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G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs)
mediate increases in intracellular cyclic AMP as consequence of activation of nine
adenylyl cyclases , which differ considerably in their cellular distribution and activation
mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling
effectors such as protein kinase A and the exchange proteins activated by cAMP
(Epacs). More recently, attention has been focused on the efflux of cAMP through a
specific transport system named multidrug resistance proteins that belongs to the ATP-
binding cassette transporter superfamily. Outside the cell, cAMP is metabolized into
adenosine, which is able to activate four distinct subtypes of adenosine receptors,
members of the GPCR family: A1, A2A, A2B, and A3. Taking into account that this
phenomenon occurs in numerous cell types, as consequence of GsPCR activation
and increment in intracellular cAMP levels, in this review, we will discuss the impact
of cAMP efflux and the extracellular cAMP-adenosine pathway on the regulation of
GsPCR-induced cell response.

Keywords: G protein-coupled receptors, cyclic AMP, cAMP efflux, adenosine, adenosine receptors, ABC
transporters, ecto-phosphodiesterase, ecto-5′-nucleotidase

Seven transmembrane receptors are able to transmit extracellular signals into the intracellular
compartment via activation of heterotrimeric G proteins, which consist of the guanine nucleotide-
binding Gα subunit and the dimeric βγ subunits (Pierce et al., 2002). These G protein-coupled
receptors (GPCRs) are ubiquitously distributed and precisely regulate amyriad of intracellular pro-
cesses upon agonist stimulation. GPCRs may also activate β-arrestin-dependent signaling, which
functions as an adaptor protein that regulates GPCR signaling and trafficking, having the ability to
activate intracellular pathways independently of G proteins (DeWire et al., 2007).

The membrane-associated G proteins can be divided into four families according to the primary
sequence similarity of Gα subunits: Gαs (αs, αolf), Gαi (αi1–αi3, αt, αo1–αo2, αζ), Gαq/11 (αq, α11,
α14–α16), Gα12 (α12, α13). The sequence homologies also define the Gα subunit coupling to down-
stream effector molecules, such as phospholipase C-β, adenylyl cyclase (AC), RhoGEFs and/or ion
channels (Moreira, 2014).
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Conformational changes of GPCR, induced by extracellular
agonist binding, reduces the affinity of GDP to Gα subunit,
resulting in sequential dissociation of GDP-Gα complex, inter-
action of GTP with Gα, and dissociation of heterotrimeric
complex Gα–βγ into Gα subunit and βγ dimmer (Pierce
et al., 2002). Focusing on activation of GPCRs linked to
stimulatory G (Gs) proteins (GsPCR), the GTP-Gαs com-
plex is able to interact and activate all available membrane
bound AC isoforms (AC1–AC9), increasing the intracellu-
lar generation of adenosine 3′,5′-cyclic monophosphate (3′,5′-
cAMP or cAMP). Conversely, by activating inhibitory G (Gi)
protein, agonists of GiPCR elicit the selective inhibition of
AC1, AC5, and AC6, reducing the intracellular cAMP content
(Sadana and Dessauer, 2009).

Cyclic AMP was first described by Rall et al. (1957) who
showed that sympathomimetic amines and glucagon were able
to induce the synthesis of a heat-stable factor formed by par-
ticulate fractions of liver homogenates in the presence of ATP
and Mg2+. Identified as adenine ribonucleotide, the compound
was identical to the cAMP described by Cook et al. (1957)
at the same year. Since then, intracellular signaling through
cAMP has been described in virtually every cell (Antoni, 2012).
The protein kinase A (PKA), a serine/threonine kinase ubiqui-
tously expressed in mammal tissues, was the first cAMP down-
stream target to be identified (Walsh et al., 1968). Formed by
two regulatory and two catalytic subunits, activation of PKA
involves the cooperative binding of four cAMP molecules to
two regulatory subunits, leading the catalytic subunits free to
phosphorylate target proteins. Intracellular cAMP is also able
to directly modulate ion channels (Bradley et al., 2005), such
as the hyperpolarization-activated cyclic nucleotide-gated chan-
nels (HCN channels) expressed in the cardiac sinoatrial node
(Larsson, 2010). Additionally, exchange proteins directly acti-
vated by cAMP (Epac) explained various effects of cAMP that
could not be attributed to the PKA or cAMP-gated ion channels
(Gloerich and Bos, 2010).

