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Water deficiency significantly affects photosynthetic characteristics. However, there is little 
information about variations in antioxidant enzyme activities and photosynthetic 
characteristics of soybean under imbalanced water deficit conditions (WDC). We therefore 
investigated the changes in photosynthetic and chlorophyll fluorescence characteristics, 
total soluble protein, Rubisco activity (RA), and enzymatic activities of two soybean varieties 
subjected to four different types of imbalanced WDC under a split-root system. The results 
indicated that the response of both cultivars was significant for all the measured parameters 
and the degree of response differed between cultivars under imbalanced WDC. The 
maximum values of enzymatic activities (SOD, CAT, GR, APX, and POD), chlorophyll 
fluorescence (Fv/Fm, qP, ɸPSII, and ETR), proline, RA, and total soluble protein were 
obtained with a drought-tolerant cultivar (ND-12). Among imbalanced WDC, the enhanced 
net photosynthesis, transpiration, and stomatal conductance rates in T2 allowed the 
production of higher total soluble protein after 5 days of stress, which compensated for 
the negative effects of imbalanced WDC. Treatment T4 exhibited greater potential for 
proline accumulation than treatment T1 at 0, 1, 3, and 5 days after treatment, thus showing 
the severity of the water stress conditions. In addition, the chlorophyll fluorescence values 
of FvFm, ɸPSII, qP, and ETR decreased as the imbalanced WDC increased, with lower 
values noted under treatment T4. Soybean plants grown in imbalanced WDC (T2, T3, 
and T4) exhibited signs of oxidative stress such as decreased chlorophyll content. 
Nevertheless, soybean plants developed their antioxidative defense-mechanisms, including 
the accelerated activities of these enzymes. Comparatively, the leaves of soybean plants 
in T2 displayed lower antioxidative enzymes activities than the leaves of T4 plants showing 
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INTRODUCTION

Soybean is an important crop throughout the world as a source 
of vegetable oil and protein. In southwest China, it is primarily 
intercropped with maize (Yan et  al., 2010; Iqbal et  al., 2018a). 
In maize-soybean planting, the height of the maize affects the 
microenvironment of the soybean in terms of light and moisture, 
having a negative effect on the soybean growth and development 
(Liu et al., 2017a). Earlier studies have shown imbalanced water 
deficit conditions for the soybean plants (Rahman et al., 2016). 
Interestingly, these imbalanced conditions significantly increased 
the production of biomass and yield and improved the quality 
of soybean (Iqbal et  al., 2018b; Raza et  al., 2018b). Reduced 
moisture leads to less photosynthesis, which reduces the dry 
matter production (Grassi and Magnani, 2005; Raza et  al., 
2018a). Therefore, the relative importance of physiological 
mechanisms should be  recognized under imbalanced water 
deficit conditions.

Adequate water is needed for the development and  
growth of plants. The consequences of less than optimal 
water are oxidative stress and a reduction in photosynthetic 
characteristics (Guo et al., 2018). Reduction of photosynthesis 
results in decreased CO2 diffusion into the leaves because 
of lower internal (gi) and stomatal conductance (gs). It also 
results in the inhibition of photosynthesis due to limited 
leaf growth because of decreased cell proliferation (Lawlor 
and Tezara, 2009; Wu et al., 2018). More research is required 
to determine the activity and number of enzymes responsible 
for CO2 fixation and the regeneration of Rubisco-1,5-
bisphosphate (RuBP). Rubisco (RuBP carboxylase or oxygenase) 
catalyzes the process of CO2 fixation (Susana et  al., 2007) 
and is involved in the first phase of the Calvin Benson 
cycle. It accounts for 12–35% of leaf protein production in 
C3 plants (Evans and Seemann, 1989). Decreased RA may 
be involved in drought-associated photosynthetic rate (Flexas 
et  al., 2006; Galmés et  al., 2011). Imbalance in water deficit 
conditions may remarkably change the effect of Rubisco, but 
this has not been well elucidated yet.

