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Abstract

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various
types of environmental, plant, and animal samples. One such widespread virus group is the recently established family
Genomoviridae which includes viruses with small (~2-2.4kb), circular ssDNA genomes encoding rolling-circle replication initia-
tion proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of
121 new virus genomes within this family. Genomoviruses display ~47% sequence diversity, which is very similar to that
within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a
78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based
analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the
Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n= 1), Gemygorvirus (n=9), Gemykibivirus (n=29),
Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented
taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an ex-

ample for future classification of other groups of uncultured viruses discovered using metagenomics approaches.
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1. Introduction

Viral metagenomics, fostered by powerful high-throughput se-
quencing methods, has recently revolutionized our perception of
virus diversity in the environment. Many novel groups of unculti-
vated viruses have been discovered during the past decade, in-
cluding viruses with small, moderately-sized, and even large
genomes (Yau et al. 2011; Roux et al. 2012; Labonte and Suttle,

2013; Dutilh et al. 2014; Yutin et al. 2015; Zhou et al. 2015et al,;
Dayaram et al. 2016; Steel et al. 2016). Many of these virus groups
remain unclassified. To embrace the constantly growing output
from viral metagenomics studies, virus taxonomy is increasingly
switching from the traditional classification guided by biological
features, such as serology, virion morphology or host range, to
predominantly sequence-guided practices (Simmonds et al. 2017).
Sequence-guided virus classification is relatively straightforward

© The Author 2017. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

For commercial re-use, please contact journals.permissions@oup.com


Deleted Text: Dayaram et<?A3B2 show $146#?>al., 2016; Dutilh et<?A3B2 show $146#?>al., 2014; 
Deleted Text: Roux 
Deleted Text:  2012; 
Deleted Text: ; <xref ref-type=
http://www.oxfordjournals.org/

2 | Virus Evolution, 2017, Vol. 3, No. 1

when the new viruses fall into existing taxa, with well-defined de-
marcation criteria. However, in the absence of isolated representa-
tives and established taxonomic framework, rational definition of
appropriate taxonomic ranks, such as families, genera, and spe-
cies, for novel groups of uncultured viruses might be considerably
more complex. Solutions to this problem are perhaps most ur-
gently needed in the case of single-stranded (ss) DNA viruses,
which are extremely widespread in nature. Due to their small ge-
nomes sizes, high mutation and recombination rates (Duffy and
Holmes 2008; Duffy and Holmes 2009; Firth et al. 2009; Harkins
et al. 2009, 2014; Grigoras et al. 2010; Martin et al. 2011; Streck et al.
2011; Nguyen et al. 2012; Cadar et al. 2013; Roux et al. 2013), and
relative ease of genome amplification, an incredible diversity of
these viruses has been discovered through metagenomics studies
in all conceivable habitats. ssDNA viruses infect cells from all
three domains of life and are currently classified by the
International Committee on Taxonomy of Viruses (ICTV) into
eleven families and one unassigned genus. Members of the fami-
lies Microviridae and Inoviridae infect bacteria, viruses of the fami-
lies Spiraviridae and Pleolipoviridae prey on archaea, whereas
eukaryotes host viruses classified into the families Anelloviridae,
Bidnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae,
and Parvoviridae, and the unassigned genus Bacilladnavirus. In addi-
tion, several widespread groups of uncultured viruses discovered
by viral metagenomics remain unclassified, predominantly those
that are circular replication-associated protein encoding single-
stranded (CRESS) DNA viruses (Simmonds et al. 2017).

The Genomoviridae family is one of the most recently established
families of ssDNA viruses (Adams et al. 2016; Krupovic et al. 2016).
The family currently includes a single genus Gemycircularvirus,
which contains a single species, Sclerotinia gemycircularvirus 1, en-
compassing a single isolate, Sclerotinia  sclerotiorum
hypovirulence-associated DNA virus 1 (SSHADV-1). SSHADV-1 was
isolated from a plant-pathogenic fungus Sclerotinia sclerotiorum and
is the only ssDNA virus known to infect fungi (Yu et al. 2010, 2013).
Recently, Liu et al (2016) have shown that SSHADV-1 is able to in-
fect a mycophagous insect (Lycoriella ingenua) which acts as a trans-
mission vector. SSHADV-1 virions are non-enveloped, isometric,
20-22 nm in diameter, and assembled from a single capsid protein
(CP) (Yu et al. 2010). The genome is a circular ssDNA molecule of
2,166 nucleotides and contains two genes—for CP and rolling-circle
replication initiation protein (Rep). Like in many other ssDNA vi-
ruses with circular genomes, the large intergenic region of
SsHADV-1 contains a potential stem-loop structure with a nonanu-
cleotide (TAATATTAT) motif at its apex, which is likely to be im-
portant for rolling-circle replication initiation. The CP of SSHADV-1
is not recognizably similar to the corresponding proteins from vi-
ruses in other taxa. Although SSHADV-1 remains the only isolated
and classified member of the Genomoviridae, 121 viral genomes
with varying degree of similarity to that of SSHADV-1 have been re-
covered and sequenced from various environmental, plant- and
animal-associated samples, indicating that these viruses are wide-
spread and abundant in the environment (Table 1). However, a
proper taxonomic framework and demarcation criteria necessary
to accommodate these viruses within the family Genomoviridae are
lacking. Here, we explore the diversity and evolution of uncultured
SsHADV-1-like viruses and attempt to establish a framework for
their classification based on sequence data alone.

