM) proteins, and caveolin-1
for non-enzymatic action. The roles on co-receptor activity for viral entry, cell proliferation
and migration of DPP-4 are also reported [21–25]. The membrane-bound form of DPP-4 is
also known to have a pivotal role in the interactions between integrin β1 and ECM [26],
by which integrins regulate the cytoskeletal organization and intracellular-signaling path-
ways [27,28]. We have reported that DPP-4 plays a profibrotic role through interaction with
integrin β1, and subsequently induces endothelial-mesenchymal transition [29].

In human serum, sDPP-4 plays a central role in enzymatic activity [30,31]. sDPP-4
induces cell signaling and human lymphocyte proliferation [32], independent of its catalytic
action. In human adipocytes, skeletal muscle cells, and smooth muscle cells, sDPP-4 inhibits
Akt activation [33]. The process of sDPP-4 synthesis is still not completely understood.
Lamers et al. indicated that sDPP-4 is released from differentiated adipocytes more than
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preadipocytes, and that human adipocytes-secreted tumor necrosis factor-α and insulin
increase both the levels of sDPP-4 and DPP-4 mRNA [33]. Others reported that the major
sources of sDPP-4 are adipocytes and the liver. Additionally, DPP-4 inhibition increases
the levels of sDPP-4 in plasma from endothelial or hematopoietic cells [34].

Since the diverse biological functions of DPP-4, cancer-promoting cytokine/ chemokine
modulation and ECM interaction would be relevant to cancer cell behavior, DPP-4 in-
hibitors also potentially influence cancer cell biology beyond blood glucose control. Its
biological effects are complex and different, depending on tumor types and the microenvi-
ronment.

3. DPP-4 Expression in Primary Tumors

DPP-4 is expressed in many solid tumors or hematologic malignancies (Table 1). The
overexpression of DPP-4 in several cancers induces an anti-tumor effect [35,36]. DPP-4
in the primary tumor may have an essential role in regulating cancer biology, and DPP-
4/CD26 has also been noted as a potential biomarker of tumor progression. Mezawa et al.
demonstrated that the decreased expression of CD26 is associated with poor prognosis
in breast cancer patients. Furthermore, this decreased CD26 expression is attenuated by
the suppression of transforming growth factor (TGF)-β and C-X-C motif chemokine 12
(CXCL12) [37]. We also showed that DPP-4 ablation in a primary mammary tumor induced
tumor growth and metastasis via the CXCL12-mediated pathway (Figure 1) [38]. In small
cell lung cancer, DPP-4 levels were significantly diminished; however, restoration of DPP-4
induced apoptosis and cell cycle arrest via the p21 accumulation, and suppressed tumor
growth and metastasis [39].
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Figure 1. The impact of DPP-4 inhibitor on mammary tumor via CXCL12/CXCR4 downstream
pathway. (A) DPP-4 digests CXCL12 for enzymatic action, thus the CXCL12-mediated CXCR4
downstream pathway in cancer is not strongly activated in the presence of DPP-4. (B) The DPP-
4 inhibitor suppresses the degradation of CXCL12 and increases the level of CXCL12. Elevated
CXCL12 interacts with its receptor CXCR4 and induces mTOR activation. The DPP-4 inhibitor-
induced CXCL12/CXCR4/mTOR pathway causes mammary tumor proliferation. The activation
of mTOR also causes EMT, which induces metastasis and chemoresistance in the mammary tumor.
CXCL12: C-X-C motif chemokine 12; CXCR4: C-X-C receptor 4; DPP-4: dipeptidyl peptidase-4; EMT:
epithelial-mesenchymal transition; mTOR: mammalian target of rapamycin.
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Table 1. DPP-4/CD26 expression in primary tumors and its role in cancer progression processes.

