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Abstract

Motivation: We previously described the construction and characterization of fixed reusable blood transcriptional
module repertoires. More recently we released a third iteration (‘BloodGen3’ module repertoire) that comprises 382
functionally annotated modules and encompasses 14 168 transcripts. Custom bioinformatic tools are needed to sup-
port downstream analysis, visualization and interpretation relying on such fixed module repertoires.

Results: We have developed and describe here an R package, BloodGen3Module. The functions of our package per-
mit group comparison analyses to be performed at the module-level, and to display the results as annotated finger-
print grid plots. A parallel workflow for computing module repertoire changes for individual samples rather than
groups of samples is also available; these results are displayed as fingerprint heatmaps. An illustrative case is used
to demonstrate the steps involved in generating blood transcriptome repertoire fingerprints of septic patients. Taken
together, this resource could facilitate the analysis and interpretation of changes in blood transcript abundance
observed across a wide range of pathological and physiological states.

Availability and implementation: The BloodGen3Module package and documentation are freely available from
Github: https://github.com/Drinchai/BloodGen3Module.

Contact: drinchai@sidra.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Blood transcriptome profiling involves measuring circulating leuko-
cyte RNA abundance on a global scale. This approach has been used
extensively to identify the transcriptomic changes associated with
pathologies such as infection, autoimmunity, neurodegeneration,
cardiovascular diseases and cancer (Bhardwaj et al., 2020;
Chaussabel, 2015; Freedman et al., 2010; Karsten et al., 2011;
Mejias et al., 2014; Pascual et al., 2010; Rinchai et al., 2020a). It
has also been employed to monitor responses to vaccines and thera-
peutic agents (Nakaya and Pulendran, 2015; Pascual et al., 2008).
Reducing gene profiles to ‘signatures’ comprised of gene sets is a
common strategy to analyze and interpret such transcriptome data.
The underlying premise is that some of the changes in transcript
abundance observed under different biological states are coordi-
nated. These changes can be associated with co-regulation of gene
expression. But when transcript abundance is measured in tissue
samples, coordinated changes could also be attributed to relative
changes in cell abundance. A major benefit of identifying co-variates

in ‘big data’ is the reduction in the number of dimensions. Co-
expression analyses also permit functional inferencing, which in a
biological system can be conducive to the discovery of biological
knowledge (e.g. guilt by association) [such topics are comprehen-
sively reviewed in van Dam et al. (2017)]. Co-expression analyses
usually require transcripts to be grouped into sets via clustering
based on similarities in expression patterns. Another approach to
identify gene sets with similar expression profiles is to construct and
mine co-expression networks (van Dam et al., 2017). The edges
between the nodes in these networks (i.e. connections) indicate
gene–gene co-expression. From here, densely interconnected sub-
networks can be extracted: these sub-networks constitute co-
expressed gene sets that are often referred to as ‘modules’. In 2008,
we made available a first repertoire of blood transcriptional modules
along with a corresponding framework for data visualization and in-
terpretation (Chaussabel et al., 2008). The approach that was
devised for the construction of this repertoire is well suited to cap-
ture co-expression patterns across multiple independent datasets: it
consists in clustering each dataset independently, and from there
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building a co-clustering network weighted based on the number of
datasets in which co-clustering occurred for any gene pair. The dif-
ferent datasets in our case represent different disease states. The
maximum weight is given if, for a given gene pair, co-clustering is
observed in all the states while the minimum weight is attributed if
co-clustering is observed in only one state. The blood transcriptional
module repertoire released in 2008 was based on peripheral blood
mononuclear cells profiled on Affymetrix Genechips, using eight
datasets/states as the input (Chaussabel et al., 2008). We and others
have since used this module repertoire to analyze and interpret
blood transcriptome data generated for various pathologies (Ardura
et al., 2009; Banchereau et al., 2012; Berry et al., 2010; Chaussabel
et al., 2008; Quartier et al., 2011; Tattermusch et al., 2012). In
2013 we made available a second module repertoire that was based
on whole blood profiled on Illumina Hu6 Beadchips, this time using
nine datasets/seven immune states as the input (Obermoser et al.,
2013). Now we are releasing the third iteration (‘BloodGen3’ mod-
ule repertoire) based on whole blood samples profiled on Illumina
HT-12 chips. We developed the BloodGen3 modules on the basis of
co-clustering observed across 16 different states, encompassing
autoimmune and infectious diseases, primary immune deficiency,
cancer and pregnancy, representing 985 unique transcriptome pro-
files (Altman et al., 2020). The resulting set of 382 modules covers
14 168 transcripts. We have built two-dimensional reduction levels
into this repertoire: the least reduced level has 382 variables, repre-
senting the individual modules (gene sets); the most reduced level
has 38 variables, which are module aggregates constituted by mod-
ule sets. The 38 module sets encompass the 382-module repertoire.
We have functionally annotated the modules through pathway,
ontology and literature term enrichment. We provide here the com-
position and high-level annotations for BloodGen3 modules in a
spreadsheet format (Supplementary File S1) as well as access to
detailed functional annotations via interactive presentations, each
corresponding to one given module aggregate (Table 1). Module
repertoire analyses typically involve determining the percentage of

