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available fetal ultrasound datasets
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We explore biases present in publicly available fetal ultrasound (US) imaging datasets, currently at the
disposal of researchers to train deep learning (DL) algorithms for prenatal diagnostics. As DL
increasingly permeates the field of medical imaging, the urgency to critically evaluate the fairness of
benchmark public datasets used to train them grows. Our thorough investigation reveals a
multifaceted bias problem, encompassing issues such as lack of demographic representativeness,
limited diversity in clinical conditions depicted, and variability in US technology used across datasets.
We argue that these biases may significantly influence DL model performance, which may lead to
inequities in healthcare outcomes. To address these challenges, we recommend a multilayered
approach. This includes promoting practices that ensure data inclusivity, such as diversifying data
sources and populations, and refining model strategies to better account for population variances.
These steps will enhance the trustworthiness of DL algorithms in fetal US analysis.

Fetal ultrasound (US) imaging serves as a critical screening tool in prenatal
care, providing visualization and monitoring of fetal growth within the
womb. By using high-frequency sound waves, this imaging technique
generates real-time images of the fetus, placenta, and surrounding
maternal structures, playing a crucial role in assessing fetal health,
detecting abnormalities, and guiding medical interventions during
pregnancy1.

In recent years, there has been a transformative shift in fetal US image
analysis due to the introduction of artificial intelligence (AI) for medical
image analysis. AI can expand the capabilities of diagnostic support tools,
offering clinicians valuable assistance in the decision-making processes
involved in prenatal care2. In particular, machine learning (ML) and deep
learning (DL) have made remarkable strides in this area, increasing the
efficacy and efficiency of fetal US assessments. This progress has been well
documented by the growing body of research, including research studies,
international challenges, and surveys, which demonstrate the transforma-
tive impact of these technologies in the field3–7.

The rapid growth and success of DL algorithms are largely due to the
availability and accessibility of extensive clinician-annotated data8,9.
Nevertheless, the collection, annotation, and distribution of fetal US data
present significant challenges, due to the inherently sensitive nature of the
images and the need for ethical and legal considerations, such as patient or
caregivers’ consent10. The sheer complexity of obtaining a heterogeneous
dataset can lead to data gaps in the information available and variances in

data quality and format, limiting the breadth and depth of data required for
training effective DL models11.

To cope with data scarcity, the medical image analysis community has
taken proactive steps by organizing international challenges and releasing
large international benchmark datasets (https://grand-challenge.org/
challenges/). These initiatives aim to stimulate research interest and
engagement in addressing critical clinical tasks. At the same time, the
released datasets allow researchers to compare algorithms' performance and
contribute to the continuous improvement ofDL techniques in the realm of
medical imaging12–15. Fetal US image analysis is not an exception, and
researchers have been actively utilizing such benchmark datasets to evaluate
the effectiveness and generalizability of their algorithms.

While the relevance of publicly available fetalUSdatasets for evaluating
and improving DL algorithms is unquestionable16, it is equally essential to
assess the biases that these datasets may harbor, which in turn affect the
algorithms trained on them. In fact, the scientific literature has often focused
on biases that may arise during routine fetal US scans, such as biases in
measurements17,18, or biases in the identification of fetal malformations19.
However, biases embedded in benchmark public datasets used for training
DL models have not yet been investigated, nor have the potential ethical
implications, such as the perpetuation of social inequalities, the dis-
crimination againstminority groups, and any other related issues have been
thoroughly examined in the domain of fetal US20. This lack of investigation
can be attributed to the relatively recent birth of this field of research, with
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thefirst suitable public fetalUS image dataset released in 2018.Nevertheless,
in the clinical domain, where AI systems are increasingly employed to
support decision-making processes that directly impact patient outcomes,
trustworthiness is crucial. Trustworthy AI in healthcaremeans systems that
are not only technically robust and reliable but also ethically sound and
socially responsible21. To ensure trustworthiness in clinical AI applications,
it is essential to evaluate and mitigate algorithmic bias, ensuring fairness.
Developing and deploying AI models that operate equitably is the foun-
dational step toward achieving this goal.

Recent studies across various domains22,23 have highlighted the issue of
algorithmic biases in healthcare and medicine, especially within medical
imaging24. Such biases may lead to unfair health treatment and exacerbate
health disparities when the data training DL algorithms lack a compre-
hensive representation of diverse population groups. These biases could also
steer clinicians towards inappropriate and flawed medical interventions,
negatively impacting patient outcomes and amplifying the risk of harm.

In light of this, the importance of ensuring the development of fairness
in algorithms cannot be overstated. The implementation of fairness in DL
for the fetalUS is a broad,multi-step process thatmust beginwith a focus on
the biases present in the collected or annotated datasets. Our research aims
to fill this critical gap by focusing on this initial stage. Guided by this
objective, our study is centered on three main methodological questions:
• Are there biases present in fetal US datasets that are publicly available

today? If so, what kind of biases (Q1)?
• What are the ethical issues and risks involved (Q2)?
• Which types of mitigation (actions) can be foreseen to address these

biases (Q3)?

To address these questions comprehensively, we conducted an in-
depth review of all publicly available datasets within the fetal US domain.
Building upon established research on biases in healthcare and medical
imaging, we adapted methodologies to investigate and analyze potential
biases in these datasets.

By shedding light on these biases, our work highlights the importance
of fostering fairness and reliability in AI systems in the domain of fetal well-
being. At the same time, the implications of this study may go beyond fetal
US imaging. It provides the first systematic framework and practical
approach for identifying and mitigating biases that can also be applied to a
broader context of medical imaging, paving the way formore equitable and
trustworthy AI solutions in healthcare.

Results
Datasets
We identified five publicly available datasets, whose relevant characteristics
are summarized in Fig. 1 and Table 1 (details of the A-AFMA dataset are

only available to participants of the associated challenge and are therefore
excluded fromTable 1). The datasets are grouped based on themain tasks in
fetal US imaging analysis using DL, aligning with common steps in
benchmark fetal well-being assessment practice (see section Methods):
1. Two datasets related to fetal standard-plane detection (SPD):
• FETAL_PLANES_DB(https://zenodo.org/record/3904280)
• Maternal-fetal US planes in African countries (MFUSPAC)(https://

zenodo.org/records/7540448)7

2. Two datasets for analysis of anatomical structures (AAS):
• A-AFMA(https://zenodo.org/record/4305956)
• Fetal Abdominal Structures Segmentation Dataset (FASSD)(https://

data.mendeley.com/datasets/4gcpm9dsc3/1)
3. One dataset for fetal biometry parameter estimation (BPE):
• HC18(https://hc18.grand-challenge.org/)

All analyses conducted on such datasetswere performed in accordance
with the Declaration of Helsinki.

FETAL_PLANES_DB includes 12,400US images from 1792 pregnant
women attending routine screenings during their second and third trime-
sters at Hospital Clinic and Hospital Sant Joan de Deu, both located in
Barcelona, Spain. An experienced sonographer organized the dataset by
collecting US images of fetal standard planes categorized into “abdomen”,
“brain”, “maternal cervix”, “femur”, “thorax”, and a miscellaneous class
labeled “Other”.Notably, the fetal “brain” category is further segmented into
transventricular (TV), transcerebellar (TC), and transthalamic (TT) planes.
The US images were captured using six different US machines—three
Voluson E6, one Voluson S8, one Voluson S10 (GEMedical Systems, Zipf,
Austria), and one from Aloka (Aloka Co., Ltd) and a 3–7.5MHz curved
transducer for abdominalUS and a 2–10MHz vaginal probe for cervicalUS
screening.