Phosphodiesterases, MRP/ABCC
Transporters and cAMP Efflux

The fine regulation of intracellular cAMP signaling is made by
phosphodiesterases (PDEs), enzymes that catalyze the hydrolysis
of cAMP into AMP. Actually, the superfamily of PDE enzymes
is comprised of 11 families, namely PDE1–PDE11. While PDE4,
PDE7, and PDE8 are specific for cAMP, PDE5–PDE6, and
PDE9 are specific for guanosine 3′,5′-cyclic monophosphate
(cGMP) and PDE1–PDE3 and PDE10–PDE11 hydrolyze both
cAMP and cGMP (Bender and Beavo, 2006; Francis et al.,
2011). By hydrolyzing the cyclic nucleotide monophosphates,
PDEs regulate several important physiological processes, such
as vascular resistance, cardiac output, visceral motility, immune
response, inflammation, neuroplasticity, vision, and reproduc-
tion (Azevedo et al., 2014). Therefore, altered expression of PDE
or changes in the enzyme activity have been associated with a
number of pathological conditions, including erectile dysfunc-
tion, pulmonary hypertension, acute refractory cardiac failure,

chronic obstructive pulmonary disease and various types of can-
cer (Azevedo et al., 2014).

In addition to PDE, the intracellular concentration of cAMP
is regulated by its efflux into the extracellular space through a
specific transport system named multidrug resistance proteins
(MRP; Cheepala et al., 2013) that belongs to the ATP-binding cas-
sette (ABC) transporter superfamily (subfamily C). Three of them
(MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11) have the
ability to actively extrude cAMP and cGMP from the cell (Kruh
and Belinsky, 2003) with different kinetic parameters (Km values
in the μM range; Jedlitschky et al., 2000; Chen et al., 2001; Guo
et al., 2003; Sager and Ravna, 2009).

The MRP-mediated cAMP efflux has been shown in many
cell types, including rodent skeletal muscle (Godinho and Costa,
2003), human platelets (Jedlitschky et al., 2004) vascular smooth
muscle cells (Sassi et al., 2008; Cheng et al., 2010), pulmonary
arteries (Hara et al., 2011) and cardiac myocytes (Sassi et al.,
2011). Therefore, it was proposed that by working synergistically
with PDE enzymes, MRP-mediated cAMP efflux would preserve
the cell from excessive levels of intracellular cAMP (Jedlitschky
et al., 2000; Chen et al., 2001). Although reasonable, this premise
was not consistent with the high energetic cost of pumping cAMP
out of cell (Godinho and Costa, 2003; Chiavegatti et al., 2008).
Thus, it was hypothesized that cAMP might also function as an
extracellular signaling molecule (Jackson and Raghvendra, 2004).
In fact, since the middle 1960s, extracellular effects of cAMP have
been reported in different mammal tissues and organs. For exam-
ple, intravenous infusion of cAMP is known to produce a wide
range of responses, including increased adrenal corticosterone
secretion in hypophysectomized rats (Imura et al., 1965), incre-
ment in heart rate, cardiac output, and blood glucose, reduction
of blood pressure (Levine and Vogel, 1966) and increment in
calcium and phosphate plasma concentration (Rasmussen et al.,
1968). cAMP infusion effects seem to be exclusively extracellu-
lar since most cells are impermeable to cAMP (Robison et al.,
1965).