Tumor Type Possible Association Between DPP-4/CD26 Expression in Tumors and Tumor Progression Reference

Breast cancer Decreased stromal CD26 expression in tumors is associated with poor outcomes for BC patients. [37]
DPP-4 knockdown in a primary mammary tumor induces tumor growth and metastasis in vivo. [38]

Colorectal cancer High expression levels of CD26 in tumors is associated with distant metastasis and worse overall survival in
CRC patients. [40]

Expression of stromal CD26 after preoperative CRT is associated with tumor recurrence and prognosis in rectal
cancer patients. [41]

Hepatocellular carcinoma Low levels of DPP-4 expression in tumors are linked to the aggressiveness of HCC and poor overall survival in
HCC patients. [42]

Lung cancer Restoration of DPP-4 expression in NSCLC cells contributes to inhibiting cell progression in vitro and in vivo. [39]

Ovarian cancer DPP-4 overexpression contributes to prolonged survival, decreased invasive activity, and increased
chemosensitivity in vitro and in vivo. [43,44]

DPP-4 expression is associated with lymph node metastasis and a worse stage in tumor samples of ovarian
cancer patients. [45]

Pancreatic tumor CD26 expression is significantly increased in tumors and its level correlates with overall survival in PDAC
patients. [46]

Prostate cancer CD26 expression in prostate cancer tissues is correlated with CXCR4, PSA level, tumor residue, cancer stage, and
tumor size. [47]

Thyroid cancer CD26 expression is negatively correlated with GLP-1R expression and has no significant association with the
survival of patients with medullary thyroid carcinoma. [48]

Urothelial carcinoma DPP-4 overexpression in tumors is associated with the clinical aggressiveness of UCs. [49]

Hematological malignancies CD26 expression correlates with a poor response to 2′-deoxycoformycin in T-cell leukemia/lymphomas. [50]
CD26 expression is associated with an unfavorable clinical outcome in B-CLL patients. [51]
CD26 expression on B-CLL cells is associated with the tumor mass and influences time to treatment. [52]

BC, breast cancer; BCLL, B-cell chronic lymphocytic leukemia; CRC, colorectal cancer; CRT, chemoradiotherapy; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal
adenocarcinoma; UC, Urothelial carcinoma.
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On the other hand, an increased CD26 expression level has been associated with poor
prognosis in pancreatic cancer patients [46] and other cancers [40,50]. DPP-4 expression
in the primary tumor may regulate cancer behavior; however, the expression of DPP-4 in
the primary tumor appears to be the heterogeneity patterns, depending on tumor type,
stage, microenvironment, and host condition. It was also reported that DPP-4 expression
and its secreted activity are uncoupled under hypoxia in ovarian cancer cells via the
shedding of inactive DPP-4 from ovarian cancer cells [53]. Although several reports have
suggested that the overexpression of DPP-4 would be a potential tumor prognosis marker
in certain cancers, it is unresolved (1) how diverse functions of DPP-4 influence the cancer
progression, and (2) whether DPP-4 inhibition is relevant as a therapy for patients with
such DPP-4 overexpressed cancers. In addition, most reports about the correlation between
DPP-4 expression in tumor and cancer prognosis did not mention whether patients had
diabetic conditions or not. How the use of DPP-4 inhibitors impacts the DPP-4 expression
of cancer in diabetic patients is not yet elucidated. It is essential to note that the clinical
biomarkers are not always attributable to their biological importance in the disease activity;
careful interpretation would be required.