the constitutive genes for each module that are significantly
increased or decreased. And as we describe in detail below, the
results of such module repertoire analyses can be represented in a

‘fingerprint’ format, where red and blue spots represent increases or
decreases in module ‘activity’, respectively. These spots are subse-

quently represented either on a grid, with each position being
assigned to a given module, or in a heatmap where the samples are
arranged in columns and the modules in rows. We describe and

share in this publication the R package that we have developed to
perform such repertoire analyses and to generate fingerprint repre-

sentation employing BloodGen3 modules. The steps in this work-
flow include annotating the gene expression data matrix with
module membership information, determining the percentage of dif-

ferentially expressed transcripts among each module’s constitutive
gene, and ultimately plotting those values as a fingerprint grid or

heatmap.

2 Implementation

The BloodGen3Module package provides functions for R users to

perform module repertoire analyses and generate fingerprint repre-
sentations; it also supports both group-level or individual sample-
level analyses. The scripts that we have developed build on packages

made available by others (Supplementary File S2). The module rep-
ertoire analyses consist of three major steps (Fig. 1): (i) Annotation
of the expression matrix, (ii) determination of differential expres-

sion, (iii) calculation of the percentage of the response, These three
steps are implemented as part of the group-level or individual-level

analyses detailed below. Visual representations of the data can be
generated in turn with each type of analysis (Fig. 2: Module reper-
toire grid and fingerprint representation; Fig. 3: individual finger-

print heatmap).