Chlorophyll fluorescence measurements are an indicator 
of different drought responses of photosynthesis (Kalaji et  al., 
2018). Characteristics of chlorophyll fluorescence are a critical 
consideration as it is used to measure the quantum yield of 
photosystem II (PSII) and photoinactivation by determining 
the possible quantum yield under water limiting conditions 
(Batra et  al., 2014). Photosynthesis is significantly affected 
by drought because it blocks the transport of energy from 
PSII to PSI (Siddique et  al., 2016). It also leads to low 
chlorophyll fluorescence by reducing the palisade of spongy 
tissues and ultimate leaf thickness (Wang et  al., 2018). In 

addition, the plant produces chemical signals in the dry 
portion of the root and this feed-forward mechanism reduces 
transpiration rate, stomatal opening, and shoot growth (Tardieu, 
2016). These chemical signals are generally increased 
concentrations of abscisic acid (ABA) in the root that result 
in oxidative damage by unnecessary production of reactive 
oxygen species (ROS) (Beis and Patakas, 2015). ROS are 
regarded as second messengers in the ABA signaling pathway 
that regulate guard cell development (Yan et  al., 2007). In 
the plasma membrane, the induction of hydrogen peroxide 
(H2O2) by ABA is an essential signaling event in modulating 
stomatal closure to decrease water loss through the activation 
of calcium-permeable channels (Pei et al., 2000). The presence 
of the plant defense system can protect the plant metabolism 
because ROS magnifies water stress leading to cell death by 
changing the properties of the cell membrane and causes 
oxidative damage to chlorophyll, protein, lipids, and DNA 
(Ahmad et al., 2010). Therefore, plants activate their antioxidant 
defense system to reduce the effects of ROS (Fan et al., 2017). 
Major enzymes which scavenge the ROS are peroxidase (POD), 
superoxide dismutase (SOD), ascorbate peroxidase (APX), 
glutathione reductase (GR), and catalase (CAT). Although 
the physiological impacts produced by water deficit are well 
documented, this remains a subject of high priority under 
imbalanced water deficit conditions.

By analyzing photosynthesis, it is possible to determine the 
degree of resistance to adverse conditions of the environment, 
e.g., excessive congestion (Prasad et al., 2015; Olechowicz et al., 
2018). Photosynthesis is progressively reduced during drought, 
but the reason for this reduction is unclear at the seedling 
stage of soybean. Many studies propose the importance of 
diffusional limitations (stomatal and mesophyll) for most water 
deficit situations. Recently, there have been many investigations 
about the photosynthetic characteristics and antioxidant potential 
of soybean and other plants in water-limited conditions (Zivcak 
et  al., 2013; Guo et  al., 2018; Prasad et  al., 2018), but these 
studies have focused primarily on photosynthetic gas exchange, 
chlorophyll fluorescence and antioxidant activities. However, 
it is unclear how the imbalanced water deficit influences 
photosynthesis, chlorophyll fluorescence and antioxidant activities 
of soybean seedlings. Therefore, this study aims to analyze the 
variations in antioxidant enzyme activity and photosynthetic 
characteristics of soybean under imbalanced water deficit 
conditions. The objectives of the current study were to (1) 
determine the antioxidant enzyme activities and ROS in terms 
of malondialdehyde (MDA) and H2O2, and SOD, CAT, GR, 
POD and APX, and (2) evaluate the photosynthetic characteristics, 
fluorescence parameters, total soluble protein, proline and 
Rubisco-activated enzyme.

that soybean plants experienced less WDC in T2 compared to in T4. We therefore suggest 
that appropriate soybean cultivars and T2 treatments could mitigate abiotic stresses under 
imbalanced WDC, especially in intercropping.

Keywords: enzymatic activity, chlorophyll fluorescence, polyethylene glycol, reactive oxygen species,  
Rubisco activity
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MATERIALS AND METHODS

Plant Growth Exposure and  
Experimental Conditions
In this experiment, two soybean cultivars, ND-12 (drought-
tolerant) and C-103 (drought-susceptible) were used in the 
greenhouse of Sichuan Agricultural University, Chengdu, China 
(29° 59′N, 103° 00′E). Seven-day-old seedlings (at the VC stage) 
were transplanted to plastic boxes containing half-strength Hoagland 
solution. Plant growth conditions were normal in the greenhouse, 
maintaining a 12  h photoperiod, 24/20°C day/night temperature 
and approximately 60–70% relative humidity. The photosynthetically 
active radiation was 279 μmol m−2  s−1. At the V3 stage, healthy 
plants were selected and their roots were equally divided in the 
solution boxes (Figure 1). Horizontal foam (polyurethane) was 
used to hold the soybean plants, which were kept under normal 
conditions for 1 week before exposure to stress treatments.