MFUSPAC consists of US images corresponding to the four most
common fetal planes—abdomen, brain, femur, and thorax. It is composed
of five datasets collected using various USmachines and transducers across
different African countries, each encompassing data from 25 patients for a
total of 450 US images. First dataset was collected using a Mindary DC-N2
US machine (Shenzhen Mindray Bio-Medical Electronics Co., Ltd, China/
Germany) with a 3.5MHz curved transducer at Malawi’s Queen Elizabeth
Central Hospital, focusing on second and third trimesters US images; the
second dataset was acquired at the Sayedaty center in Egypt capturing
second trimester scans using a Voluson P8 (GE Medical Systems, Zipf,
Austria) with a 7MHz curved transducer; the third dataset comprises third
trimester images acquired using an ACUSON X600 (Siemens) and a
3–7.5MHz curved transducer at Mulago National Referral Hospital in
Uganda; the fourth dataset, obtained at Accra’s KBTH Polyclinic Center in
Ghana with an EDANDUS 60 (Edan Instruments, Inc., Shenzhen, China),
includes second and third trimester images using a curved transducerwith a

Fig. 1 | Fetal dataset statistics. Percentages derived from studies utilizing the
FETAL_PLANES_DB, MFUSPAC, and HC18 datasets. The FASSD dataset has not
yet been utilized. a Boxplot showing the interquartile ranges of dataset citation

impact scores (CiteScore 2022). b Donut-style pie chart depicting the overall dis-
tribution of publication years (2018–2024). cDonut-style pie chart representing the
type of contributions (journal/conference) involving the datasets.
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frequency range of 3.5–5MHz; and finally, the last dataset was collected at
theEPHKouba andCliniqueDesLilas centers inAlgeria using aVolusonS8
machine (GEMedical Systems, Zipf, Austria) and a 3–7.5MHz curvilinear
transducer.

A-AFMA was part of the ISBI 2021 challenge, which aimed to auto-
matically detect two anatomies within each frame of a US video—amniotic
fluid and the maternal bladder. Detailed information about this dataset is
not publicly available, and access is limited to request only. Therefore,
further analysis of this dataset is not feasible for this study.

FASSD comprises nearly 1500 fetal US images from 169 subjects of the
abdomen circumference, acquired and annotated by two sonographers
between September 2021 and September 2023. The dataset was collected at
the Polydoro Ernani de São Thiago University Hospital in Florianópolis,
Brazil, including full-term pregnant women, comprising those awaiting
labor initiation, cesarean delivery, and those with certain pregnancy-related
problems such as gestational diabetes and pre-eclampsia. Preterm preg-
nancies, multiple gestations, and pregnancies with fetal anomalies, instead,
were not included. Images were acquired with Siemens Acuson, Voluson
730 (GE Healthcare Ultrasound), and Philips-EPIQ Elite (Philips Health-
care) equipment, all using 2–9MHz curved linear transducers.

HC18 consists of 1334 fetal US images from 551 women, including
skull US images during the first, second, and third trimesters of pregnancy
for head circumference (HC) identification. For every image, HC ismarked
by one sonographer by drawing an ellipse that best represents the fetus’s
skull section. Images were captured at the Obstetrics Department of Rad-
boud University Medical Center in Nijmegen, Netherlands, using Voluson
E8 and Voluson 730 US machines (GE Medical Systems, Zipf, Austria).

Dataset biases
We rely on benchmark studies on the ethics of AI in healthcare and med-
icine, drawing specific insights from refs. 25–27, whose merit is to map
prominent controversial biases in alike domains to ours. Given the speci-
ficity of the field investigated, the inquiry carried out allowed us to not only
align with established frameworks but also to critically evaluate additional
estimations of data-related biases inherent to US technology.

The followingbiases, summarized inTable 2, havebeen identified: label
bias, cohort bias,missingdatabias,minority bias, informativeness bias,device
variability bias, temporal bias, probemaneuver bias, and algorithm-clinician
interaction bias. Each of these is commented on both in terms of its sig-
nificance and its specific implications for the problem at hand.

Label bias is the consequence of the way data is labeled which can
introduce skewed perspectives. As pointed out in ref. 9, in medical image
analysis, the challenges of annotation are especially pronounced. This field
often grapples with limited data, significant differences in ratings among
experts, ambiguous labeling practices, and the unique annotation styles of
individual medical professionals. As regards the analyzed datasets, this bias
arises from the fact that the annotations necessary for algorithm develop-
ment and evaluation are provided by a relatively small group of experienced
sonographers, as evident fromTable 1. As shown in Table 2, the label bias is
present inHC18 and FETAL_PLANES_DBdatasets, for which annotations
were provided by a single experienced sonographer, resulting possibly
conditioned by subjective expertise. The issue is more evident with
MFUSPAC datasets, where the lack of reported information on the precise
number of annotators adds another layer of uncertainty.

Cohort bias arises when researchor analysis disproportionately focuses
on traditional or easily measured groups, neglecting finer levels of granu-
larity. This bias can lead to an incomplete understanding of diverse popu-
lations andpotentially overlook critical variationswithin subgroups.Here, it
arises from the disproportionate representation of certain classes over
others, especially minorities and vulnerable groups, posing significant
challenges to the development of fair AImodels. This imbalance can hinder
the model’s ability to accurately detect and classify instances of the less-
represented classes and distort the assessment of model performance,
necessitating mitigation strategies for a balanced and accurate evaluation.
FETAL_PLANES_DB dataset exemplifies notable class imbalance, with theT
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“fetal brain” category being significantly over-represented compared to
others, such as “fetal femur” or “fetal abdomen”. In contrast, theMFUSPAC
datasets, while showing more balance among classes compared to
FETAL_PLANES_DB, only include four fetal standard planes—thorax,
femur, brain, and abdomen—highlighting another aspect of cohort bias—
the omission of certain classes, of certain standard planes.

In addition to uneven representation, the granularity of categories
should be taken into account. FETAL_PLANES_DB groups images into six
coarse-grained categories—abdomen, brain, femur, thorax,maternal cervix,
and a miscellaneous class called “other”—and includes also a further sub-
divisionof the “brain” category into three classes—TV,TT, andTCplanes—
enabling exploration of fetal brain conditions across different levels of
granularity. As discussed in ref. 3, DLmodels developed using datasets with
this biasmaybe overly proficient in identifying conditionswithin certainUS
planes, on which they were trained, while failing to recognize conditions or
anomalies that manifest in planes not included in the training set. This
discrepancy in performance could result in unequal quality of care, where
some conditions are detected more reliably than others. For example, a
model trained primarily on sagittal plane images might excel at identifying
spinal anomalies but struggle with detecting cardiac anomalies that are
better visualized in the transverse plane. Regarding the HC18 and FASSD
datasets, they only provide data focused on specific anatomy (skull and
abdomen, respectively). Thus, cohort bias and the misrepresentation of
classes can also be noticed in these datasets.