Table 1. Links to module aggregates annotation pages

Aggregate Function Links

A1 Lymphocytic https://prezi.com/view/sxap39tKxkmCNTTNIlVO/

A2 TBD https://prezi.com/view/96GWajx5mZjuRS4B6gjA/

A3 TBD https://prezi.com/view/OWFVI51FND0WWwNgsgJZ/

A4 TBD https://prezi.com/view/2Zbq8ZDYbO4hbUd4r2KF/

A5 Lymphocytic https://prezi.com/view/62tgA5E6roOlk5DRNvS1/

A6 Lymphocytic https://prezi.com/view/Uks2Nd4lvizNNFVPtBEy/

A7 TBD https://prezi.com/view/kKfergNj0SkLXyFtm0Dg/

A8 TBD https://prezi.com/view/Y4uk1RPJyNcSndJYnFX6/

A9 TBD https://prezi.com/view/jgYehQ9QhyADAttEsdoI/

A15 TBD https://prezi.com/view/jgYehQ9QhyADAttEsdoI/

A16 TBD https://prezi.com/view/SKzHeA0XYdLYvy2sY8gP/

A17 TBD https://prezi.com/view/FS7sE1Vqew5g8EKOM1AM/

A18 TBD https://prezi.com/view/aZMLflMNVrV7JnVaIILm/

A24 Oxidative phosphorylation https://prezi.com/view/eiXvf2LNBLFRgrtaeCuM/

A25 TBD https://prezi.com/view/pwyojaU62Z7GT102ZYwM/

A26 TBD https://prezi.com/view/9CErpW3NwpN2HgRS3Hzf/

A27 Cell cycle https://prezi.com/view/GgIiA0K9kSFHbpVj2I85/

A28 Interferon https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/

A29 TBD https://prezi.com/view/W4TShTd32dEJx0XPOF1U/

A30 TBD https://prezi.com/view/kl7VHoJTWug0sn7TgXut/

A31 TBD https://prezi.com/view/GqtUO22JJlSf16zMJKbB/

A32 TBD https://prezi.com/view/qlbG9VFzegOndQKD8aiy/

A33 Inflammation https://prezi.com/view/VBqKqHuLWCra3OJOIZRR/

A34 TBD https://prezi.com/view/HcSgIEGP3TJjTSpaPCxv/

A35 Inflammation https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/

A36 Erythroid https://prezi.com/view/M7dnztl2h61gXrKFQeB2/

A37 Erythroid https://prezi.com/view/YyQs4WiXSNf0YXE79lfS/

A38 Erythroid https://prezi.com/view/0KUlPICKUZGeUjb206R5/
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Group comparison analysis
The group comparison analysis functions implement either t-test
(‘Groupcomparison’) or limma (‘Groupcomparisonlimma’). The
results are expressed at the module level as the percentage of
the constitutive genes that are increased or decreased in cases
compared to controls.Material required for the analysis

• The gene-level expression matrix must be pre-processed (normal-

ized data) using gene as row.names before running the

Groupcomparison function (or Groupcomparisonlimma

function).
• Sample annotation files are required. The row.names of the sam-

ple annotation hold the sample information and are set as the

col.names of the expression matrix.
• The names of the columns for the conditions used in the analysis

must be specified (for example: ‘Group_test’).

Fig. 1. Schematic of the module repertoire analysis workflow. The steps for module repertoire analysis include: (1) Annotation of the expression matrix: the first and second

column are added to the original matrix to provide the module membership information for each individual gene [Sample 1 to sample. . .(n)]. (2) Differential expression ana-

lysis, based for instance on the P value and fold change (FC) for comparisons at the ‘group level’ (left panel: cases versus controls) or based on the FC and difference at the ‘in-

dividual level’ (right panel: individual sample versus control group). (3) Calculation of the percentage of the response. The percentage of up-regulated genes (Orange headers)

or down-regulated genes (Blue headers) is calculated for each module, the percentages (% of module up-regulated – % of module down-regulated of response are used for visu-

alization: Green headers)

2384 D.Rinchai et al.



Running the functions assigns module membership information
to each of the genes constituting the gene expression matrix. Then,
group comparisons (Group 1 versus control, Group 2 versus con-
trol) are made. Lastly, the functions computes the proportion of
constitutive transcripts for each module where the abundance sig-
nificantly differs between the study groups.

An important point to consider in this step is the approach
chosen to select the differentially expressed transcripts; this ap-
proach might need to be adjusted based on the experimental design
or the preferred statistical cutoffs and multiple testing correction to
be used. In the illustrative case, we compared groups (controls ver-
sus sepsis) by using either an unpaired t-test or by linear modeling
using the ‘limma’ package. Of note, the input data should not be
log2 transformed as this step will be performed when running either
of these functions. The fold change and false discovery rate (FDR)
thresholds employed in these examples are consistent with those cus-
tomarily used when performing transcriptome analyses.
Nevertheless, they can be adjusted by the end user to more permis-
sive or more restrictive levels depending on analysis goals/strategies.

t-test:
Group_df <- Groupcomparison(data.matrix,

sample_info ¼ sample_ann,

FC ¼ 1.5,

pval ¼ 0.1,

FDR ¼ TRUE,

Group_column ¼ "Group_test",

Test_group ¼ "Sepsis",

Ref_group ¼ "Control")

limma:
Group_limma <- Groupcomparisonlimma(data.matrix,

sample_info ¼ sample_ann,

FC ¼ 1.5,

pval ¼ 0.1,

FDR ¼ TRUE,

Group_column ¼ "Group_test",

Test_group ¼ "Sepsis",

Ref_group ¼ "Control")