At the V4 stage, combinations of four different treatments 
were imposed: 0% polyethylene glycol (PEG) on both sides as 
control (T1  =  0%: 0%), 2% PEG on side A and 0% PEG on 
side B (T2  =  2%A: 0%B), 6% PEG on side A and 0% PEG 
on side B (T3  =  6%A: 0%B), and 4% PEG on side A and 6% 
PEG on side B (T4  =  4%A: 6%B). PEG-6000 was used to 
produce osmotic potential. Each treatment had three boxes each 
having five plants and had internal and external sizes of 530 
mm × 350 mm × 130 mm and 590 mm × 380 mm × 140 mm, 
respectively. Leaf samples of each treatment were harvested in 
triplicate. Samples to be  used for analysis were frozen in liquid 
nitrogen and stored with their tags at −80°C.

Enzymatic Activities Measurement
All ROS and enzymatic activities were measured from one of 
the most recently expanded trifoliate leaves. Leaf samples were 
collected at 0, 1, 3, and 5 days and stored at −80°C for analysis. 
Commercial kits were used to determine the total soluble 
protein, superoxide dismutase (SOD), glutathione reductase 
(GR), peroxidase (POD), ascorbate peroxidase (APX), catalase 

(CAT), malondialdehyde (MDA), and hydrogen peroxide (H2O2) 
as per the manufacturer’s instructions (Supplementary data). 
These commercial kits were ordered from Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China.

Proline Measurement
Free proline was measured according to a previously published 
method (Bates et  al., 1973). Soybean leaves were collected at 
reproductive stage R5 and were freeze-dried and extracted with 
a 5  ml extraction solution of 3% sulfosalicylic acid. Then, 
2  ml supernatant was reacted with glacial acid (2  ml) and 
acid ninhydrin (3  ml); the solution was boiled for 40  min. 
After cooling the samples at room temperature, 5  ml toluene 
was added and mixed by vortexing. The spectrophotometer 
(Mapada-V-1100D) read the absorbance at 520  nm.

Photosynthetic Characteristics and 
Chlorophyll Content
We used a portable photosynthesis system (Model LI-6400, 
LI-COR Inc., Lincoln, NE) to determine the net photosynthetic 
rate (PN), stomatal conductance (gs) and transpiration (E). 
Photosynthetic parameters were measured through the latest, 
fully expanded leaves between 08:00 to 11:00  h. The following 
settings of PARi  =  1,000, flow  =  500  μmol  mol−1, stomatal 
ratio = 0.5, and reference CO2 concentration = 400 μmol mol−1 
were used. Leaf chlorophyll contents were noted with the help 
of the SPAD-502 (Minolta, Japan) apparatus.

Chlorophyll Fluorescence Parameters
In this experiment, Fluor Technologia software (Fluor Images, 
United Kingdom) measured the chlorophyll fluorescence. We used 
plastic bags to preserve fully expanded leaf samples and placed 
them in an icebox covered with a lid to prevent the entry of 
direct light. Later, the samples were passed to a fluorescence 
analyzing device by using software. By placing them under dark 
and light conditions for 20  min., their photochemical efficiency 
(ɸPSII), photochemical quenching (qP) and electron transport 

A B

FIGURE 1 | (A) Schematic representation of equally divided soybean roots in the solution box. (B) Phenotypic appearance of soybean cultivars after 5 days of PEG 
treatments; C-103 with a white background and ND-12 with a black background.
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rate (ETR) were determined by the FluorImager software, 
Technologia LTD (version 2.2.2.2) (Pan et  al., 2017).