4. The Impact of DPP-4 Inhibition on Existing Tumors

Several preclinical studies have addressed the potential link between DPP-4/CD26
and tumor progression. However, the mechanistic consequences of DPP-4 inhibition for a
cancer-bearing individual are still not completely understood. Some studies described that
the DPP-4 inhibitor is correlated with cancer cell invasiveness, metastasis and chemother-
apy resistance in certain cancers. An early study by Beckenkamp et al. showed that
the DPP-4 inhibitor sitagliptin increases cell migration and adhesion in cervical cancer
cells [54]. Wang et al. also reported that the DPP-4 inhibitor saxagliptin and sitagliptin
activate nuclear factor E2-related factor 2 (NRF2)-mediated antioxidant response, resulting
in promoting metastasis of multiple tumors [55]. In papillary thyroid carcinoma cells,
saxagliptin also promotes cancer cell migration and invasion through upregulation of
NRF2 [56]. However, oxidative stress is known to suppress [57] or to induce [58] cancer
invasion and metastasis. Redox balance plays an intricate role in cancer biology; DPP-4
inhibitors could also influence the tumor progression both favorably and unfavorably
according to conditions.

For an alternative mechanism, DPP-4 inhibitors increase their substrate levels: neu-
ropeptides, growth factors, cytokines, and chemokines. An elevated level of these sub-
strates of DPP-4 can potentially influence cancer progression (Table 2).

CXCL12, and its receptor C-X-C receptor 4 (CXCR4), are related to hematopoiesis,
angiogenesis, stem cell homing, and tumor progression and behavior [59,60]. Sun et al.
reported that DPP-4 regulates prostate cancer metastasis in vitro and in vivo by the degra-
dation of CXCL12 [61]. We also found that the DPP-4 inhibitor induces breast cancer
metastasis via the inhibition of CXCL12 degradation. Accumulated CXCL12 interacted
CXCR4 and contributed to CXCL12/CXCR4-mediated epithelial-mesenchymal transition
(EMT) induction (Figure 1) [62]. Interestingly, EMT induction by DPP-4 inhibitor was
independent of TGF-β signaling. DPP-4 inhibitor-induced breast cancer metastasis was
attenuated by the CXCR4 inhibitor AMD3100, with the suppression of genes associated
with EMT and a mammalian target of rapamycin (mTOR) signaling pathway in the primary
tumor [38,62]. The mTOR pathway is important for driving EMT processes in a mammary
tumor [63,64], and mTOR inhibition suppresses breast cancer proliferation, migration
and metastasis [65–67]. In addition, some reports described the induction of the mTOR
signaling pathway by DPP-4 inhibition [62,68,69]. In this regard, the activation of the
mTOR pathway may be one of the critical factors for EMT induction by DPP-4 inhibition
(Figure 1). However, in contrast, Varela-Calviño et al. recently reported that sitagliptin
suppressed the metastatic potential of colorectal cancer cells in vitro [10]. Nevertheless, the
effects of DPP-4 inhibitors on tumor metastasis remain unknown and further investigation
is important.
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Table 2. Substrates of DPP-4/CD26 and potential downstream effect on tumor progression.

Substrates Consequences of Processing by DPP-4 Receptor Recognition Possible Activity of Substrates in Tumor Progression Reference

Substance P inactivation - promotes pancreatic cancer cell proliferation and invasion [70]

Neuropeptide Y inactivation - promotes myeloid cell infiltration and increases IL-6 levels in
prostate cancer cell [71]

CXCL9/Mig inactivation CXCR3 decreased enhances breast cancer cell invasiveness/migration and reduces
immune cell infiltration [72,73]

CXCL10/IP-10 inactivation CXCR3 decreased enhances breast cancer cell invasiveness/migration and reduces
immune cell infiltration [72,73]

promotes colorectal carcinoma cell invasiveness [74]
promotes gastric cancer cell invasion [75]

CXCL11/I-TAC inactivation CXCR3 decreased enhances breast cancer cell migration [73]

CXCL12/SDF-1 inactivation CXCR4 decreased induces breast/mammary cancer cell migration, metastasis and
chemoresistance [38,62,76]

induces prostate cancer cell invasion and metastasis [61]
effects on endometrial adenocarcinoma cell proliferation [77]

CCL3/LD78β inactivation CCR3 decreased promotes migration and invasion of esophageal squamous
cell carcinoma [78]

activation CCR1/CCR5 increased induces proliferation and invasion of oral squamous cell
carcinoma [79]