It is also necessary to consider cohort bias resulting from the dis-
proportionate representation of pregnancy trimesters. Given the dynamic
nature of human fetal development, it is crucial to include data from the
entire gestation period. As the fetus grows, significant changes occur in
organ development and overall physiological status. This continuous
growth means that the medical and developmental context of a fetus can
vary greatly from one trimester to another. The omission of trimester-
specific information, as seen in FASSD, could lead to incomplete or
inaccurate interpretations of fetal health and development. For instance, a
model trained predominantly on second-trimester data might miss early
signs of hypoplastic left heart syndrome that aremore apparent in the first
trimester. Additionally, it might fail to detect late-developing issues such
as arrhythmias that become noticeable in the third trimester. This gap in
detection can result in critical missed diagnoses and potentially inade-
quate medical care. FETAL_PLANES_DB andMFUSPAC datasets focus
exclusively on fetal US images obtained during the second and third
trimesters of gestation. As detailed in section “Methods”, the process of
identifying standard planes, crucial for precise fetal evaluation, varies
significantly across trimesters. Consequently, when datasets are restricted
to specific trimesters, they can lead to notable cohort bias if the derivedDL
algorithms are used throughout the entire pregnancy. It is essential that
the DL systems are clearly employed only within the trimesters for which
they are validated and applicable. Expanding the dataset to encompass all
trimesters would significantly enhance our understanding of fetal devel-
opment, leading to more accurate assessments and better clinical out-
comes. This comprehensive approach ensures that themodel can detect a
broader range of conditions throughout the entire gestation period, ulti-
mately enabling more timely and effective medical interventions. While
HC18 stands out as the sole dataset offering image acquisition across all
stages of gestation, it is important to note that in clinical practice, HC
measurements are predominantly conducted during the second and third
trimesters. HC measurements are predominantly conducted during the
second and third trimesters. Integrating first-trimester biometric data
would fill a crucial gap, providing insights into early fetal growth patterns
and developmental indicators. This integration could lead to the early
detection of potential developmental issues, such as neural tube defects or
chromosomal abnormalities, which may be indicated by atypical growth
patterns in the first trimester. Additionally, it would allow for more
accurate baseline measurements, improving the monitoring of growth
trajectories and potentially leading to earlier and more effective inter-
ventions if deviations from expected growth patterns are detected.T
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Missing data bias emerges in this context from limitations in dataset
acquisition concerning patient nationality, the involvement of hospital
centers, and their geographical location (whether they are in the same or
different city, nation, or continent).Datasets, suchasFETAL_PLANES_DB,
HC18, and FASSD, are exclusively obtained from national centers, dis-
playing a significant vulnerability tomissing data bias. Models trained on a
dataset predominantly representative of one population, when used to
evaluate or predict certain relevant fetal biometries for a diverse population,
risk yielding inaccurate growthassessmentormisdiagnosis (an effect known
as population target bias or training serving skew). Additionally, the absence
of information on subjects’ nationality further compromises the broader
applicability and generalizability ofmodels trainedwith these data. Previous
researchhas consistentlyhighlighted the variation in fetalUSmeasurements
across different nationalities28–32. Such differences are particularly evident
for parameters such as HC, AC, femur length, and estimated fetal weight.
For HC18, which is primarily used to assess methodologies for HC esti-
mation, the bias can be particularly concerning. Incorrect HC measure-
ments could lead tomisjudgments regarding fetal health, gestational age, or
potential abnormalities, with tangible implications for clinical decisions
regarding prenatal care and interventions33. For example, if an HC mea-
surement inaccurately suggests that the fetus is smaller than expected for the
gestational age, this could lead to unnecessary interventions such as early
delivery or increased surveillance for intrauterine growth restriction. Con-
versely, overestimating HC could result in missed diagnoses of micro-
cephaly, delaying crucial interventions or preparations for potential
neurological complications after birth. The FASSD dataset, aimed at
abdominal structure segmentation rather than direct biometric extrapola-
tion, also contends with biases related to demographic or clinical char-
acteristics. Such biases undermine the precision and utility of segmentation
models based on this dataset, potentially compromising the evaluation of
fetal health and prenatal care planning. On the other hand, FETAL_PLA-
NES_DB is focused on identifying the optimalUS plane, a fundamental step
preceding any measurement or segmentation. In the presence of missing
data bias in this dataset, the potential implications are also significant.
Models trained on a non-representative dataset may consistently mis-
identify the correct plane when applied to different populations, leading to
inherently flawed subsequent measurements (e.g., HC, AC). Similar con-
cerns extend toMFUSPAC as well, however, this dataset distinguishes itself
by aggregating data from multiple national centers, which inherently
enhances its potential to mitigate missing data bias. Collecting data from
diverse sources increases the dataset’s representativeness, reducing the
likelihood of models trained on it suffering from biases not reflective of a
wider demographic. Nevertheless, it is important to acknowledge that the
MFUSPAC dataset focuses on the African continent introduces a geo-
graphical limitation. This approach helps address certain missing data
biases, particularly in comparison tomorenarrowly focused datasets suchas
FETAL_PLANES_DB. However, it is crucial to note that applying models
trained on theMFUSPAC dataset to populations outside of Africa may still
introduce some degree of bias and produce a population target bias effect.

Minority bias occurs when amodel’s performance is skewed due to the
under-representation or misrepresentation of minority groups within the
training data, such as members of social, ethnic, and health minorities,
including those affected by rare pathologies or infrequent conditions. This
bias prevents us from providing equally accurate health treatment and
empowers thosemostlymarginalized or oppressed from a social, economic,
cultural, or health standpoint. In this regard, fetal US datasets raise concern
due to the evident under-representation of fetal twins, which inherently
present unique physiological and anatomical variations distinguishing them
from singleton pregnancies, carrying substantial clinical implications.
Notably, none of the datasets include twin pregnancies. Consequently, any
data-driven model not accounting for these differences may fall short in its
predictions and interpretations. One pressing concern is the potential for
misdiagnosis or oversight of complications that are unique to twin preg-
nancies, such as twin-twin transfusion syndrome (TTTS)34. TTTS, a serious
condition wherein blood circulates unevenly between twins who share a

placenta, underscores the critical need for early US examination in identi-
fying and managing this syndrome35,36. Timely detection can significantly
impact outcomes. In the clinical context, where every decision relies on
accurate and comprehensive data, such biases could jeopardize the care
provided to twin pregnancies, underscoring the urgent need to address and
rectify these dataset limitations.

Informativeness bias emerges when a dataset disproportionately
emphasizes typical fetal anatomy and physiology, potentially overlooking
thediversity of abnormalities andvariations encountered in clinical practice.
For theHC18 dataset, composed solely of normal fetal brainUS images, this
bias leads to a significant oversight. By not including pathological condi-
tions, the dataset fails to provide a comprehensive view of the range of fetal
brain conditions that sonographers or clinicians may encounter in real-
world settings. Significant pathological conditions that may be overlooked
include ventriculomegaly (an abnormal enlargement of the brain’s ven-
tricular system), holoprosencephaly (a disorder where the brain does not
properly divide into the right and left hemispheres), and cerebral cysts,
among others37,38. Similarly, the FASSD dataset, which is focused on seg-
menting anatomical regions of the fetal abdomen, faces similar concerns.
Notable examples of significant fetal abdominal pathologies that might be
overlooked include abdominal wall defects such as gastroschisis and
omphalocele, where intestines and sometimes other organs are outside the
abdomen, intra-abdominal cysts, and structural anomalies such as enlarged
liver (hepatomegaly) or kidney irregularities39,40. Training a model exclu-
sively on non-pathological abdominal images from the FASSD could result
in inadequate detection or complete oversight of such critical conditions,
potentially impacting clinical diagnosis and decision-making processes6.
Additionally, the FETAL_PLANES_DB and MFUSPAC datasets, con-
centrating solely on fetal standard planes, may perpetuate this bias. In real-
world clinical settings, sonographers maneuver the US probe over the
mother’s belly, encountering not only standard planes but a continuous
video sequence subject to their movement. Moreover, various pathological
conditions can alter or affect these standard planes. For instance, skeletal
dysplasia may impact the appearance and dimensions of long bones41.