Analysis of Plant Rubisco-Activated 
Enzyme
The Rubisco ELISA kit (96 micropores) was purchased from 
Shanghai Fu Life Industry Co. Ltd., Shanghai, China. To measure 
the Rubisco-activated enzyme, 1  g of frozen leaf samples were 
ground with the help of a mortar and pestle and an icebox, 
using 2  ml of 50  mmol L−1 phosphate buffer solution (pH 7.8). 
The solution was centrifuged at 7000 rcf at 4°C for 15  min. 
The level of plant Rubisco activase was determined by the double 
antibody sandwich method. The micropore plate encapsulated 
the Rubisco activase antibody to form a solid phase antibody. 
This was added to the micropore of the monoclonal antibody. 
The 40  μl of phosphate buffer solution as a sample diluent was 
added first, followed by 10  ml of the sample solution in the 
micropore plate. A plastic film sealed the micropore plate and 
kept it incubated at 37°C for 30  min. This incubation was 
repeated five times. The 3,3′5,5′-tetramethylbenzidine was 
transferred under the catalysis of horseradish peroxidase enzyme, 
which first turned blue and finally to a yellow color under the 
action of an acid. The absorbance was measured after adding 
the stop solution within 15  min at a 450  nm wavelength by 
an enzyme marker. A standard curve was used to calculate the 
sample and the RA was expressed as U/g (Hussain et  al., 2019).

Statistical Analysis
The experimental data analysis used Statistics software (Statistics 
8.1. Tallahassee, FL, USA), while the figures were drawn using 
Microsoft Office 2010. Duncan’s multiple range tests compared 
the treatment means, with statistically significant differences 
at p  ≤  0.05.

RESULTS

Effect of Imbalanced Water Deficit on 
Soybean ROS
In this experiment, we examined the effects of imbalanced water 
deficit on the levels of MDA and H2O2 in the leaves of soybean 
seedlings. Different split-root PEG treatments (SRP) indicated 
a significant (p  <  0.05) effect on the ROS levels in ND-12 and 
C-103 from 0 to 5  days (Figure 2). Between both cultivars, the 
highest average MDA (131.6  nmol  mg−1 prot) and H2O2 
(247.1  μmol  g−1) were measured in C-103, while the lowest 
MDA (91.63  nmol  mg−1 prot) and H2O2 (200.8  μmol  g−1) were 
recorded in ND-12 at the 5th day of sampling. All the SRP 
treatments significantly affected the ROS levels in soybean seedlings; 
the maximum (127.5  nmol  mg−1 prot and 258.1  μmol  g−1) and 
minimum (97.8  nmol  mg−1 prot and 178.2  μmol  g−1) values of 
MDA and H2O2 were measured in the T4 and T1 treatments, 
respectively, on the 5th day of sampling (Figure 2). The interactive 
effect of soybean cultivars and SRP treatments for MDA was 
significant for all sampling days except at day 0. On average, 
on the 5th day of sampling, T4 increased the levels of MDA 
and H2O2 by 30 and 45%, respectively, compared to T1 (Figure 2).

Effect of Imbalanced Water Deficit on 
Soybean Antioxidative Enzymes
Plants activate their defense system to eliminate ROS. Major 
enzymes that scavenge ROS include CAT, SOD, APX, and 
POD. In this experiment, SRP treatments and soybean cultivars 
showed a significant effect on the activities of SOD, CAT, GR, 
APX, and POD, and maximum activities of these enzymes 
were obtained by ND-12 and C-103 (Figure 2). Furthermore, 
enzymatic activities of SOD, GR, CAT, and APX increased 
with the increase in SRP concentration, with their maximum 
activities measured in T4 and minimum activities in treatment 
T1 on the 5th day of measurement. Overall, on the 5th day 
of measurement, treatment T4 increased the SOD, GR, CAT, 
and APX activities by 48, 4, 13, and 10%, respectively, over 
treatment T1. However, the activity of POD significantly 
(p  <  0.05) decreased with the increase in PEG concentration. 
Specifically, on the 5th day of measurement, the activity of 
POD reduced by 91, 58, and 26% in T4, T3, and T2, respectively, 
compared to that in T1. The interactive effect of SRP treatments 
and soybean cultivars for GR was found nonsignificant and 
significant at 0, 1, and 5 day and at 3 day intervals, respectively; 
for POD and CAT, it was found nonsignificant and significant 
at 0  days and at 1, 3, and 5  days, respectively; and for SOD 
and APX, it was found nonsignificant and significant at 0 and 
1  days and at 3 and 5  days, respectively (Figure 2).