CCL5/RANTES inactivation CCR1/CCR3 decreased promotes breast cancer migration, invasion, metastasis and
recurrence [80–82]

activation CCR5 increased promotes prostate cancer cell migration and metastasis [83]
promotes pancreatic cancer cell invasion and migration [84]

CCL11/eotaxin inactivation CCR3 decreased promotes the proliferation, migration and invasion of
glioblastoma cells [85]

CCL14/HCC-1 inactivation CCR1/CCR3/CCR5 decreased potential prognostic biomarker of hepatocellular and
ovarian cancer [86,87]

promotes angiogenesis and metastasis of breast cancer [88]
suppress the tumor progression of colorectal and hepatocellular
carcinoma [89,90]

CCL22/MDC inactivation CCR4 decreased increases oral cancer cell proliferation, invasion and migration [91]
stimulates the migration of Tregs and impairs antitumor
immunity in ovarian cancer [92]

promotes lymph node metastasis of CCR4+ head and neck
squamous cell carcinoma [93]

Mig, monokine-induced interferon-γ; IP-10, interferon-γ-inducible protein 10; I-TAC, interferon-inducible T-cell chemo-attractant; SDF-1, stromal cell-derived factor 1; HCC-1, hemofiltrate CC chemokine-1; MDC
macrophage-derived chemokine; IL-6, interleukin-6.
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EMT is also relevant for chemotherapy resistance, not only for invasion or metasta-
sis. Cells undergoing EMT processes are known to induce ATP-binding cassette (ABC)
transporter overexpression, which is related to cancer drug resistance in several cancer
cells [94,95]. With regard to this, we have reported that the DPP-4 inhibitor increases ABC
transporters via EMT induction, resulting in breast cancer chemoresistance (Figure 1) [76].
A xenograft model of DPP-4-overexpressed epithelial ovarian cancer cells exhibited as
larger bodies, but at the same time, displayed more chemosensitivity to paclitaxel [43]. Nev-
ertheless, due to such heterogeneities in these preclinical studies, we should be carefully
monitoring some potential influences, especially the unfavorable ones, of DPP-4 inhibitors
in diabetic patients on cancer chemotherapy. Further mechanistic validation would be
required.

5. The Influence of DPP-4 Inhibitors on Cancer: Clinical Evidence

Based on the current evidence from large clinical trials, DPP-4 inhibitors are safe for
human health without significant concern about new onsets of cancers. Four cardiovascular
outcomes trials (CVOTs) of DPP-4 inhibitors in T2DM patients represented that DPP-4
inhibitors (saxagliptin, alogliptin, sitagliptin, and linagliptin) had no statistically significant
impact on cancer incidence, yet some trends of increased incidence of certain cancers are
described (Table 3) [96–100]. The median follow-up periods were also short in order to
evaluate the de novo carcinogenetic effect of DPP-4 inhibitors, and the number of cancer
cases was limited in these trials (Table 3). Moreover, it is unknown whether DPP-4 inhibitors
influence existing tumor growth, metastasis, and chemotherapy resistance because these
trials excluded cancer-bearing diabetic patients.

Previous preclinical studies indicated that DPP-4 inhibitors could accelerate tumor
growth and metastasis, not only the potential cancer-protective effects. Therefore, a prospec-
tive randomized trial to test the safety of DPP-4 inhibitors on cancer-bearing diabetic
patients will never be performed. We cannot have a clear answer yet; however, clini-
cians should recognize the theoretical potential risks when prescribing DPP-4 inhibitors in
cancer-bearing T2DM patients.
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Table 3. Cancer incidence in large clinical trials with DPP-4 inhibitors.