Fingerprint grid visualization
This step consists of visualizing changes in transcript abundance at
the module level. The ‘module response’ is now expressed as the per-
centage of transcripts constituting a given module showing signifi-

cant, differential expression between study groups (e.g. case versus
control, treated versus non-treated or pre-/post-treatment). The re-

sponse of each module is visualized as a red or blue spot that repre-
sents the percentage of transcripts for which the expression level is
increased or decreased, respectively. These spots can be arranged in

a grid format, where the modules occupy a fixed position on the
grid. They can also be represented in a heatmap, where the modules
are presented in rows and the samples in columns and can be

Fig. 2. Module fingerprint grid plot. Each module is assigned a fixed position on a grid, with each row corresponding to a ‘module aggregate’ comprising modules following

similar patterns of change in abundance across 16 reference datasets corresponding to distinct immune states. The number of constitutive modules for each aggregate varies

from 2 (A16 & A18) to 42 (A2). The red spots represent modules for which constitutive transcripts are predominantly increased in septic patients compared to uninfected con-

trols. This change is expressed as a percent value representing the proportion of genes for the module in question in which the abundance is significantly increased compared to

uninfected controls. Conversely, the blue spots represent the modules for which constitutive transcripts are predominantly decreased compared to uninfected controls. The

grid plot on the left shows the results after applying t-test statistics. The plot on the right shows the results obtained using after applying the ‘limma’ R package. The key at the

bottom indicates the functions that have been attributed to some of the modules shown on the grid
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rearranged based on similarities in module activity. The heatmap
can include all 382 modules or a pre-defined subset (e.g. based on
functional annotations or aggregate information). The expected out-
puts are presented as images in PDF format, as shown in Figure 2
(Group comparisons, using a dataset available from the NCBI’s pub-
lic repository GEO, under accession ID GSE13015 (Pankla, 2009)).

The gridplot function will generate a grid plot as a pdf file.
gridplot(Group_df,

cutoff ¼ 15,

Ref_group ¼ "Control",

filename¼ "Group_comparison_")

Individual sample analysis
The Individualcomparison function compares an individual sample
to a reference control sample, a group of samples or kinetic samples
versus a baseline control. The results are expressed at the module
level as the percentage of genes that are increased or decreased com-
pared to the reference. User-defined threshold values are employed
to determine differential expression at the individual level, with for
instance a combined fold change cutoff of 1.5 and absolute differ-
ence in expression values of 10 comparing the individual sample ex-
pression value to the average of baseline samples. The files required
for this analysis take the same format as those used in the group
comparison analysis.

Individual_df ¼ Individualcomparison(data.matrix,

sample_info ¼ sample_ann,

FC ¼ 1.5,

DIFF ¼ 10,

Group_column ¼ "Group_test",

Ref_group ¼ "Control")

Individual fingerprint visualization
The fingerprintplot function will generate fingerprint heatmap plots
in a PDF file, as shown in Figure 3 (Individual comparisons). The
file will be saved in the working directory specified for the analysis.

fingerprintplot(Individual_df,

sample_info ¼ sample_ann,

cutoff ¼ 15,

rowSplit¼ TRUE,

Group_column¼ "Group_test",

show_ref_group ¼ FALSE,

Ref_group ¼ "Control",

Aggregate ¼ NULL,

filename ¼ "Gen3_Individual_plot",

height ¼ NULL,

width ¼ NULL)

3 Discussion

Review of the current landscape:
Module repertoires developed by us and by others have been widely
used to analyze blood transcriptome data. We released our first
blood module repertoire in 2008, and a second in 2013 (Chaussabel
et al., 2008; Chaussabel and Baldwin, 2014; Obermoser et al.,
2013). Notably, another blood module repertoire has also been
developed and made available by our collaborators Li et al. (2014).
The BloodGen3Module R package made available here supports
analyses using our most recent iteration of transcriptional modules.
Compared to our earlier iterations, the BloodGen3 module reper-
toire relies on an expanded collection of immune states, ultimately
encompassing 16 datasets that correspond to 16 distinct

pathological or physiological immune states (Altman et al., 2020).
This increase in breadth should help ensure that this module reper-
toire is relevant for the analysis and interpretation of a wide range
of blood transcriptome datasets. As this resource might be used for
several years going forward, we chose to dedicate considerable time
toward its functional characterization. We thus provide deep, func-
tional annotations for this set of modules that are complemented by
the expression profiles of the genes forming each module generated
for the different reference datasets (Table 1). Other analytical tools
and interactive web applications supporting module-level analyses
and representations have been previously developed and dissemi-
nated by us and others; however, these so far have only partially
addressed user needs. Notably, tmod, a module enrichment web ap-
plication and R package has been made available by Weiner et al.
(https://cran.r-project.org/web/packages/tmod/index.html) (Zyla
et al., 2019). This web-based tool supports blood transcriptome
modules (originating from work by Li et al. and ourselves) and other
gene set collections compiled by the Molecular Signature Database
hosted at the Broad Institute (22), http://software.broadinstitute.