Ecto-Phosphodiesterases, Ecto-
Nucleotidases, and the Extracellular
cAMP-Adenosine Pathway

The idea of an extracellular role for cAMP gained strength in the
late 1990s when it was established that extracellular cAMP could
be sequentially metabolized into AMP and adenosine, a phe-
nomenon named “extracellular cAMP-adenosine pathway” (Mi
and Jackson, 1998). Actually, the existence of ecto-enzymes with
PDE activity was first demonstrated in frog skeletal muscle by
Woo and Manery (1973), who showed extracellular generation
of [14C]AMP as consequence of incubation of intact poste-
rior leg muscles with [14C]cAMP. The degradation of cAMP
was markedly inhibited by theophylline, suggesting the presence
of cAMP-phosphodiesterase activity at the muscle fiber surface
(Woo and Manery, 1973). Later, ecto-phosphodiesterase activity
was found in rodent liver cells (Smoake et al., 1981), vascu-
lar smooth muscles (Dubey et al., 1996; Jackson et al., 1997),
adipocytes (Strouch et al., 2005), skeletal muscle (Chiavegatti
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et al., 2008), rat ileum (Giron et al., 2008), astrocytes and
microglia (Verrier et al., 2011) and many other cells.

In those cells, following the extracellular degradation of 3′,5′-
cAMP by ecto-PDE, 5′-AMP is rapidly hydrolyzed to adeno-
sine by membrane-bound ecto-5′-nucleotidases (EC 3.1.3.5), also
known as CD73. The ecto-5′-nucleotidase is a 70-kDa cell sur-
face glycoprotein found in most tissues that functions as the
major enzymatic source of interstitial adenosine (Colgan et al.,
2006). Although ecto-5′-nucleotidases also hydrolyzes other ribo-
and deoxyribonucleoside 5′-monophosphates including cytidine-
, uridine-, inosine-, and guanosine-5′-monophosphates, AMP is
the most effectively hydrolyzed nucleotide (Zimmermann et al.,
2012). Thus, by hydrolyzing 5′-AMP derived from either ATP
or cAMP, ecto-5′-nucleotidases act as a limiting point for the
extracellular provision of adenosine and, as consequence, for
activation of adenosine receptors (ARs).

In addition to ecto-5′-nucleotidases, other three types of
surface-located ecto-nucleotidases are involved in the extra-
cellular nucleosides degradation and, consequently, in the
extracellular adenosine formation: ecto-nucleoside triphosphate
diphosphohydrolases (EC 3.6.1.5), ecto-nucleotide pyrophos-
phatase/PDEs (EC 3.6.1.9 and EC 3.1.4.1) and alkaline phos-
phatases (APs; EC 3.1.3.1). While ecto-5′-nucleotidases is
nucleotide-specific, ecto-nucleotide pyrophosphatase/PDEs and
ecto-nucleoside triphosphate diphosphohydrolases hydrolyze
both ATP and ADP (Zimmermann et al., 2012).

Adenosine Receptors and the
Extracellular cAMP-Adenosine
Pathway

The extracellular degradation of cAMP allows the activation
of membrane associated ARs by its metabolite adenosine.
Pharmacologically, four distinct subtypes of ARs, members of the
GPCR family, are described: A1, A2A, A2B, and A3 (Fredholm
et al., 2011). These receptors have a very broad tissue distribu-
tion, performing relevant physiological effects in central nervous
system (Ribeiro et al., 2002; Wei et al., 2011), cardiovascular
(Headrick et al., 2013; Idzko et al., 2014a) and musculoskeletal
systems (Burnstock et al., 2013) and many other tissues (Vallon
et al., 2006; Sheth et al., 2014). Activation of adenosine is also
involved in pathophysiological conditions such as cancer, inflam-
mation (Antonioli et al., 2013; Idzko et al., 2014b) and neurode-
generative diseases, with potential therapeutic implications for
Parkinson’s and Alzheimer’s diseases (Ribeiro et al., 2002).