Effect of Imbalanced Water Deficit on 
Proline
Plants accumulate free proline under water-limited conditions. 
In this study, cultivars exhibited significant differences in free 
proline. The highest (162.9 μg g−1) and the lowest (134.5 μg g−1) 
proline accumulation in soybean seedlings were noted in cultivar 
ND-12 and C-103, respectively, on the 5th day of measurement. 
Additionally, free proline significantly increased with SRP 
concentration. The maximum (159.9  μg  g−1) and minimum 
(136.0  μg  g−1) values of free proline were measured in the T4 
and T1 treatments, respectively, on the 5th day of sampling 
(Figure 2). The interactive effect of SRP treatments and soybean 
cultivars for the accumulation of free proline was nonsignificant.

Effect of Imbalanced Water Deficit on 
Photosynthetic Parameters
The effect of different SRP treatments and soybean cultivars 
on the photosynthetic rate (PN), transpiration rate (E), stomatal 
conductance (gs), and chlorophyll content (Chl) in the leaves 
of soybean are shown in Figure 3. Prior to the applied stress, 
the values of these traits were significantly higher among all 
treatments and no changes were observed. However, after 5 
days of stress, different SRP treatments significantly affected 
the PN, E, gs, and Chl contents of the soybean cultivars. 
Maximums for PN (7.8545 and 7.4134 CO2 m−2  s−1), E (3.3980 
and 3.0253 mmol m−2 s−1), gs (0.2007 and 0.1828 mmol m−2 s−1), 
and Chl contents (30.60 and 28.23) were measured in T1 and 
T2, while minimums for PN (5.6004 CO2 m−2  s−1), E 
(2.0056  mmol  m−2  s−1), gs (0.0866  mmol  m−2  s−1), and Chl 
contents (23.70) were noted under the T4 treatment. Among 
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soybean cultivars, the highest values of PN (7.2273 CO2 m−2 s−1) 
and E (2.7206  mmol  m−2  s−1) were noted for C-103, whereas 
the highest values of gs (0.1495 mmol m−2 s−1) and Chl contents 
(30.58) were observed in cultivar ND-12. The interactive effect 
of SRP treatments and soybean cultivars for photosynthetic 
parameters were found to be  significant (Figure 3).

Effect of Imbalanced Water Deficit on 
Chlorophyll Fluorescence Parameters of 
Soybean
In this experiment, the chlorophyll fluorescence significantly changed 
during the experimental period in response to induced imbalanced 
water deficit conditions (Figure 4). Prior to the applied stress, 

FIGURE 2 | Effect of different split-root PEG treatments on reactive oxygen species, enzymatic activity and proline of two soybean cultivars, ND-12 (drought-
resistant) and C-103 (drought-susceptible). (Mean ± SE). T1 (0%: 0%), T2 (2%A: 0%B), T3 (6%A: 0%B), and T4 (4%A: 6%B).
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there was a nonsignificant difference in maximum quantum yield 
(Fv/Fm), photochemical quenching (qP), effective quantum yield 
of photosystem (ɸPSII) and electron transport rate (ETR). After 
5 days of stress, the Fv/Fm, qP, ɸPSII, and ETR of both soybean 
cultivars showed significant changes under different SRP treatments. 

In soybean cultivars, the maximum (0.8028, 0.4359, 0.2371, and 
100.76) and minimum (0.7751, 0.4302, 0.2265, and 96.26) values 
of Fv/Fm, qP, ɸPSII, and ETR were observed in ND-12 and 
C-103, respectively. Among SRP treatments, the maximum values 
of Fv/Fm (0.8033 and 0.7932), qP (0.4480 and 0.4422), ɸPSII 

FIGURE 3 | Effect of different split-root PEG treatments on photosynthetic parameters of two soybean cultivars, ND-12 (drought resistant) and C-103 (drought 
susceptible). (Mean ± SE), same small letters are not significantly different at p < 0.05. T1 (0%: 0%), T2 (2%A: 0%B), T3 (6%A: 0%B), and T4 (4%A: 6%B).
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(0.2398 and 0.2355), and ETR (101.93 and 100.09) were noticed 
under treatments T1 and T2, while minimum concentrations of 
Fv/Fm (0.7740), qP (0.4115), ɸPSII (0.2213), and ETR (94.07) 
were measured in T4. The interactive effect of SRP treatments 
and soybean cultivars for Fv/Fm, qP, ɸPSII, and ETR were found 

to be  significant. Overall, relative to treatment T1, the Fv/Fm, 
qP, ɸPSII, and ETR decreased by 4, 9, 8, and 8%, respectively, 
under the T4 treatment, indicating that changes in photosynthetic 
rate under imbalanced water deficit conditions were directly 
associated with the changes in chlorophyll fluorescence parameters.