2. Genomoviridae diversity and species
classification

At the time of the analysis (August, 2016), there were 121
SsHADV-1-like genome sequences in the GenBank database.

Each of these genomes encodes two putative proteins homolo-
gous to the CP and Rep of SsHADV-1, highlighting strong
coherence of this virus assemblage. Nevertheless, there is a con-
siderable sequence divergence within the group (Supplementary
Fig. S1). To investigate the extent of genomoviral sequence diver-
sity, we analyzed the distribution of genome-wide pairwise
identities (one minus Hamming distances of pairwise aligned
sequences with pairwise deletion of gaps) across all 121 available
genomes (Fig. 1A) using SDT v1.2 (Muhire, Varsani, and Martin
2014). Most of the virus genomes in our dataset share 56-66%
genome-wide pairwise identities and only a handful contained
nearly identical relatives (>98% identity), indicating that se-
quence diversity among SsHADV-1-like viruses remains largely
unexplored.

Pairwise comparison of the Rep and CP protein sequences
revealed a broader distribution of identity values (Fig. 1B and C).
Notably, the CPs were considerably more divergent that the
Reps, with the highest proportion of pairwise identities being
~33% (versus ~48% for the Rep). This observation is in line with
functional differences of the two proteins and the fact that viral
CPs often encompass host recognition determinants which are
under constant pressure to co-evolve with the cellular receptors
(Kolawole et al. 2014; Shangjin, Cortey, and Segales, 2009). Based
on the analysis of distribution of the pairwise identities across
genomes, CPs and Reps, we consider a threshold of 78% to be a
conservative value for species demarcation. Thus, all viral ge-
nomes showing identities higher than this value should be con-
sidered as variants of the existing species. Nonetheless, there
may be situations where it is difficult to assign species because
a particular new sequence is

1. >78% similar to sequences from a particular species but
is < 78% similar to other variants of that same species;

2. >78% similar to sequences from two or more different
species.

To resolve the above conflicts, we suggest adopting a similar
approach proposed for geminiviruses (Muhire et al. 2013;
Varsani et al. 2014a, b; Brown et al. 2015). To resolve conflict 1,
we suggest that the new sequence be classified within any spe-
cies in which it shares >78% identity to any one variant for-
merly classified as belonging to that species, even if it is <78%
identical to other viruses within that species. To resolve conflict
2, we suggest that the new sequence be considered as belonging
to the species with sequences with which it shares the highest
degree of similarity.

3. Rep-based approach for creation of genera

Maximum likelihood phylogenetic analyses based on the Rep of
121 genomoviruses revealed several well-supported clades that
could be considered as genera within the family (Fig. 2). We
note that the clades obtained in the Rep-based phylogeny are
not fully consistent with those obtained in the phylogenetic
analysis of the full genome or the more diverse CP sequences
(Figs 3 and 4). This is most explicit in the case of the newly pro-
posed genus Gemykolovirus (see below). In the Rep-based tree
corresponding sequences form a sister clade to the single repre-
sentative of the genus Gemyduguivirus (Fig. 2). In contrast, in the
whole-genome-based phylogeny, gemykoloviruses form a sister
group to members of the genus Gemycircularvirus (Fig. 3). The
reason for this incongruence is likely to be intra-familial recom-
bination between different genomovirus genomes resulting in
chimeric entities encoding Rep and CP with different evolution-
ary histories (Kraberger et al. 2015a). Indeed, in the CP-based
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Figure 1. Distribution of (A) genome-wide, (B) Rep and (C) CP pairwise identities (121 taxa) of genomoviruses calculated using SDT v1.2 (Muhire, Varsani, and Martin

2014).