AR subtypes exhibit different affinities for the endogenous
agonist (Muller and Jacobson, 2011): A1, A2A, and A3 display
high to moderate affinity (Ki = 100, 310, and 290 nM, respec-
tively) to adenosine whereas A2B has low affinity (Ki = 15 μM).
Furthermore, distinct signaling transduction pathways are mobi-
lized by each AR, leading to diverse cellular effects. The A1 and
A3 are preferentially coupled to the Gi/o family of G-proteins
whereas the A2A and A2B couple to Gs proteins (Trincavelli et al.,
2010). Thus, as shown in Figure 1, depending on the receptor
subtypes expressed in the cell, the extracellular cAMP-adenosine
pathway will be able to increase (Figure 1A) or attenuate

(Figure 1B) the intracellular cAMP production, by activating or
inhibiting ACs, via Gs and Gi proteins, respectively. Therefore,
the final biological effect of the extracellular cAMP-adenosine
pathway will depend on AR subtype expressed by the target cell
and on the amount of cAMP pumped out of the cell.

In fact, the extracellular cAMP-adenosine signaling can be
even more complex, as in addition to classical Gs and Gi path-
ways, AR subtypes can also activate Gq protein (A2B and A3),
phospholipase C-β (A1, A2B, and A3), PKC (A2B and A3), KATP
channel (A3), and ERK1/2 (A1, A2A/A2B, and A3) p38 (A1
and A2B) MAPK cascade (Feoktistov et al., 1999; Schulte and
Fredholm, 2003), which in turn are able to modulate AC activa-
tion (Sadana and Dessauer, 2009).

Activation of GsPCR and the
Extracellular cAMP-Adenosine
Pathway

Taking into account that cAMP may function as an extracellular
signaling molecule, it is possible to assume that, by stimulating
AC enzymes, all GsPCRs may have significant impact on cAMP
efflux and extracellular cAMP-adenosine signaling. Actually, by
studying the contribution of cAMP efflux and the extracellu-
lar cAMP-adenosine pathway on skeletal muscle physiology, we
showed that cAMP egress induced by activation of GsPCR, such
as β-adrenoceptors and calcitonin gene-related peptide recep-
tors, is proportional to intracellular levels of cAMP produced
(Godinho and Costa, 2003; Chiavegatti et al., 2008). Of more
importance, cAMP efflux and subsequent extracellular genera-
tion of adenosine elicited by β2-adrenoceptor agonists results
in a delayed attenuation of β2-adrenoceptor-induced positive
inotropic effect, via activation of A1 ARs (Duarte et al., 2012), as
schematically shown in Figure 1B.

The correlation of GsPCR activation, cAMP efflux, and the
extracellular cAMP-adenosine pathway has been described in
many other cells. For example, the β-adrenoceptor agonist iso-
proterenol stimulates cAMP secretion from rat cultured glioma
cells (Doore et al., 1975) and turkey erythrocytes (Rindler et al.,
1978). In mouse adrenocortical tumor cell line, the intracellular
cAMP formed in response to ACTH appeared extracellularly in
few minutes (Schimmer and Zimmerman, 1976). In healthy vol-
unteers, infusion of glucagon after hepatic venous catheterization
was associated with a marked increase in both the splanchnic
cAMP production and in the arterial cyclic nucleotide levels
(Grill et al., 1979). In addition, while activation of D1 dopamine
receptor stimulates cAMP efflux from rat neostriatal cells (Plantie
et al., 1983), vasoactive intestinal peptide and cholecystokinin-
8 cause a significant increase in cAMP efflux from rat striatal
slices (O’Shaughnessy et al., 1987). Many other GsPCR agonists
are able to stimulate cAMP efflux, such as corticotropin-releasing
hormone and melanocortin (de Koning et al., 1992), vasopressin
(Tyagi et al., 1998) and pituitary AC activating polypeptide (Cui
et al., 2000). Taking into account that cAMP efflux depends on
increased intracellular generation of cyclic nucleotide it is possi-
ble to presume that cAMP export could be ubiquitously elicited
by activation of every GsPCR.
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FIGURE 1 | Feedback mechanisms mediated by the extracellular
cAMP–adenosine cascade. Activation of receptors coupled to Gs protein
(GsPCR) leads to stimulation of adenylyl cyclase (AC) and increased generation
of cAMP, which may elicit localized cellular response via activation of effectors
such as PKA or Epac (A,B), which are organized in microdomains via anchoring
proteins, such as AKAP. cAMP may be hydrolyzed by intracellular
phosphodiesterases (PDEs) or may leave the cell via multidrug resistance