SAVOR-TIMI 53 [96,100] EXAMINE [97] TECOS [98] CARMELINA [99] VERIFY [101]

DPP-4 inhibitor Saxagliptin Alogliptin Sitagliptin Linagliptin Vildagliptin + metformin
Follow-up (years) 2.1 1.5 3.0 2.2 up to 5

Patients 16,492 5380 14,671 6979 2001
Age (years) 65.1 61.0 65.5 66.1 54

Body-mass index **—mean 31.1 28.7 30.2 31.4 31.2

Glycated hemoglobin—mean (%) 8.0 ± 1.4 8.0 ± 1.1 7.2 ± 0.5 7.9 6.7
Duration of diabetes (years) 10.3 7.1 11.6 15.0 3.3 (months)

Metformin use—no. (%)
Placebo—no. (%) 5684 (69.2) 1805 (67.4) 6030 (82.2) 1927 (55.3) all

DPP-4 inhibitors—no. (%) 5789 (69.9) 1757 (65.0) 5936 (81.0) 1881 (53.8) all

Inclusion criteria Established CVD,
multiple risk factors for VD

An ACS with 15 to 90 days
before randomization Established CVD High CV and renal risk

Diagnosed for type 2 diabetes
within 2 years prior to

enrolment

Primary outcome 3P-MACE 3P-MACE 4P-MACE 3P-MACE The time from randomization
to initial treatment failure (*)

Incidence of cancer **
Placebo—no. (%) 362 (4.4) 51 (1.9) 371 (5.1) 134 (3.8) 54 (5.4) ※

DPP-4 inhibitors—no. (%) 327 (3.9) 55 (2.0) 341 (4.7) 116 (3.3) 62 (6.2) ※※
P value 0.15 0.77 unknown unknown unknown

Pancreatic cancer no reports
Placebo—no. (%) 5 - 10 (0.1) 4 (0.1) 2 (0.3) ※

DPP-4 inhibitors—no. (%) 12 - 9 (0.1) 11 (0.3) 3 (0.3) ※※
Other cancers—no. (%) unknown unknown unknown Colon cancer Prostate cancer

Placebo: 8 (0.2) Met: 0
Linagliptin: 6 (0.2) Vildagliptin + Met: 6 (0.6)

Gastric cancer Breast cancer
Placebo: 3 (0.1) Met: 1 (0.1)
Linagliptin: 0 Vildagliptin + Met: 3 (0.3)

ACS: acute coronary syndrome; CV: cardiovascular; CVD: cardiovascular disease; VD: vascular disease; Met: metformin. 3P-MACE: a composite of cardiovascular death, nonfatal myocardial infarction or
nonfatal stroke; 4P-MACE: a composite of 3P-MACE plus hospitalization for unstable angina. ** Body-mass index is the weight in kilograms divided by the square of the highest in meters. * defined as HbA1c

measurement of at least 53 mmol/mol (7.0%) at two consecutive scheduled visits. ** including benign or unspecified neoplasm. ※ Monotherapy group (metformin); ※※ Combination therapy group (vildagliptin +
metformin).
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5.1. The Impact of DPP-4 Inhibitors on Cancer Incidence in Diabetic Patients

Observational studies and retrospective studies have discussed the link between DPP-
4 inhibitor use and cancer incidence in diabetic patients. DPP-4 inhibitor is one of the
incretin-based drugs, by which the blood glucose-dependent secretion of insulin from pan-
creatic β cells regulates blood glucose levels, and therefore is associated with a low risk of
hypoglycemia with monotherapy. There has been some concern about an increased risk of
certain cancers by incretin drugs, especially pancreatic cancer and thyroid cancer [102–105];
in contrast, later publications denied such a trend [106–114]. However, another retrospec-
tive study indicated incretin-based drugs are associated with an increased risk of pancreatic
cancer with the adjusted hazard ratio (aHR) 2.14 (95%CI: 1.71–2.67), compared with other
oral antidiabetic drugs [115]. More recently, Lee et al. also reported that DPP-4 inhibitor
users have a 50% increased risk of pancreatic cancer incidence (aHR 1.50, 95%CI: 1.02–2.20)
among newly diagnosed T2DM patients. It is likely that such a risk was increased during
the early exposure period of DPP-4 inhibitor prescription [116]. Sitagliptin also increased
the risk of thyroid cancer only in the first year of its use [105]. These data suggested
that DPP-4 inhibitors induce existing microtumor/precancerous cell visibility rather than
inducing de novo carcinogenesis. On the other hand, a propensity-matched cohort study
of T2DM patients in Korea represented that DPP-4 inhibitor treatment did not increase the
risk of pancreatic and thyroid cancer compared to metformin treatment [117].