FIGURE 4 | Effect of different split-root PEG treatments on chlorophyll fluorescence parameters of two soybean cultivars ND-12 (drought-resistant) and C-103 
(drought-susceptible). (Mean ± SE), same small letters are not significantly different at p < 0.05. T1 (0%: 0%), T2 (2%A: 0%B), T3 (6%A: 0%B), and T4 (4%A: 6%B). 
Maximum quantum yield (Fv/Fm), effective quantum yield of photosystem (ɸPSII), photochemical quenching (qP), and electron transport rate (ETR).
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Effect of Imbalanced Water Deficit on 
Rubisco Activity (RA) and Total Soluble 
Protein of Soybean
Prior to the stress applied, the RA and total soluble protein 
were significantly higher among all treatments compared to the 
control and no changes were observed, while after stress treatment, 
SRP treatments significantly affected the RA and total soluble 
protein of soybean cultivars. The maximum RA (0.2329  U  g−1) 
and total soluble protein (0.1345  g  L−1) were noted in ND-12, 
while the minimum RA (0.2031  U  g−1) and total soluble protein 
(0.1169 g L−1) were observed in C-103. Among the SRP treatments, 
the maximum RA (0.2593 and 0.2382  U  g−1) and total soluble 
protein (0.1349 and 0.1307  g  L−1) were measured in T1 and T2, 
while the minimum RA (0.1654  U  g−1) and total soluble protein 
(0.1131 g L−1) were noted under the T4 treatment. The interactive 
effect of different SRP treatments and soybean cultivars for RA 
and total soluble protein were found to be significant (Figure 5). 
These results suggest that the RA and total soluble protein were 
inhibited more obviously in ND-12 than in C-103, which in 
turn improves the chlorophyll fluorescence and photosynthetic 
parameters of ND-12 under the imbalanced water deficit conditions.

Correlation
To recognize the most critical photosynthetic parameters affecting 
soybean growth, the relationship between the increasing 
photosynthetic rate and photosynthetic characteristics was drawn 
(Figure 6). Among the photosynthetic parameters of soybean 

cultivars, the stomatal conductance, transpiration rate, chlorophyll 
content, chlorophyll fluorescence characteristics (FV/FM, PSII, qP, 
and ETR), RA, and protein content of both cultivars increased 
with the increase in photosynthetic rate. We found that the stomatal 
conductance (R2  =  0.9844 and 0.9835, p  =  0.000 and 0.000), 
transpiration rate (R2  =  0.9364 and 0.9803, p  =  0.000 and 0.000), 
chlorophyll content (R2 = 0.7247 and 0.9864, p = 0.001 and 0.002), 
FV/FM (R2  =  0.9292 and 0.9759, p  =  0.007 and 0.000), ɸPSII 
(R2  =  0.9059 and 0.9984, p  =  0.004 and 0.000), Qp (R2  =  0.9403 
and 0.9707, p  =  0.002 and 0.004), ETR (R2  =  0.9059 and 0.9984, 
p  =  0.000 and 0.000), RA (R2  =  0.9453 and 0.9694, p  =  0.000 
and 0.000) and protein content (R2 = 0.9604 and 0.9654, p = 0.054 
and 0.015) of ND-12 and C-103, respectively, at the V4 soybean 
growth stage were strongly and positively (p  <  0.05) related to 
the increasing photosynthetic rate of soybean plants. The correlation 
coefficient between all the measured parameters and increasing 
photosynthetic rate for the mean data sets of cultivars ND-12 
and C-103 were all higher than 0.00 (p  <  0.05).