Device variability bias arises in fetal US imaging when machines from
different vendors introduce significant inconsistencies, creating challenges
for DL algorithms. Models trained on datasets from specific vendor
machines may struggle to adapt to data from others (i.e., data interoper-
ability issues), which canpresent variations in image quality and appearance
due to variability in hardware, software, and imaging protocols followed.
Furthermore, the variability extends to theUS probes or transducers used in
imaging. Different types of US probes (e.g., curved array, 3D/4D curved
array, endocavitary, and 3D/4D endocavitary) can be employed to capture
fetal images, also,USprobes canwork atdifferent frequencies.Generally, the
higher the frequency range, the more shallow the penetration. For fetal
examinations, low-frequency convex probes operating in the 1–5MHz
range are deemedmost suitable due to their deeper penetration capabilities,
crucial for comprehensive fetal assessment42. This equipment and setup
variability can significantly impact image quality, necessitating the devel-
opment of DL algorithms that are adaptable across various resolutions and
setups and robust enough to handle data fromdifferent vendormachines to
ensure generalizability. To effectively mitigate these discrepancies, inte-
grating data from multiple vendors and specifying clearly the imaging
protocols adopted is crucial. Consequently, all fetal US datasets are acquired
using US machines of at least two vendors. To account for this bias, the
FETAL_PLANES_DB dataset was acquired using devices from four dif-
ferent vendor devices. However, a bias strictly inherent to probe types used
can be identified—an endocavitary probe was used for cervical US screen-
ing, while a curved probe was used for all other plane acquisitions. This
might have introduced a bias in distinguishing the maternal cervix plane
from all other classes. To develop generalizable solutions, datasets should
not only work properly with high-quality images and similar acquisition
protocols but also with lower-resolution images from less advanced types of
equipment. The MFUSPAC datasets approach to SPD task also takes into
account diverse US devices from five different vendors and with different
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working frequency ranges, including lower resolution images, to better
adapt to the nuanced complexities of real-world clinical environments. This
inclusion demonstrates the potential of DL algorithms to enhance diag-
nostic capabilities under less favorable conditions. However, not all datasets
provide comprehensive informationon the imaging equipmentused.This is
the case of the HC18 dataset, which lacks details on the US probe. Such
omission underscores the importance of transparency and thorough doc-
umentation in dataset creation to better understand and mitigate device
variability bias.

Although currently unexplored in the context of fetal US analysis,
specific biases may emerge and strictly depend on the interaction of auto-
mated algorithms with clinicians. The ability of ML systems to process and
interpret large volumes of fetal US data may enable the detection of fetal
anomalies with potentially greater precision than traditional methods while
also expediting the process of fetal follow-ups. Despite these advancements,
the increasing relianceonMLsolutionsnecessitates a careful examinationof
their impact on clinical decision-making. The presence of human cognitive
biases can lead clinicians to over-depend on algorithmic recommendations
and automate bias and errors (i.e., automation bias), particularly in nuanced
or ambiguous cases, calls for a balanced approach that values human
expertise as much as technological innovation. Moreover, addressing the
challengesposedbydatabiases and theopaquenatureof someMLprocesses
is crucial to ensure ethical and responsible use.

To navigate these challenges, a robust framework for the development
and integration of ML systems in fetal diagnostics is today essential but still
absent. This framework should emphasize ethical considerations, trans-
parency, and the interpretability ofMLprocesses, ensuring they support and
augment rather than replace the critical judgment of medical professionals.
Involving clinicians in thedevelopment andevaluationof these technologies
is key to aligningML’s capabilities with the real-world demands of prenatal
care. By fostering a collaborative environment, we can leverage ML to
enhance diagnostic processes while maintaining the high standards of care
and ethical responsibility essential in healthcare.

Two forms of bias that have not been considered in the context of fetal
US imaging are temporal bias and probe maneuver bias. Both biases stem
from the interaction between the probe and clinicians, specifically reflecting
the inability of existing datasets to capture aspects influenced by human
expertise in US acquisition. Indeed, US imaging is not only about capturing
a static moment; it is a dynamic process. Beyond the inherent biases related
to fetal anatomy or clinical parameters, the accuracy of US is significantly
influenced by the operator’s skill. As emphasized in ref. 3, obtaining an
accurate assessment of biometry parameters and anatomical analysis hinges
on the precise positioning and maneuvering of the US probe. This reposi-
tioning and adjustment is not instantaneous—it unfolds over time. As the
operator searches for the optimal scan plane, he or she continuously adjusts
the angle, depth, and orientation of the probe. An automated algorithm, to
perform effectively in this context, should aim to closely replicate the
decision-making process followed in clinical practice. However, the loss of
information caused by frame selection may significantly impact its real-
world applicability. If key intermediate frames containing relevant anato-
mical details or probe adjustments are omitted, the algorithmmay struggle
to generalize when deployed in a clinical setting, where image acquisition is
inherently dynamic. Ensuring that the algorithmaccounts for the sequential
nature of US scanning is therefore crucial to improving its robustness and
reliability in real-world applications. Using video-based datasets instead of
static images could help mitigate these biases by preserving the temporal
progressionof probe adjustments and capturing the scanningmaneuver as a
continuous process rather than an isolated snapshot. This approach pro-
vides richer contextual information, enablingmodels to learn not only from
the sampled frames but also from the sequence of movements that led to
their acquisition. Consequently, when considering datasets derived from
such scans, it is critical to account for this temporal progression, recognizing
that it is not just about where the probe ends up, but also the journey it takes
to get there. For this reason, the datasets analyzed are prone to probe
maneuver bias, which may cause the missing of important information.

Discussion
Computer-aided diagnosis with fetal US imaging began in the mid-1990s.
However, it was with the advent of DL in 2010 that various datasets
emerged, aiming to provide a solid foundation for the robust evaluation of
DL algorithms. These datasets have been instrumental in advancing auto-
mated solutions for tasks such as standard plane detection, fetal biometrics,
and anomaly identification. This work outlined both the contributions and
potential limitationsof thesedatasets to thefieldof fetalUS imaginganalysis.
We emphasized the importance of identifying and mitigating ethical biases
stemming from inequitable, flawed, or inaccurate data collection practices,
as such biases could negatively impact the accuracy, reliability, and fairness
of clinical applications. By critically examining these datasets, we aimed to
ensure that DL models remain equitable and generalizable.

Our research has focused onpublic datasets to circumvent the inherent
biases associated with private datasets, which are accessible only to selected
groups. The literature has shown that the implementation of fairness is of
paramount importance to ensure that these systems truly benefit everyone,
particularly minorities and those who have been historically marginalized
and oppressed25. While public datasets may be more susceptible to security
risks, such as data manipulation, an aspect beyond the scope of this work,
they are essential for promoting equitable access, fostering inclusive tech-
nological progress, and ensuring that the benefits of AI are distributed fairly.

Moreover, our study proposes strategies to mitigate these biases going
beyond the mere technical removal of biases in the datasets and conse-
quently in AI systems, actions often criticized in the AI ethics debate as
insufficient and, in somecases, impossible to achieve completely. Instead,we
highlight that addressing bias requires amultilayered and critical approach,
involving diverse stakeholders and combining both technical and non-
technical practices of responsible AI management. This perspective aligns
with the need to balance fairness, accessibility, and ethical considerations in
advancing AI systems, particularly in fetal US imaging.