Abrahami et al. [118] showed the association between incretin-based drugs and an
increased risk of cholangiocarcinoma in T2DM patients. In this study, the incidence of
cholangiocarcinoma is significantly increased by 77% in DPP-4 inhibitor users (HR 1.77,
95%CI: 1.04–3.01), and an increasing trend in GLP-1 receptor agonist (GLP-1RA) users
as well (HR 1.97, 95%CI: 0.83–4.66). The undesirable effect of DPP-4 inhibitors remained
significant after adjusting with sulfonylurea users [118]. These drugs increase the plasma
levels of GLP-1 or GLP-1RA, which may stimulate cholangiocarcinoma proliferation and
anti-apoptotic response [119–121]. In addition to the elevated level of endogenous GLP-
1, DPP-4 inhibitor administration increases numerous substrates that also influence the
tumor microenvironment and the immune system, which are essential for tumor onset.
Cholangiocarcinoma is a rare cancer type; therefore, this could be the result of prescription
biases. However, also such a finding could be a sign of the risk of DPP-4 inhibitors in
certain cancers, and it should not be overlooked. In contrast, DPP-4 inhibitor users had no
elevated risk of colorectal cancer incidence in diabetic patients [122], and that the DPP-4
inhibitor was also associated with a significantly reduced risk of colorectal cancer among
T2DM patients [123].

As mentioned above, there are several studies about the relationship between DPP-
4 inhibitors and site-specific cancer incidence. Based on the available clinical reports,
however, the incidence of cancer is not significantly related to the DPP-4 inhibitor pre-
scription when adjusted by cofounders [124]. A meta-analysis of randomized clinical
trials showed that DPP-4 inhibitors were not related to an increased risk of developing
cancers compared to a placebo or other anti-diabetic drugs in T2DM patients [125]. Other
meta-analyses also reported that DPP-4 inhibitors did not increase the risk of cancers of the
digestive system [126] or overall cancers [123]. The conclusion by clinical analysis when
examining the association between DPP-4 inhibitor and cancer incidence is influenced
by diverse factors. Firstly, the follow-up period was short for validating the impact of
anti-diabetic drugs on cancer incidence. Secondly, the number of patients using DPP-4
inhibitors alone was limited. Patients who are prescribed DPP-4 inhibitors as a second- or
third-line anti-diabetic drug often display poor blood glucose control, which potentially
promotes cancer initiation [127]. Nevertheless, in the information obtained from these
observational, retrospective, or cohort studies, complete elimination of significant biases
would never be possible; therefore, careful consideration is required to interpret these data.
Both a preclinical study and larger clinical studies with a longer term are needed to confirm
the safety of DPP-4 inhibitors for cancer incidence.



Cancers 2021, 13, 2191 10 of 18

5.2. The Influence of DPP-4 Inhibitors on Cancer Prognosis and Metastasis

SEER- and Medicare-linked database analysis indicated that T2DM patients taking
a DPP-4 inhibitor had a worse trend of overall survival (OS) with HR 1.07 (95%CI: 0.93–
1.25, p = 0.33) in the breast cancer cohort and HR 1.07 (95%CI: 0.93–1.24, p = 0.68) in the
pancreatic cancer cohort, whereas DPP-4 inhibitor use had significant OS benefit with HR
0.77 (95%CI: 0.64–0.93, p = 0.005) in patients with prostate cancer [128]. Ali et al. reported
DPP-4 inhibitor had a positive effect on progression-free survival in patients with advanced
airway and colorectal cancers and diabetes by a multicenter retrospective analysis [129].