Fig. 3. Fingerprint heatmap displaying patterns of annotated modules across indi-

vidual study subjects. The heatmap displays the abundance patterns of 141 anno-

tated modules for which at least 20% of constitutive genes were differentially

expressed in at least one subject. Both samples (columns) and modules (rows) were

arranged via hierarchical clustering. The proportions of the differentially expressed

transcripts are indicated by a color gradient ranging from blue (100% of transcript

decreased) to red (100% of transcripts increased)
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org/gsea/msigdb/genesets.jsp. Another key feature of tmod is the im-
plementation of statistical tests that are well suited for gene-set-
based analyses, such as U-tests, hypergeometric tests and other cus-
tomized approaches developed by the same team [CERNO (Zyla
et al., 2019)]. However, this tool does not yet support our third iter-
ation of blood transcriptome modules that we are just releasing
(Altman et al., 2020); it also cannot be used to generate fingerprint
grids or perform module analyses at the individual sample level. We
had also previously developed interactive web applications as com-
panions to earlier publications. These applications were designed as
interactive supplements, giving readers the ability to adjust parame-
ters and customize fingerprint plots (e.g. to change group compari-
sons or methods used for multiple testing correction, or to
interrogate gene-level data) (Chaussabel and Baldwin, 2014;
Obermoser et al., 2013). And we had also established a Wiki to con-
solidate information gathered as part of functional annotation/inter-
pretation efforts. Unfortunately, the hosting of these resource was
discontinued, highlighting also the fact that dedicating funds to
open-ended access to post-publication material is not generally a vi-
able model for research organizations—which would in part con-
tribute to a phenomenon referred to as ‘url decay’ (Wren, 2008;
Wren et al., 2017). We have since resumed our efforts toward devel-
oping such resources, using new applications such as R/Shiny that
support the interactive generation of fingerprint plots. These appli-
cations have been made available as ad hoc supplements to different
publications [reference dataset for module construction: https://drin
chai.shinyapps.io/dc\_gen3\_module\_analysis/ (Altman et al.,
2020); meta-analysis of respiratory syncytial virus blood transcrip-
tome data: https://drinchai.shinyapps.io/RSV\_Meta\_Module\_ana
lysis/ (Rinchai et al., 2020a); development of targeted Covid-19
blood transcript panels: https://drinchai.shinyapps.io/COVID\_19\_
project/(Rinchai et al., 2020b)]. Together with making the
BloodGen3Module R package available and depositing the scripts
via GitHub: https://github.com/Drinchai/BloodGen3Module/, we
hope that deploying these applications via R/Shiny will guarantee
their availability over the long term.

Premise for the development of resources tailored to

the BloodGen3 repertoire
Our approach to module construction is well suited to capture co-
expression patterns across multiple independent datasets: it serves to