DISCUSSION

Effect of Imbalanced Water Deficit on 
Soybean ROS and Antioxidant Enzymes
Environmental stresses have been known to cause oxidative 
injuries by increasing the levels of ROS; excessive production 
of ROS can severely damage plant metabolism (Sinha et  al., 

FIGURE 5 | Effect of different split-root PEG treatments on Rubisco activity and total soluble protein of two soybean cultivars, ND-12 (drought-resistant) and C-103 
(drought-susceptible). (Mean ± SE), same small letters are not significantly different at p < 0.05. T1 (0%: 0%), T2 (2%A: 0%B), T3 (6%A: 0%B), and T4 (4%A: 6%B).
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A

B

FIGURE 6 | Relationship of photosynthesis with the stomatal conductance, transpiration rate, chlorophyll content, chlorophyll fluorescence parameters, Rubisco 
activity and protein of soybean seedlings in (A) (ND-12) and (B) (C-103). Correlation coefficients (R) are calculated and significance (P) represents significance at the 
0.05 probability.
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2016). ROS enhances the effects of water stress by disturbing 
the cell membrane of plants and causing oxidative impairment 
to chlorophyll pigments, lipids, protein, and DNA, which 
altogether lead to cell death. In this study, a clear increase in 
MDA and H2O2 content was recorded in both cultivars in 
response to enhanced split-root PEG stress. However, better 
protection from oxidative damage was observed in the ND-12 
cultivar than in C-103 due to its lowered MDA and H2O2 
content. The highest concentration of H2O2 is attributed to 
lipids, proteins, and nucleic acid oxidization, which led to 
inactivation of photosystems I  and II. These findings are 
consistent with the previous reports where MDA and H2O2 
content increased in soybean leaves under water-limited 
conditions (Türkan et  al., 2005; Shen et  al., 2010).

To prevent cellular damage, plants mobilize the antioxidant 
defense system to eliminate ROS. In this study, soybean cultivars 
increased enzyme activities, which may be  attributed to the 
protection of plants from an imbalanced water deficit. These 
findings are consistent with an earlier study in which water deficit 
caused an increase in the enzymatic activities except for POD 
in soybean (Shen et  al., 2015). In addition, enzyme activities 
varied between the two soybean cultivars. However, these changes 
in enzymatic activities are dependent on plant age, species, treatment 
durations, and experimental conditions (Pan et  al., 2006). Higher 
values of ROS and lower antioxidant enzyme activities in C-103 
might be  due to its low drought tolerance. Eventually, these 
conditions caused injuries to the plant by increasing ROS production.

The increase in proline is a common response of plants under 
water deficit conditions. Proline protects the stressed cells by 
adjusting intercellular osmotic potential in soybean (Heerden and 
Kruger, 2002). In this study, soybean cultivars increased the free 
proline content, which may be attributed to high water retention. 
A higher value of proline accumulation in ND-12 showed its 
high water retention ability compared to C-103. The results of 
this study are in agreement with those of earlier investigators, 
who noted a significant increase in free proline in soybean in 
response to water stress (Shen et  al., 2010; Sharma et  al., 2012).

Effect of Imbalanced Water Deficit on 
Photosynthetic Characteristics of Soybean
Split-root drought is a smart approach to minimize water loss 
and maximize crop productivity (Iqbal et  al., 2019). Plants 
have the ability to perceive dried soil and reduce water use 
by regulating certain physiological and biochemical changes 
in the dry segment of the root zone (Mingo et  al., 2004). In 
the present studies, two soybean cultivars were grown in 
Hoagland solution to know the physiological response of soybean 
seedlings against imbalanced water deficit conditions. PN, gs, 
and E were significantly higher before the treatment application. 
Plants under SRP treatments maintained significantly lower 
values of these parameters. Retardation of photosynthesis resulted 
in low agricultural productivity, and a decrease in PN was 
attributed to the decrease in gs and intercellular CO2 concentration 
in drought-stressed plants (Chaves et  al., 2009). These results 
are consistent with the earlier report where PN, gs, and E were 

significantly decreased in partial-root drying of tomato grown 
in a greenhouse (Campos et al., 2009). However, these parameters 
varied between both cultivars. In ND-12, the values of PN, gs, 
and E were not significantly different under treatments T1 
and T2, which was the reason for its high drought resistance.