Cancer metastasis and chemotherapy resistance are important factors for the prognosis
of cancer patients. Preclinical studies have reported that DPP-4 inhibitors potentially
increase the risk of tumor metastasis [55]. A cohort study in Korea represented that the
DPP-4 inhibitor increases newly onset metastasis of primary thyroid cancer in diabetic
patients [130]. Rathmann et al. performed the observational study, utilizing a database of
ICD code filled in by primary care physicians, to analyze the association between DPP-4
inhibitor therapy and the risk of metastasis in T2DM patients with newly diagnosed breast,
prostate and digestive organ cancers [131]. In this observational study, DPP-4 inhibitors did
not increase a risk of metastasis in T2DM patients with breast (aHR 1.00, 95%CI: 0.49–2.02),
prostate (0.98, 0.54–1.77) or digestive organ cancers (0.97, 0.57–1.66) [131].

As with the association between DPP-4 inhibitor use and newly diagnosed cancer, the
conclusions on the effect of DPP-4 inhibitors on cancer prognosis and metastasis differed
with factors such as cancer type or patient profile. Nevertheless, the currently available
clinical study indicated that there is no significant risk of a cancer prognosis and metastasis
among cancer-bearing diabetic patients on DPP-4 inhibitor therapy. Importantly, the
retrospective analysis gives us some hypotheses, but the absence of information about
cancer characteristics, such as its stage or receptor expression, makes it difficult to interpret
these data. On top of that, diabetes is an independent risk factor for cancer progression,
thus epidemiological studies investigating the association between anti-diabetic drugs
and cancer outcomes come with diverse, unavoidable limitations. Recently, Vihervuori
et al. reported that the use of an anti-diabetic agent, especially metformin and insulin, was
associated with the worse prognoses in patients with prostate cancer [132]. This result may
suggest that the presence of diabetes with metabolic abnormalities such as hyperglycemia
or insulin resistance displays stronger influences on prostate cancer progression, rather
than specific drug use. Indeed, hyperglycemia and/or insulin resistance are linked to
a worse prognosis of cancer patients [133–135]. Therefore, it is challenging to evaluate
the effect of specific anti-diabetic drugs on cancer progression in diabetic patients with
retrospective analysis.

Furthermore, a clinical report exploring the impact of DPP-4 inhibitors on chemother-
apy outcomes in diabetic patients with cancer is lacking. In previous preclinical studies,
either EMT or increased CXCL12 level, the condition associated with DPP-4 inhibition,
is relevant for chemoresistance [76,136,137]. DPP-4 also plays an important role in the
immune system, especially T-cell functions. A clinical trial investigating the outcome
of chemotherapy, including immune-checkpoint inhibitors, for cancer-bearing diabetic
patients with DPP-4 inhibitors is also required.

6. Perspective: Co-Prescription with Metformin

We have recently reported that metformin mitigates DPP-4 inhibitor-induced breast
cancer EMT and metastasis via the suppression of mTOR activation [38]. Metformin is
the first-line drug for T2DM, and thus, metformin is often prescribed with other anti-
diabetic drugs. Metformin has been also recognized as an anti-cancer agent for some
time; metformin users among diabetic patients displayed a decreased risk of colorectal,
pancreatic and breast cancer compared to metformin non-users [138,139]. Metformin also
exhibits a protective effect on overall cancer morbidity and mortality [140]. Additionally,
some reports indicated the possibility that metformin impacts the cancer-related outcome
on DPP-4 inhibitor use in diabetic patients. Retrospective analysis data represents that
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breast cancer-bearing diabetic patients taking metformin had significant OS benefit either
with or without DPP-4 inhibitors, whereas DPP-4 inhibitors alone displayed a worse
trend [128]. In this regard, DPP-4 inhibitor treatment among T2DM patients with colorectal
and lung cancers represents a significant survival advantage alongside metformin, whereas
DPP-4 inhibitor treatment alone did not reach a significant survival benefit [7].