cluster each dataset independently, and then build a co-clustering
network that is weighted based on the number of datasets in which
co-clustering occurred. This approach is advantageous when the
goal is to build module transcriptional repertoires that factor in co-
expression observed across a wide range of biological states and
datasets that were generated independently. Other effective means
of building such weighted co-expression networks also exist and
could likely be adapted for the same purpose [e.g. WGCNA
(Langfelder and Horvath, 2008)]. However, we consider that the
gains to be had by using module repertoires lay less in the manner in
which they are constructed and more in the manner in which they
are used: that is as a fixed and reusable analysis framework as
opposed to an ad hoc, ‘single use’ analysis framework, as is most
often the case (i.e. building a set of modules based on and for the
analysis of only one given dataset and for a given project). Using
module repertoires as a fixed and reusable framework can confer
some distinct advantages. For example, Zhou and Altman have re-
cently shown that fixed repertoires that are based on a large collec-
tion of datasets can benefit the analysis of datasets with small
sample sizes (Zhou and Altman, 2018). In addition, keeping a reper-
toire in use for several years justifies the investment in time and
efforts necessary for the development of extensive resources to sup-
port data interpretation. We focused our efforts on this latter point
when developing this third iteration of blood transcriptional mod-
ules. The ‘repertoire-specific’ resources that have been developed in-
clude the BloodGen3Module R package and Shiny applications
mentioned above, as well the extensive annotation framework that
has been being made accessible via Prezi (Table 1). Our recent publi-
cation of several use cases illustrates how such resources may be
leveraged for the interpretation of blood transcriptome data (Fig. 4).
In one example, we performed a meta-analysis of six public datasets
comprising blood transcriptome profiles of patients infected with
the Respiratory Syncytial Virus (RSV) (Rinchai et al., 2020a). We
used the pre-established BloodGen3 module repertoire to bench-
mark the fingerprint signatures obtained across the six RSV datasets.
This approach allowed us to establish a link between an
‘Erythrocyte signature’ (A37) that we had previously associated
with severe RSV infection (Mejias et al., 2013)(28), and a popula-
tion of circulating erythroid cell precursors that were described by
Elahi et al. as possessing extensive immunosuppressive properties
(Elahi, 2019). This link was established, first when benchmarking of
the consensus RSV fingerprint signature against that of the 16

Fig. 4. Publications relating to the third generation blood transcriptome fingerprinting framework. The present work is part of a series of articles that include bioinformatic

resources (in orange) and use cases (in blue). In addition to the R package that has been developed and is presented here, another resource paper describes the construction and

functional characterization of the third repertoire of our blood transcriptional modules ([1]: Transcriptional Fingerprinting Framework ¼ TFF). Use cases for this framework

include the design of targeted transcript panels and assays(Transcriptional Fingerprinting Assays ¼ TFA). One such assay was developed as a generic immune monitoring plat-

form [4], while a second was custom designed to monitor immune responses to SARS-CoV-2 infection [3]. Another use case employed the Gen3 TFF and R package to perform

a meta-analysis of six independent datasets profiling the abundance of blood transcripts in patients with an RSV infection [5]. Finally work that was published recently outlined

another use case in which the same resources were used to pinpoint discrete inflammation signatures associated with inflammation in patients with psoriasis [6]
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reference disease cohorts showed the module aggregate A37 signa-
ture to be associated with tumor-mediated and pharmacologically
mediated immunosuppression, and second, through the lookup of
reference profiles derived from a public dataset made available by
Novershtern et al. (2011) that was included in our annotation
framework (specifically, with a population of Glycophorin Aþ fetal
erythroid precursors). In another study, we used the same bench-
marking approach to identify a prominent inflammation signature
that was shared by both patients with psoriasis and Kawasaki dis-
ease (Rawat et al., 2020). We observed a preferential restriction of
this signature in one of the reference datasets constituting the
BloodGen3 module repertoire annotation framework, this time sug-
gesting a predominant role for neutrophils in driving inflammation.
Finally, we have shown the utility of fixed module repertoires in the
design and implementation of targeted blood transcriptional profil-
ing assays in two other use cases—applied specifically to Covid-19
immune profiling and generic immune monitoring of immunological
changes during pregnancy (Altman et al., 2019; Rinchai et al.,
2020b). For this type of applications the selection of a targeted panel
is carried out across the entire repertoire to avoid oversampling of a
dominant signature, as may be the case otherwise when candidates
are selected from ‘bulk’ differentially expressed gene lists.