proteins (MRPs). Outside the cell, ecto-PDE and ecto-5′nucleotidase
sequentially convert cAMP to AMP and adenosine (ADO), which may activate
Gs-coupled A2A/A2B (A) or Gi-coupled A1/A3 (B) receptors, increasing or
attenuating cAMP production, respectively. In addition, activation of receptors
coupled to Gi protein (GiPCR) results in inhibition of Gi-sensitive ACs reducing
both generation and efflux of cAMP (C), with consequent loss of
autocrine/paracrine feedback signaling of extracellular cAMP.

Conversely, it is also plausible to postulate that by inhibit-
ing Gαi-sensitive ACs and reducing intracellular cAMP gener-
ation, receptors linked to Gi protein (GiPCR) would be able to
negatively modulate cAMP efflux. For instance, cAMP egress
from rat neostriatal slices induced by activation of Gs-linked
D-1 dopamine receptors is reduced by agonists of D2 receptor
agonists (Stoof and Kebabian, 1981), μ- or δ opioid receptors
(Schoffelmeer et al., 1985) and M2 and M4 muscarinic receptors
(Schoffelmeer et al., 1988), known to be coupled to Gi-protein.
Indeed, several pheromones and fatty acids, components of mem-
brane phospholipids, also inhibit cAMP export (Kanter et al.,
1989) by activating free fatty acid receptors, such as FFA5, linked

to Gi/o protein (Wang et al., 2006). Thus, inhibition of cAMP
egress as consequence of inhibition of cAMP production may
provide an additional mechanism by which GiPCR agonists influ-
ence the cAMP signaling pathway, as illustrated in Figure 1C.
Table 1 presents a list of GPCR receptors linked to Gs and Gi
protein (Alexander et al., 2013) that, by modulating intracellular
generation of cAMP, may function as regulators of cAMP efflux
and extracellular cAMP adenosine pathway.

Assuming the physiological significance of cAMP efflux and
extracellular cAMP-adenosine pathway in modulating GsPCR sig-
naling, impairment of this extracellular feedbackmechanismmay
have profound impact in several physiological processes leading
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TABLE 1 | Receptors coupled to stimulatory (Gs) and inhibitory (Gi) G proteins that might trigger or attenuate the cAMP efflux and the extracellular
cAMP-adenosine pathway.

Gα subunits

Receptors coupled to inhibitory G protein (Gαi)

Orphans: GPR22, GPR34, GPR37, GPR84,1 MRGPRD, GPR33,
GPR37L1, OPN5

Hydroxycarboxylic acid: HCA1, HCA2, HCA3

Acetylcholine (Muscarinic): M2, M4 5-Hydroxytryptamine: 5-HT1A, 5-HT1B, 5-HT1D–5-HT1F, 5-Ht5A

Adenosine: A1, A3 Leukotriene/lipoxin/oxoeicosanoids: BLT1–BLT2, FPR2/ALX, OXE

Adrenoceptor (α): α2A, α2B, α2C Lysophospholipid (LPA): LPA1–LPA4

Angiotensin: AT2 Sphingosine 1-phosphate (S1P): S1P1, S1P3–S1P5

Apelin: HGNC Melanin-concentrating hormone (MCH): MCH1

Calcium sensing: CaS Melatonin: MT1–MT2

Cannabinoid: CB1, CB2 Metabotropic glutamate (mGlu): mGlu2–mGlu4; mGlu6–mGlu8

Chemokine: CCR1–CCR10, CXCR1–CXCR6, CX3CR1, XCR1 Neuropeptide FF/neuropeptide AF: NPFF2