Regarding the effect on cancer metastasis, the co-prescription of metformin with
DPP-4 inhibitors could prevent an elevated risk of thyroid cancer metastasis with DPP-4
inhibitor alone in T2DM patients [130]. Noh et al. reported that using a DPP-4 inhibitor
alone increases the metastasis of primary thyroid cancer with HR 3.89 (95%CI: 1.04–9.64) in
T2DM patients, whereas a combination with metformin attenuated such an undesirable
effect of DPP-4 inhibitor (HR 0.75, 95%CI: 0.57–1.01) [130]. This clinical evidence suggests
the effect of a DPP-4 inhibitor on cancer progression in T2DM patients with certain cancers
differs depending on whether it is co-prescribed with metformin. However, Matthews
et al. reported that in their analysis, even under a combination therapy with metformin,
DPP-4 inhibitor vildagliptin prescription increased the trend of prostate and breast cancer
incidence when compared to metformin alone (Table 3) [101].

Interestingly, our preclinical data demonstrated that metformin represents anti-tumor/
anti-metastatic effect only when prescribed with a DPP-4 inhibitor; nevertheless, metformin
alone had no impact on basal breast cancer proliferation and metastasis in vivo [38]. Indeed,
some randomized trials showed no impact of metformin on breast cancer progression and
prognosis [141–143], even though several preclinical data have reported the anti-tumor
effect of metformin in breast cancer. Further mechanistic investigation is definitely needed,
using metformin as an anti-tumor agent in a clinical setting. Metformin may preferentially
target mesenchymal cells or stem cells [144–146], indicating some clue as to the beneficial
effects of metformin on human health. DPP-4 inhibition advances the EMT process of
cancer cells to a more mesenchymal phenotype, relating to cancer migration, invasiveness,
metastasis, chemoresistance, or stemness. Therefore, metformin may have more anti-tumor
influence on a mammary tumor when co-prescribed with DPP-4 inhibitors, compared
with metformin alone (Figure 2). Because DPP-4 inhibitors are often prescribed with other
anti-diabetic drugs, the differences induced by the interaction of drugs are also of interest.
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Figure 2. DPP-4 inhibitor-induced cancer progression is attenuated by metformin. Cancer cells exist in various phases of
the EMT process; epithelial-like, mesenchymal-like, or partial phenotype of cancer cells. These heterogeneous cancer cell
populations interact with each other and effectively develop in cancer biology. The DPP-4 inhibitor progresses cancer cells
to a more mesenchymal phenotype, which is associated with tumor progressions such as migration, invasion, metastasis,
chemoresistance and stemness. Metformin is likely to have an anti-tumor effect on homogenous mesenchymal cancer cell
population induced by DPP-4 inhibitor. DPP-4: dipeptidyl peptidase-4; EMT: endothelial-mesenchymal transition.
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7. Conclusions

As DPP-4/CD26 has various vital functions in cancer biology, DPP-4 inhibitors po-
tentially act as either suppressors or inducers in cancer development. Available clinical
evidence has indicated no clear association as yet between DPP-4 inhibitors and cancer inci-
dence or prognosis in diabetic patients. However, importantly, the safety profile of a DPP-4
inhibitor (the same as other anti-diabetic drugs) on cancer progression of existing cancer or
recurrence has not yet been established. Thus, further mechanistic investigations about the
link between DPP-4 inhibitors and cancer biology, especially in diabetic conditions, are an
essential research topic in both diabetology and oncology.
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