Throughout our study, we have posed three research questions, which,
upon thorough analysis, we have now addressed. As regards Q1+Q2, our
analysis revealed that biases are indeed widespreadwithin publicly available
fetal US datasets, potentially and significantly impacting the robustness,
accuracy, and fairness (i.e., trustworthiness) of DL models. The biases
common to all the analyzed datasets, although different, mostly relate to a
lack of diversity. This ranges from (i) geographic limitation due to data
acquisition being limited to specific areas, primarily Europe, and often
exacerbated by the lack of information on the nationalities of the mothers
who underwent screening, (ii) the exclusion of less common anatomies and
physiology, such as twin pregnancies and fetuses with congenital abnorm-
alities, and (iii) few different US machines used, in terms of both vendors
and device characteristics. This indicates a collection bias towards more
readily available or conventional data during the phase of acquisition.When
datasets are not sufficiently diverse, ML models trained on these data can
develop what is called a privilege bias. This means that the models tend to
perform better for the majority groups that are more consistently repre-
sented in the data, while they may fail or be less accurate for under-
represented minority groups. This issue not only arises in cases of less
common fetal conditions but also when considering the equipment used, as
more expensivemachinesmight not be available inmany parts of theworld,
introducing another layer of inequality and reinforcing existing social and
economic asymmetries in fair access to and enjoyment of clinical care and
services.

Label bias is another notable problem in the biomedical imaging
domain43, stemming from reliance on a limited pool of experts for data
annotation, and these datasets are no exception. The often subjective and
culturally influenced experiences, perspectives, and cognitive biases of these
experts can heavily influence data annotations, potentially distorting the
representation of reality in the resulting models. This is particularly con-
cerning in fields where accuracy and methodological impartiality are
paramount.

In addition to these challenges, the FETAL_PLANES_DB dataset also
has a distinct characteristic of significant class imbalance, with certain
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conditions or features being over-represented, inadvertently biasing clin-
icians’ focus toward the more accurately detected parts, potentially over-
shadowing concerns in other areas.

Another significant limitation is the focus of the datasets. Each of them
is built to resolve a specific aspect of fetal US imaging, neglecting compre-
hensive factors that are crucial for a well-rounded analysis. For example, the
intricate details of probe maneuvering dynamics, the full spectrum of fetal
biometrics or standard planes, and the inclusion of all the trimesters of
pregnancy might be overlooked. This limitation might lead to models that
lack a nuanced understanding of fetal health, potentially resulting in
incomplete or biased assessments. The reliance on biasedMLmodels could
also lead to technological determinism, where an algorithm begins to shape
clinical practices and decisions, possibly at the expense of patient-centered
care. This scenario underscores the importance of maintaining a balance
between technological advancements and the human aspects of
prenatal care.

With respect to Q3, addressing the biases identified in the analyzed
fetal US datasets requires amulti-faceted strategy, incorporating both short-
termand long-term solutions. The goal is to enhance the diversity, accuracy,
and comprehensiveness of these datasets, ultimately improving the accu-
racy, reliability, and fairness of the resulting models. Addressing biases
resulting from a lack of diversity requires a methodical and structured
approach. Expanding the data collection process to include a broader range
of participants, settings, and conditions is essential for enhancing the
inclusivity and generalizability of research findings. This long-term solution
involves collecting data from diverse geographical locations to capture
varied nationalities and ethnic backgrounds, as well as incorporating a wide
array of pregnancy conditions to ensure comprehensive population cov-
erage. Such an approach is fundamental to reflecting themultifacetednature
of human development.

Equally critical is addressing the variability introduced during the
annotation process. Incorporating diverse annotations from a wider variety
of medical experts can improve dataset completeness by integrating mul-
tiple perspectives and expertise44. Inter-observer variability, a well-
documented phenomenon in medical imaging, highlights the fact that
even experienced sonographers may employ slightly different diagnostic
approaches and techniques. This variability can lead to inconsistencies in
annotations and impact model performance, particularly in cases that fall
outside the experience of the selected annotators. Addressing this challenge
is crucial for building more robust and generalizable models. Moreover, in
the process of data collection, careful attention must be paid to potential
biases arising from manual frame selection. Variability in expertise, sub-
jective judgment, and redundancy in adjacent frames can all contribute to
inconsistencies that impact the quality of the training data and, conse-
quently, the performance of ML models. Techniques like image or video
processing could standardize this process by assessing frame consistency
through structural and textural similarities, employingmetrics such as peak
signal-to-noise ratio or mutual information to ensure representative and
diverse frame selection, thereby minimizing redundancy and bias. The
importance of constructing datasets with a pronounced focus on diversity is
underscored in ref. 45, which highlights the creation and application of
diverse datasets in medical imaging. These principles align with the
guidelines of open science and emphasize reducing biases to ensure equi-
table and inclusive research46. In addition to long-term strategies, a critical
short-term solution involves using semi-supervised learning techniques and
leveraging both labeled and unlabeled data to overcome data scarcity47.
Moreover, initiatives that engage the research community to collaboratively
refine existing datasets, such as those described in ref. 48, illustrate how
public datasets, such as HC18 and Fetal_Planes_DB, can be enhanced by
adding detailed annotations and standardizing protocols. Inspired by this
approach, researchers can work together to improve the analyzed datasets
by enrichingmetadata, addressing annotation gaps, and aligning themwith
current clinical guidelines. Such collaborative efforts can ensure that these
datasets remain valuable resources for advancing medical imaging research
while mitigating potential biases.

Another short-term strategy to address biases could be the imple-
mentation of federated learning (FL) approaches. In the context of fetal US
imaging, FL provides a highly effective framework for privacy-preserving,
decentralizedmodel training, positioning it as one of themost reliable short-
term solutions. In FL, raw data remains securely stored at individual sites,
ensuring privacy and compliance with data protection regulations. Rather
than sharing data, only model updates (e.g., weights) are transmitted to a
central server during training, where they are aggregated to build a global
model49. This approach not only safeguards patient privacy but also facil-
itates the inclusion of diverse datasets frommultiple centers, encompassing
a wide range of demographics and conditions that might otherwise be
underrepresented. Additionally, FL contributes to standardizing protocols,
promoting consistency and efficiency in data handling and analysis across
institutions49. However, FL alone does not inherently eliminate cohort bias
arising from geographic limitations, asmodel updates are still influenced by
the data distributions at participating institutions. If certain centers con-
tribute disproportionately, the global model may still exhibit biases
reflecting the dominant cohorts. Tomitigate this,methods such asweighted
aggregation strategies or bias-aware optimization techniques can be
incorporated to ensure that underrepresented populations receive appro-
priate model weighting50. Furthermore, few-shot learning (FSL) can help
address biases related to data scarcity in underrepresented populations by
enabling models to generalize from limited examples. By leveraging meta-
learning approaches or prototype-based classifiers, FSL allows the global
model to learn transferable representations that adapt more effectively to
new cohorts with minimal labeled data. This is particularly valuable in fetal
US imaging, where rare conditions or specific demographic groups may
have significantly fewer samples available for training51. A way to incor-
poratenew information as it becomes available is to use continuous learning
instead, which keeps the models up-to-date. This means that as new
research findings come out or as clinical guidelines evolve, the models can
adapt. This ongoing update process helps ensure that the models remain
accurate and relevant, reflecting the latest understanding and practices in
fetal US imaging. However, working with datasets coming from various
centers with different vending machines can introduce variations in data
distribution, a common challenge in medical imaging research, including
fetal US. These variations, if not addressed, can compromise the perfor-
mance and reliability of diagnostic models. Domain adaptation techniques,
therefore, become invaluable in this context. For instance, differing US
system setups, such as brightness or intensity adjustments in B-mode
imaging, all of which can produce dataset distribution differences or out-of-
distribution effects that impactmodel learning and performance. These can
be mitigated through domain adaptation techniques, such as histogram
equalization, CLAHE, GANs, or autoencoders, which enable models to
recognize and adjust to differences between datasets collected using diverse
equipment or from different sources despite their variability52. This adapt-
ability is particularly beneficial, allowing models to maintain high perfor-
mance across varied datasetswithout the need for extensive retraining. Such
capability is essential in themedical field, where datamight be sourced from
numerous hospitals or clinics, each equipped with different machinery and
adhering to unique protocols.