Complement peptide: C3a, C5a1 Neuropeptide W/neuropeptide B: NPBW1–NPBW2

Dopamine: D2, D3, D4 Neuropeptide Y: Y1–Y2, Y4–Y6

Endothelin: ETB Opioid: δ, κ, μ, NOP

Estrogen (G protein-coupled): GPER Purinergic P2Y: P2Y12–P2Y13

Formylpeptide: FPR1, FPR2/ALX Peptide P518: QRFP

Free fatty acid: FFA3, FFA2, FFA5 Platelet-activating factor: PAF

Gaba: GabaB Prostanoid: DP2, EP3

Galanin: GAL1, GAL2, GAL3 Proteinase-activated (PARs): PAR1, PAR2, PAR4

Glycoprotein hormone: TSH, LH Relaxin family peptide (RXFP): RXFP3–RXFP4

GPR18 (provisional nomenclature) Somatostatin (sst): sst1–sst5
Histamine: H3, H4 Vasopressin and Oxytocin: OT

Receptors coupled to stimulatory G protein (Gαs)

Orphans: GPR3-GPR4, GPR6, GPR26, GPR61, GPR65, GPR132, TAAR2,
GPR78, GPR174

Histamine: H2

5-Hydroxytryptamine: 5-HT4, 5-HT6–5-HT7 Lysophospholipid (LPA): LPA3-LPA4

Adenosine: A2A, A2B Sphingosine 1-phosphate (S1P): S1P2–S1P4

Adrenoceptor (β): β1–β3 Melanocortin: MC1–MC5

Bile acid Neuropeptide S: NPS

Calcitonin: CGRP, AM1–AM2, CT, AMY1–AMY3, Purinergic P2Y: P2Y11

Cholecystokinin: CCK1, CCK2 Parathyroid hormone: PTH1–PTH2

Corticotropin-releasing factor: CRF1, CRF2 Prostanoid: DP1, EP2, EP4

Dopamine: D1, D5 Relaxin family peptide (RXFP): RXFP1–RXFP2

Endothelin: ETA Trace Amino: TA1

Estrogen (G protein-coupled): GPER Vasopressin and Oxytocin receptors: V2

Glucagon: glucagon, GLP-1–GLP-2, GIP, GHRH, secretin Vasoactive intestinal peptide and PACAP: VPAC1, VPAC2, PAC1

Glycoprotein hormone: FSH, LH

Based on Alexander et al. (2013).

to pathological conditions associated to cardiovascular, muscu-
lar and endocrine disorders and/or inflammatory diseases. For
example, cAMP secreted from cardiomyocytes attenuates the
development of hypertrophy and fibrosis induced by continu-
ous activation of β2-adrenoceptors (Sassi et al., 2014). Similarly,
cAMP efflux induced by prolong stimulation of β2-adrenoceptors
attenuates skeletal muscle contraction, preserving muscle from
deleterious effects of massive Ca2+ release from the sarcoplasmic
reticulum (Duarte et al., 2012). In pancreatic acinar cells, cAMP
egression through MRP4 clearly attenuates the development of
acute pancreatitis induced by caerulein (Ventimiglia et al., 2015).
On the other hand, inhibition of cAMP efflux with probenecid
reduces bovine sperm capacitation (Osycka-Salut et al., 2014).
Finally, the extracellular cAMP-adenosine pathway is able to exert
immunoregulatory effects by modulating monocyte function

and differentiation through A2A/A2B receptors (Sciaraffia et al.,
2014), which is consistent with the marked reduction of ecto-
5′-nucleotidases expression in lymphocytes from patients with
a variety of immunodeficiency diseases (Resta et al., 1998).
Interestingly, certain antioxidants derived from plants such as
the flavonoid quercetin, have been found to inhibit cAMP efflux
transporters (Pavan et al., 2015), which open new perspectives in
the use of natural products as regulators of extracellular cAMP
signaling for therapeutic purposes.