Limitations to the field of application:
Some inherent limitations to the field of application of the
BloodGen3Module package should be noted. First, it is, by design,
intended to support the analysis and interpretation of human blood
transcriptome data. Analyses of transcriptome profiles generated
using other types of biological samples would require the develop-
ment of distinct module repertoires and annotations frameworks.
Peripheral Blood Mononuclear Cells (PBMCs), which is the leuko-
cyte fraction derived from circulating blood, being a notable excep-
tion. Indeed, we have been successful in employing module
repertoires developed based on whole blood profiling data (Gen2,
Gen3) for the analysis of PBMC transcriptome datasets [e.g.
(Bhardwaj et al., 2020; Rinchai et al., 2017)]. We have also previ-
ously profiled and compared responses to Staphylococcus aureus in-
fection based on data generated using either PBMCs (using Gen1
modules) or whole blood transcriptome profiles (using Gen2 mod-
ules) (Ardura et al., 2009; Banchereau et al., 2012). It is also worth
noting that we have already developed module repertoires based on
co-expression observed during in vitro responses to a range of im-
mune stimuli (Alsina et al., 2014; Banchereau et al., 2014). We have
also helped develop other module repertoires for murine tissues,
including blood (Singhania et al., 2019). Performing analyses using
these module repertoires would require the development of distinct
custom R packages and corresponding annotation/interpretation
frameworks. Other potential limitations would be inherent to the
types of data employed for the construction of the module reper-
toire. Indeed, BloodGen3 is based on data generated using the last
version of Illumina BeadArrays and would therefore be best suited
to analyze data generated using this platform. However, this module
repertoire and associated package are also used routinely in our la-
boratory to analyze RNAseq data [e.g. (Langfelder and Horvath,
2008; Rawat et al., 2020)], Furthermore, we have already demon-
strated that transcript abundance summarized at the module-level
(e.g. % differentially expressed transcripts) is more robust than at
the transcript level when performing cross-platform comparisons
[using our Gen1 repertoire to benchmark Illumina versus
Affymetrix arrays (Chaussabel et al., 2008)]. While RNAseq is more
current and would likely capture additional genes in each module
when used as a basis for module construction, it may not necessarily
lead to the identification of new modules that would have been en-
tirely missed using array data. Nevertheless, moving forward
RNAseq data will undoubtedly be employed as a basis for the devel-
opment of new module repertoires. Regarding the analysis work-
flow itself, several factors could influence the results and should be
taken into account: (i) Study design: low sample size will often lead
to the changes in abundance visualized on the fingerprint grid plots
to be more subdued. Reproducibility will also be affected in cases
when sample size is small and inter-individual variability is high. (ii)

Data pre-processing: the expectation is that appropriate normaliza-
tion and batch correction steps would have been applied before car-
rying out analyses using the BloodGen3Module package. When
carrying out meta-analyses encompassing multiple independent
datasets, the use of reference groups (e.g. healthy or pre-treatment)
available in each datasets is indicated to control for technical differ-
ences (sampling, platforms, data pre-processing) (Rinchai et al.,
2020a). (iii) Group comparisons: fingerprints obtained using either
one of the available functions, t-test or limma, may differ somewhat.
Our experience so far is that in most cases differences tend to be
small (e.g. Fig. 3). The users may also decide to adapt thresholds for
statistical analyses and testing corrections based on the level of per-
missiveness indicated for their application (e.g. exploration versus
targeted transcript panel selection).

4 Conclusion

For the time being, we anticipate that the R package made available
here will help address, at least in part, an unmet need by enabling
analysis, visualization and interpretation of blood transcriptome
data using the BloodGen3 module repertoire. Notably, we expect
the annotations that have been provided (e.g. color-coded on the fin-
gerprint grid plot) to evolve over time as more analyses are carried
out that permit to improve functional interpretations (and we espe-
cially welcome any user feedback/input in that sense). These changes
will be reflected in updates made to the package and the annotation
framework itself (via Prezi). As mentioned earlier, ongoing efforts
have also permitted the deployment of several R shiny applications
consolidating fingerprint profiles derived from themed collections of
blood transcriptome datasets [which, beyond our own collection of
16 reference cohorts (Altman et al., 2020), include a second collec-
tion regrouping 6 RSV datasets (Rinchai et al., 2020a) and a third
collection which, thus far, regroups two Covid-19 datasets (Rinchai
et al., 2020b)]. We expect these efforts to continue and result in the
release of several more collections, which may serve to further ex-
pand the depth of the BloodGen3 repertoire’s interpretation frame-
work. The R BloodGen3Module package may also be adapted to
support analyses performed using different frameworks and/or con-
structed based on other tissues or data types (e.g. tumor tissues, or
single cell RNAseq data).
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