Generative AI provides another powerful short-term solution to tackle
biases, particularly the lack of diversity in fetal US datasets. By generating
synthetic pathological cases, which are often difficult to obtain, it can
enhance the variety and depth of training data for developing robust
diagnostic models. The scarcity of certain pathological cases in fetal US
datasets can lead to biases in diagnostic models, as they may not learn to
recognize less common conditions effectively. Generative AI can mitigate
this issue by creating realistic, synthetic images of rare fetal conditions,
thereby enriching the dataset with diverse pathological examples, facedwith
the informativeness bias problem. Although these pathologies are inher-
ently more challenging to acquire, recent advancements in generative AI53,
including applications in fetal imaging54, have demonstrated the ability to
generate clinically significant samples55. While their application to rare
conditions such as TTTS remains limited, they offer a promising approach
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to overcoming data scarcity. By expanding the available dataset, these
methods can enhance themodel’s diagnostic capabilities and contribute to a
more balanced and robust representation of various fetal conditions56.
Additionally, generative AI can employ image-to-image translation tech-
niques to enhance the quality of images acquired in low-resource
settings57,58. In scenarios where the available US equipment might not
produce high-quality images, these advanced AI techniques can transform
lower-quality images into higher-quality equivalents, mimicking those
captured by more advanced equipment. This application is particularly
valuable in democratizing access to high-quality diagnostic imaging,
enabling healthcare providers in resource-constrained environments to
benefit from advanced diagnostic models. However, it is essential to
recognize that training on synthetic data can also amplify biases through
what is known as model collapse and disparity amplification. This occurs
when synthetic outputs frommodels are used as new training data, leading
to the entrenchment and amplification of existing biases over successive
generations of models. Research has shown that these model-induced dis-
tribution shifts can encode and perpetuate biases, resulting in degraded
performance and fairness59. To mitigate these issues, one promising
approach is algorithmic reparation (AR), which aims to address historical
discrimination and improve fairness by intentionally curating training
batches to represent marginalized groups better. By focusing on creating a
more equitable distribution of data and incorporating intersectional inter-
ventions at each stage of the model generation process, AR can help
maintain balanced representation and performance across different
demographics.

However, addressing biases requiresmore than just technical solutions
—it demands integrating ethical considerations throughout the entire AI
development process. This principle, known as ”ethics by design,” involves
embedding ethical guidelines into every phase of the design process,
beginning with data collection. By thoughtfully designing data collection
methodologies, developers can better understand the target population and
prospective users, thereby avoidingpopulation target bias. Population target
bias occurs when there is an asymmetry between the collected data and the
actual demographics or characteristics of the prospective users. To mitigate
this, it is essential to collect data that accurately represents thediversity of the
intended user base, thus preventing the reproduction or exacerbation of
existing socio-economic inequalities and power imbalances. Ethical data
collection also necessitates training biomedical engineers, clinicians, and
other involved personnel to recognize andmitigate intrinsic cognitive biases
while understanding the ethical implications of their data collection prac-
tices. This involvesmaking informed decisions about the sources and scope
of data collection, for instance, whether to integrate temporal information
and implement strategies to address potential biases in the data, such as
cohort imbalances, missing data patterns, and underrepresentation of
minority groups. In addition to designing with ethics in mind, continuous
ethical audits byAI ethics experts are necessary to ensure ongoing oversight
and bias control. An ethical audit involves regular reviews and assessments
of AI systems to identify and address emerging biases or ethical concerns
throughout the life cycle of the AI application. This continuous monitoring
helps to maintain ethical standards and adapt to new ethical challenges as
they arise, ensuring that theAI system remains fair andunbiased in practice.

Another way to address biases could be the incorporation of generalist
medical AI into fetal health assessments. By leveraging a broader spectrum
of data beyond the conventional selective focus of many datasets, generalist
AI can help mitigate potential biases while enhancing the robustness and
inclusivity of fetal US technology60. Generalist medical AI’s ability to learn
from diverse, large-scale datasets allows for a more comprehensive under-
standing of fetal health, potentially leading to more accurate and holistic
assessments. This shift could help in developing models that are not just
narrowly accurate inpredefined tasks but are adaptable and insightful across
awider range of fetal health conditions, contributing to amore inclusive and
equitable healthcare landscape. However, as highlighted in ref. 61, there are
inherent risks with this generalist approach, particularly concerning bias
and fairness. These models, trained on vast and varied datasets, may

inadvertently learn and propagate biases present in the data as well. To
mitigate these risks, it is crucial to implement robust fairness quantification
and bias mitigation techniques from the outset and continuously monitor
and adjust models as they evolve. By addressing these potential pitfalls
proactively, we can harness the power of generalist medical AI while
ensuring it contributes to equitable and just healthcare outcomes.

However, to ensure equitable outcomes, it is essential to employ robust
fairness quantification methods in the development of AI models used in
fetal health assessments. Techniques such as—(i) statistical parity analysis,
which ensures that AI outcomes are independent of protected attributes like
race or sex. It is crucial to recognize that race and sex can be correlated with
different pathologies, and this correlation must be carefully considered
based on the specific application. For example, certain genetic conditions
may bemore prevalent in specific racial groups, aswell as pregnancy-related
complications can vary by fetal sex. Therefore, while statistical parity is
important, it should be balanced with medical accuracy to provide effective
diagnoses and treatments. (ii) Individual fairness methods which aim to
provide similar predictions for individuals who are similar in relevant
aspects. (iii) Group fairness measures which ensure that different groups
have equal positive rates, enhancing the overall fairness of the system.
Incorporating these techniques can help in developing AI models that not
only excel in diverse tasks but also uphold and advance the key AI ethics
principle of fairness in healthcare AI for prenatal care. Such advancements
could significantly enhance prenatal care by making it more personalized
and effective, ensuring it addresses the needs of all population segments
inclusively and fairly. This inclusive approach could facilitate the develop-
ment of prenatal diagnostics and treatment in a manner that is unprece-
dented in the history of medicine, making healthcare more just and
accessible. This is not just a scientific advancement, but a societal gain,
promoting a healthier future for all communities.

While we have proposed a framework for evaluating bias in fetal US
datasets, along with targeted strategies to mitigate these biases, it is equally
important to recognize the limitations of this study. These limitations
underscore areas requiring further exploration to support the development
of more robust and equitable ML models in the future. Our study is
exclusively focused on publicly available dataset analysis, without incor-
porating a comparative analysis on private datasets. Including private
datasets could have provided valuable insights into whether significant
disparities exist between the quality and structure of publicly accessible
datasets and those retained in private settings. While public datasets play a
crucial role in fostering collaboration and transparency, they may lack the
same level of curation, diversity, or completeness typically associated with
private datasets. Such disparities could have further implications for fair-
ness, potentially highlighting gaps in the representativeness and reliability of
public datasets.However, analyzingprivatedatasets is not feasiblewithin the
scope of this study due to restricted access. Nevertheless, our analysis of
public datasets provides a basis for independent evaluations of bias presence
in private datasets. Another limitation of our work is that, while it identifies
and categorizes biases, it does not quantify their extent or compare their
levels across datasets. Developing a standardized quantitative metric or
ranking system could enable a more systematic evaluation, allowing for
more informed and objective decisions regarding dataset selection and
utilization. Bias assessment at the dataset level remains an open research
challenge, with only a few studies addressing it. For instance62, examines
biases in dermatology imaging datasets through an ethical lens, focusing on
aspects such as skin tone and demographic representation. Similarly, in our
domain, future research could focus on developing inclusion metrics to
assess feature representation, ensuring both the presence of diverse sub-
groups (e.g., demographic diversity and anatomical region coverage) and
their equitable distribution across the dataset (diversity metrics). This
approach would help prevent the marginalization of underrepresented
groups while avoiding an imbalance that skews model generalizability.