cAMP Signaling Microdomains

The compartmentalized expression of cAMP signaling compo-
nents such as GPCR, AC, PKA, and Epacs (Laflamme and Becker,
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1999; Zaccolo, 2009; Terrin et al., 2012) allows the establishment
of multiple intracellular cAMP subcompartments. For example,
PDEs bind to A kinase-anchoring proteins (AKAPs) forming
a PKA-PDE-AKAP complex (Stangherlin and Zaccolo, 2011;
Terrin et al., 2012). Likewise, specific AC isoforms have been
identified as components of AKAP complexes (Dessauer, 2009),
contributing to intracellular compartmentalization of cAMP sig-
naling. In fact, localized expression of ACs generate specific
microdomains of elevated concentration of cAMP ensuring sig-
naling specificity, such as those observed in the transverse
tubule/junctional sarcoplasmic reticulum network of cardiac
and skeletal muscle (Gao et al., 1997; Zaccolo et al., 2002;
Menezes-Rodrigues et al., 2013).

Interestingly, the localized expression of MRPs may also play
an important role in the intra- and extracellular cAMP signaling
process (Cheepala et al., 2013). For example, in the gut epithe-
lia signal compartmentalization of cAMP with MRP4 is essential
for cAMP-dependent regulation of chloride channel function (Li
et al., 2007). As well, contraction of cardiac myocytes induced
by activation of β-adrenoceptor/AC/cAMP cascade can be locally
regulated by MRP4 (Sellers et al., 2012). In addition, in vascular
smooth muscle cells, MRP4 was found in caveolin-rich mem-
brane fractions regulating cAMP/PKA/CREB pathway cascade
(Sassi et al., 2008). Thus, multiprotein signaling complexes, which
include MRPs may affect the final GsPCR/cAMP-dependent cel-
lular response. Of more importance, the compartmentalized
expression of ARs in caveolae/cholesterol-rich microdomains
(Sitaraman et al., 2002; Cordeaux et al., 2008; Garg et al., 2009;
Assaife-Lopes et al., 2010) suggests that colocalization of MRP4
and ARs in caveolae microdomains coordinates the cAMP efflux
in the vicinity of the AR domain (Xie et al., 2011; D’ Ambrosi and
Volonte, 2013).

On the other hand, activation of ARs involved in the extracel-
lular cAMP-adenosine pathway also depends on the availability
and distribution of the ecto-enzymes. Ecto-phosphodiesterase
and ecto-nucleotidases or adenosine deaminase can very rapidly
modulate the extracellular concentrations of adenosine, which

will directly affect receptor subtype activation, and as conse-
quence, the final cell response. Interestingly, while all human
AR subtypes contain the caveolin binding domain (Mundell and
Kelly, 2011), studies analyzing the subcellular distribution of A1
receptors on cardiomyocytes showed that selective activation of
A1 receptors with CCPA results in the switch of A1 receptor
from caveolin-3-enriched domains to the bulk plasma mem-
brane (Lasley, 2011). The lipid raft localization of A1 receptor
seems to be essential for the A1-dependent activation of KATP
channels that is involved in cardioprotective effects of adeno-
sine. Disruption of cholesterol-rich microdomains with methyl-
cyclodextrin drastically reduces the effect of ARs on rat ventric-
ular myocytes KATP channels (Garg et al., 2009; D’ Ambrosi and
Volonte, 2013).

Conclusion

The existence of a system involved in sequential extrusion and
extracellular degradation of cAMP definitively extend the intra-
cellular signaling relevance of cAMP to an extracellular level,
which allows paracrine and/or autocrine feedback signaling,
depending on the AR subtype expressed on the target and neigh-
boring cells. In view of the recognized ability of adenosine to
regulate many cellular processes (Burnstock, 2007), the existence
of the extracellular cAMP-adenosine reveals new insights into the
regulatory mechanisms of cellular response triggered by GsPCR
and provides novel therapeutic targets for treatment of a num-
ber of diseases associated with dysfunction of GPCR signaling
cascade.
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