A sharp decrease in RA is considered an early response to 
drought stress in soybean (Bota et  al., 2004). This decrease was 
significantly higher in drought-stressed plants compared to the 
control. In this study, the results showed that RA remained 
higher before treatment application and a strong reduction was 
often found after T2 and T3  in ND-12 and C-103, respectively. 
Treatment T2 reduced RA by 10% in C-103 and only 7% in 
ND-12. As described above, PN and gs were more inhibited in 
ND-12 than in C-103 under imbalanced water deficit treatments. 
These results are in line with earlier findings that the 
downregulation of RA is induced by gs (Flexas et  al., 2006) and 
suppression of Rubisco could be  the possible reason for the low 
photosynthetic rate (Pietrini et al., 2003). However, the mechanism 
for decreased RA seems species-dependent. In principle, decreased 
RA could be  the consequence of decreased soluble protein 
concentration (Bota et  al., 2004). In this study, RA and total 
soluble protein were more inhibited in ND-12 than in C-103 
under imbalanced water deficit treatments. However, it cannot 
be  evaluated in terms of alterations in total soluble protein 
contents, as there are some other possibilities (Zhang et al., 2016; 
Liu et  al., 2017b). Therefore, the physiological meaning of these 
adjustments deserves detailed attention in the future.

In addition, the chlorophyll content decreased as the levels 
of PEG increased in both cultivars. Relatively lower values of 
chlorophyll were found for C-103, which supports the view 
that this cultivar is more affected by imbalanced water deficit 
conditions. Reduction in chlorophyll content is attributed as 
a typical symptom of oxidative stress and has been reported 
in earlier studies (Gunes et  al., 2008; Masoumi et  al., 2010). 
Chlorophyll degradation and pigment photo-oxidation caused 
by chlorophyll reduction ultimately inactivates photosynthesis 
(Hajihashemi and Ehsanpour, 2013). Therefore, the current 
study clearly showed that the reduction of chlorophyll content 
also affected soybean photosynthesis.

Increased photosynthetic capacity accompanies a high quantity 
of electrons passing through PSII (Yao et  al., 2017). Under 
different environmental conditions (sensitivity and convenience), 
parameters derived from chlorophyll fluorescence measurements 
can indicate changes in photosynthesis (Dai et  al., 2009). A 
decrease in plant growth under drought is due to lower energy 
absorbed by the leaf and subsequently translocated to PSII 
(Rahbarian et  al., 2011; Kalaji et  al., 2014). In the present 
study in soybean plants, as the stress increased, Fv/Fm, qP, 
PSII, and ETR were significantly lower. However, the decrease 
in chlorophyll fluorescence parameters in ND-12 occurred later 
than that in C-103. The results showed that the limitations 
of these parameters were similar to that of PN. However, no 
significant decrease in chlorophyll fluorescence parameters was 
observed in ND-12 (drought-resistant) under T1 and T2, 
suggesting that the PSII structural integrity of the resistant 
soybean cultivar was not injured by imbalanced water deficit 
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conditions. Our results are similar to those of Piper et al. (2007) 
and Mao et  al. (2018), where the Fv/Fm ratio was higher in 
resistant than in susceptible cultivars (Piper et  al., 2007; 
Mao et al., 2018). Thus, our results suggest that under imbalanced 
water deficits conditions, the efficiency of PSII increases in 
the resistant cultivar. Improving the energy transport from 
PSII to PSI may enhance photosynthesis.

CONCLUSION

This research will ensure a better understanding of the response 
mechanisms of plants to imbalanced WDC. Biased application 
of PEG treatments reduced the oxidative stress by upregulating 
the enzymatic activities of key enzymes (SOD, POD, CAT, GR, 
and APX). Compared to normal conditions, the split-root PEG 
treatment T4 increased the MDA and H2O2 of soybean plants 
by 30 and 45%, respectively, on the 5th day of sampling. In 
response to ROS, antioxidant activities of SOD, CAT, GR, and 
APX improved by 48 13, 4, and 10%, respectively, in T4 over 
T1 on the 5th day of measurement in both cultivars. Furthermore, 
imbalanced WDC (T4) decreased the efficiency of PSII by regulating 
chlorophyll fluorescence (Fv/Fm, qP, PSII, and ETR) by 2, 12, 
8, and 8% in ND-12 and 5, 6, 9, and 9% in C-103, respectively. 
Additionally, the activities of Rubisco were significantly reduced 
under T4 treatment, which in turn decreased the photosynthesis 
of soybean seedling. Furthermore, increased enzymatic activity, 
photosynthetic efficiency, RA and total soluble protein upon high 
PEG application in both cultivars ensured healthier plant growth, 
particularly in the drought-tolerant cultivar (ND-12). The results 

of the current study suggested that the appropriate cultivars and 
imbalanced WDC of T2 can modify the photosynthetic performance 
of plants, especially in intercropping systems.
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