Additionally, while the datasets used in this study do not include
metadata that could reveal patient identities, future considerations involving
the acquisition of new datasets must account for the potential impact of
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metadata, such as patient information stored in DICOM files or incorpo-
rated in the US frames. Metadata could introduce other biases if utilized as
additional features, potentially affecting model generalization and fairness.
Exploring these challenges lies outside the scope of this study but represents
an important direction for future research. While beyond the scope of our
work, it is worth noting thatmany other biases can arise during the training
and evaluation of DL models. For example, the use of pre-training on
natural image datasets like ImageNet, which may exhibit poor general-
ization to themedicalfield due to the significant differences between natural
and medical images, can impact model performance and generalization.
These are critical challenges that merit future exploration in relation to the
development of fair DL models.

To conclude, this study revealed various biases in publicly available
fetal US imaging datasets, which are crucial for training DL algorithms in
prenatal diagnostics and follow-up. These biases include an under-
representation of demographic groups, a limited range of clinical condi-
tions, variability inUS imaging, and a lack of alignmentwith current clinical
practices. These issues can distort DL model performance and lead to
healthcare inequities.

To address these challenges, we proposed several strategies that aim to
enhance representativeness. These include—improved data collection
practices, the use of generative AI, the implementation of generalist medical
AI, and federated and continuous learning approaches. Furthermore, we
recommend an ethics-by-design approach, embedding ethical principles
fromthe start, and continuous ethical audits byAI ethics experts tomaintain
ongoing oversight and bias control. Robust fairness quantificationmethods,
such as statistical parity analysis, individual fairness methods, and group
fairnessmeasures, are essential to ensure thatAI outcomes are equitable and
independent of protected attributes, such as race and sex. By implementing
these strategies, we can enhance the diversity, accuracy, and fairness of fetal
US datasets and DL models, ensuring more equitable health outcomes
for all.

Methods
Dataset bias in imaging
The significance of datasets inML andDL research cannot be overstated, as
datasets are often seen as the primary constraint on algorithm advancement
and scientific progress. Key benchmarks, such as ImageNet63, for visual
object recognition. Although ML systems have recently surpassed human
performance on these benchmarks, recent studies have revealed limitations
in these datasets as measures of human-like reasoning and raised societal
concerns regarding dataset practices64. Extensive research highlights the
importance of well-structured data collection and the implications of bias in
datasets. For instance, the work in ref. 64 identifies key concerns about
dataset practices, including collection, construction, labeling, and sharing
processes. These practices can lead tomodels based on spurious correlations
and faulty heuristics, undermining the reliability and validity of ML
advancements. Similarly, the work in ref. 65 discusses recent technical
advances aimed at making the data-for-AI pipeline more scalable and rig-
orous, addressing many of the aforementioned concerns. In ref. 66, social
bias, measurement bias, representation bias, and label bias are identified,
contextualizing them within a real-world case study and additionally
illustrating effective mitigation strategies.

In healthcare datasets, the presence of biases can result in the genera-
tion of models that perpetuate or exacerbate existing inequalities in
healthcare delivery and outcomes26. Different studies address the ethical
concerns and risks posed by data bias in clinical settings, from ECG/EEG
time series20, sex imbalance in X-ray imaging analysis67, or on a broader
level26,68–70. Ensuring unbiased datasets requires the inclusion of under-
represented patient subgroups and high-quality annotations to prevent
algorithmic bias and ensure reliable model performance71. Additionally,
ethical guidelines for algorithm development, transparency in training and
validation processes, and thorough documentation of hyperparameters are
necessary tomitigate bias and enhance reproducibility. In ref. 69, the issue of
non-uniform representation of different populations in medical imaging

datasets is emphasized. Non-uniform representation in medical imaging
datasets is a significant issue, manifesting as demographic disparities,
unequal representation of pathological data, site-specific differences, and
technical variations. A recent study highlights that these data biases often
arise from established tools and data generation processes, with specific
concerns including representation bias, and aggregation bias, which occurs
when incorrect assumptions about individuals or subgroups aremade based
on observations of the entire population72. Additionally, population bias
occurs when the demographics and statistical profiles of the dataset popu-
lation differ significantly from those of the intended patient population.

Although the concept of fairness and data biases has been widely
investigated, also in healthcare, no studies have specifically examined these
issues focusing on the context of fetal US imaging. This gap is critical, as
these biases can significantly affect the evaluation of both fetal andmaternal
well-being during pregnancy. Furthermore, such biases are often context-
sensitive and need to be contextualized to be detected and mitigated ade-
quately. To address this gap,wedrawon insights from recent studies such as
refs. 25–27, which are closely related to our context, as they provide a high-
level map of benchmark data biases in the context of healthcare AI and
specifically for medical imaging.

Fetal ultrasound imaging
To establish a solid foundation for bias evaluation, an in-depth investigation
was conducted to analyze the most active research areas of fetal US image
analysis usingDL. This section provides a definition of fetalUS imaging and
an overview of themajor tasks for whichDL algorithms are developed. This
allows a deeper understanding of the key aspects typically evaluated in fetal
US datasets, enabling an accurate contextualization of bias evaluation.

US imaging has become a widely adopted modality for the diagnosis,
screening, and treatment of variousmedical conditions. This popularity can
be attributed to its inherent advantages, including portability, cost-effec-
tiveness, and non-invasiveness73,74. Over the years, US imaging has emerged
as the preferred method for prenatal examinations, routinely employed to
evaluate fetal growth and development and to monitor pregnancies, parti-
cularly when clinical concerns arise75.

A fetal US examination is usually conducted by a proficient sono-
grapher or a qualified healthcare practitioner. This procedure entails the
utilization of a US probe to scan the mother’s abdomen to identify key
anatomical features of the fetus for assessment. The specific evaluation taken
by the clinician can vary depending on the trimester of pregnancy. During
early pregnancy, it is crucial to confirm viability, accurately determine
gestational age, establish the number of fetuses, and, in the case of amultiple
pregnancy, assess chorionicity and amnionicity76. In contrast, during the
second and third trimesters of pregnancy, the procedure is employed for
fetal measurements to promptly detect any growth abnormalities that may
arise later in pregnancy and to identify congenital malformations77.
Although the evaluations conducted throughout the trimesters of preg-
nancy may differ, the process of assessing fetal well-being consists of three
common steps, as illustrated in Fig. 2: SPD, AAS, and BPE.

Regarding SPD, the ISUOG guidelines78 highlight that using standar-
dized acquisition planes improves the reproducibility of both fetal biometry
measurements and overall fetal assessment.

In the first trimester of gestation, when the fetus is relatively small, the
evaluation includes different standard fetal planes. Themid-sagittal plane is
used for assessing nuchal translucency, crown-rump length (CRL), and
overall fetal morphology. The transverse plane of the head is utilized to
observe brain structures such as the forebrain,midbrain, andhindbrain.The
coronal plane of the trunk and the abdomen is important for evaluating
internal organs such as the liver and stomach. The sagittal plane of the
abdomen is useful for visualizing the stomach, the heart, and the major
vessels such as the aorta and the inferior vena cava. Finally, the transverse
plane of the heart is employed to assess the position and structure of the
heart, including the four chambers and heart valves. These planes are
essential for a comprehensiveUS evaluationof the fetus in thefirst trimester,
helping to identify early developmental anomalies79.
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In mid-trimester fetal US scans, a comprehensive assessment of the
central nervous system (CNS) is of paramount importance due to the high
incidence of CNSmalformations. The diagnostic protocol typically involves
evaluating the fetal brain’s integrity using at least two axial planes—TV and
TC—and often includes a third, the TT plane, for additional biometric data.
A particular focus is given to key anatomical features, including the lateral
ventricles, cerebellum, cisterna magna, and cavum septi pellucidi, as well as
to the head’s morphology and the brain’s textural characteristics within
these planes. A longitudinal spinal section is also essential, as it can reveal
specific spinal abnormalities, providing a comprehensive view of the CNS.

In addition to CNS evaluation, the acquisition of the fetal abdominal
standard plane (FASP) is critically important for examining the develop-
ment and positioning of essential organs such as the stomach, liver, kidneys,
and intestines. In a clinical setting, the successful identification of FASP
requires the radiologist’s ability to simultaneously visualize three key ana-
tomical structures—stomach bubble, umbilical vein, and spine, while
maneuvering the US probe across the maternal abdomen. To effectively
screen for congenital heart disease (CHD)—a leading cause of infant
mortality—during midgestation, a careful cardiac evaluation is also

important. This comprehensive assessment should incorporate both the
four-chamber (4CH) and outflow tract planes. Within the context of the
4CH view, a focused examination is required to meet specific anatomical
criteria: the two atria should be discernible at the top, with the two ventricles
situated at the bottom, separated by a septum. Additionally, cardiac valves
ought tobe clearly visible, and the apex of the heart shouldpoint to the left at
an angle of 45 ± 20°.When it comes to examining the outflow tract views, it
is critical to include observations of both the left and right ventricular
outflow tracts (LVOT and RVOT) as essential components of fetal cardiac
screening. Furthermore, as part of a seamless progression beginning with
the RVOT, there are additional cross-sectional perspectives that reveal
various facets of the great vessels and their adjacent structures. These per-
spectives encompass the three-vessel view and the three vessels along with
the trachea view. Fetal evaluation also requires the acquisition of the fetal
facial standard plane, which includes axial, coronal, and sagittal planes.

AAS using fetal US, instead, serves multiple critical functions
during the first andmid-trimesters of pregnancy, each corresponding to
different clinical needs and developmental stages. During the first tri-
mester, the primary objective is often the early identification of gross

Fig. 2 | Fetal US imaging main tasks. Three key components of fetal US imaging examinations encompass fetal standard plane detection (SPD), analysis of anatomical
structure (AAS), and fetal biometry parameter estimation (BPE).

Table 3 | First and mid-trimester fetal anatomy assessment

Organ First trimester Mid-trimester

Head Cranial bone ossification, normal choroid plexus, and midline falx Intact cranium, cavum septi pellucidi, midline falx, thalami, cerebral
ventricles, cerebellum, cisterna magna

Neck Proper alignment of the neck with the trunk and identification of
hygromas and jugular lymph sacs

Absence of masses

Face Eyes with lens, nasal bone, normal profile/mandible, intact lips Both orbits present, median facial profile, mouth present, upper lip intact

Spine/Extremities Normal vertebral alignment and integrity, intact overlying skin, four
limbs each with three segments, hands and feet with normal
orientation

No spinal defects ormasses (transverse and sagittal views), arms and hands
present, normal relationships, legs and feet present, normal relationships

Chest Symmetrical lung fields, no effusions or masses Normal appearing shape/size of chest and lungs

Heart Cardiac regular activity, four symmetrical chambers Heart activity present, four-chamber view of heart in normal position, aortic
and pulmonary outflow tracts; no evidence of diaphragmatic hernia

Abdomen Stomach present in the left upper quadrant, bladder, kidneys, normal
cord insertion, no umbilical defects

Stomach in normal position, bowel not dilated, both kidneys present, cord
insertion site

Placenta Size and texture Position, no masses present, accessory lobe

Cord Three-vessel cord Three-vessel cord

Genitalia - Male or female
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anatomical anomalies78, the assessment of nuchal translucency, and the
establishment of basic fetal viability. This early-stage analysis facilitates
timely genetic testing, offers reassurance to mothers considered at risk,
and allows for the option of elective pregnancy termination if severe
abnormalities are detected. Transitioning to the mid-trimester, the
anatomical examination becomes more detailed, covering structures
such as the brain, spine, heart, kidneys, and limbs. The focus of the
examination shifts toward the identification of more subtle morpholo-
gical abnormalities, the evaluation of fetal growth patterns, and the
preparation for any necessary interventions, either prenatally or
immediately after birth. Additionally, mid-trimester anatomical analysis
can provide insights into placental health and positioning, thereby
aiding in the prediction and prevention of complications such as pla-
cental abruption or preterm birth. A detailed description of this ana-
tomical assessment is provided in Table 3.

Another critical aspect is the evaluation of fetal size and gestational age,
in conjunction with the identification of deviations in fetal growth, whose
primary medical investigation employed for this purpose is the BPE.

Before the 14th week of pregnancy, gestational age and fetal size are
determined by measuring the CRL, as illustrated in Fig. 2. This measure-
ment calculates the distance from the top of the fetus’s head to the bottomof
its torso. Once the CRL exceeds a predetermined threshold (typically at
14 weeks), standard measurements encompass HC, biparietal diameter,
occipito-frontal diameter, trans-cerebellar diameter, lateral ventricles, AC,
and femur diaphysis length. These fetal biometricmeasurements are used to
assess the trajectory of fetal growth and to ensure the fetus’s normal
development when assessed at different stages of pregnancy (trimesters).
Furthermore, the cardio-thoracic ratio and cardiac axis biometrics are
employed for the diagnosis of CHD.

Search strategy
While exploring relevant research on DL for fetal US, we embarked on a
quest touncoverdatasets pertinent to this domain.Ourexploration spanned
various databases and online repositories, including Kaggle, GitHub,
Mendeley Data, MICCAI Challenges, and Zenodo.

To streamline our search and ensure relevance:
• Keywords played a central role and our primary guiding terms

encompassed “fetal US”, “US image datasets”, and “fetal anomalies”,
further expanded upon with their various related terms to cast a
wider net.

• Weapplied explicit inclusion criteria to refineour selection: (i)Datasets
had to be publicly available and specific to fetal US images, deliberately
excluding general US datasets and any datasets from pre- or intra-
partum stages, or those using fetal phantoms. Public datasets were
prioritized as they serve as benchmarks for the research community,
facilitating results replication and comparison across studies, while
non-public datasets were excluded because their inaccessibility
undermines fairness in evaluations. (ii) With an inclination towards
DL applications, datasets with a large number of samples were favored.
(iii) Only datasets in standard formats (e.g., PNG, JPEG, BMP) were
considered; datasets containing DICOM files or patient-identifiable
information in file names or overlaid on US frames were excluded to
ensure anonymization.

Data availability
The authors used only publicly available datasets: FETAL_PLANES_DB
(https://zenodo.org/record/3904280), Maternal-fetal US planes in African
countries (https://zenodo.org/records/7540448), Fetal Abdominal Struc-
tures Segmentation Dataset (https://data.mendeley.com/datasets/
4gcpm9dsc3/1) and HC18 (https://hc18.grand-challenge.org/).
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