tree gemykoloviruses are firmly nested within the large clade
including the majority of gemycircularviruses (Fig. 4). Given
that CP sequences of genomoviruses are considerably more di-
vergent than the Rep sequences (Fig. 1), it appears reasonable to
establish a higher (i.e,, above the species level) taxonomic
framework using the Rep (Fig. 2). The latter protein is also

conserved in other eukaryotic ssDNA viruses (which is not the
case for the CP) and can thus be used to assess the place of
genomoviruses within the larger community of ssDNA viruses.
To evaluate the taxonomic structure of the Genomoviridae,
we took advantage of the fact that in Rep-based phylogenetic
analyses, genomoviruses consistently form a sister group to
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Figure 2. Maximum likelihood phylogenetic tree of the Rep amino acid se-
quences inferred using PHYML (Guindon et al. 2010) with LG+ G+I substitution
model and rooted with geminivirus sequences. The sequences of geminiviruses
labeled with the corresponding genera names are used as a guide to identify
genera within the Genomoviridae family. The cyan line shows a proposed demar-
cation of genera for both Genomoviridae and Geminiviridae. Branches with <75%
SH-like branch support have been collapsed.
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members of the Geminiviridae (Krupovic et al. 2016), a compre-
hensively characterized family of plant viruses with circular
ssDNA genomes (Varsani et al. 2014b). Thus, using the estab-
lished taxonomic framework of the Geminiviridae overlaid on the
Rep-based phylogeny as a guide, we could define five clades
and four additional singletons within the Genomoviridae branch
(Fig. 2). The defined groups displayed equivalent intra-family di-
vergence as the established genera within the family
Geminiviridae (Varsani et al. 2014b). The nine groups were sup-
ported in both nucleotide and protein sequence inferred phylog-
enies (Supplementary Fig. S2). Consequently, in addition to the
existing genus Gemycircularvirus, we propose establishing eight
new genera within the family Genomoviridae. The details of the
nine genera are summarized in Fig. 5 and briefly outlined
below.

3.1 Gemycircularvirus

This genus has the largest number of new species (n=43; sev-
enty-three genomes; Table 1) and includes SsHADV-1, the
founding member of the family. Members of the genus display
44% diversity. Viruses within the forty-three species cluster
with 99 and 96% branch support values in phylogenetic trees
constructed from either Rep or full genome sequences, respec-
tively (Figs 2 and 3).

3.2 Gemykibivirus

This is the second most populated genus (n=16; twenty-nine ge-
nomes; Table 1) in the family with 43% diversity among its mem-
bers. The name of the genus is an acronym of words geminivirus-
like and myco-like kibi virus (kibi means circular in Ambharic).
Sequences within the fifteen species cluster with 93% branch sup-
port within phylogenetic trees constructed from Rep (Fig. 2) and
two well-supported clades (100 and 96%) within trees constructed
from full genome sequences (Fig 3), suggesting that recombination
has played an important role in the evolution of this group.

3.3 Gemygorvirus

Members of this genus (n=5; nine genomes; Table 1) display
49% diversity. The name of the genus is an acronym of words
geminivirus-like and myco-like gor virus (gor means round in
Hindi). Sequences within the five species cluster with 100 and
99% branch support within phylogenetic trees constructed from
either Rep or full genome sequences, respectively (Figs 2 and 3).

3.4 Gemykolovirus

Members of this genus (n=2; three genomes; Table 1) display
37% diversity. The name of the genus is an acronym of words
geminivirus-like and myco-like kolo virus (kolo means round in
Czech). Sequences within the two species cluster with 100 and
89% branch support within phylogenetic trees constructed from
either Rep or full genome sequences, respectively (Figs 2 and 3).

3.5 Gemykrogvirus

Members of this genus (n=3; three genomes; Table 1) display
33% diversity. The name of the genus is an acronym of words
geminivirus-like and myco-like krog virus (krog means round in
Slovenian). Sequences within the three species cluster with 99
and 100% branch support within phylogenetic trees constructed
from either Rep or full genome sequences respectively (Figs 2
and 3).
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Figure 3. Maximum likelihood phylogenetic tree of the genomes of viruses in the Genomoviridae family. The tree was inferred using FastTree (Price, Dehal, and Arkin
2010) (GTR + CAT). The numbers at the branches indicate SH-like support values. The topology of tree supports the proposed genera demarcation at the genome level,
despite there being evidence of recombination within the genomes. Branches with <75% SH-like branch support have been collapsed.
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Figure 4. Maximum likelihood phylogenetic tree of the CP amino acid sequences
inferred using PHYML (Guindon et al. 2010) with LG+ G+I substitution models
and rooted with geminivirus sequences. Branches with <75% SH-like branch sup-
port have been collapsed.
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3.5 Gemyvongvirus

The name of the genus is an acronym of words geminivirus-like
and myco-like vong virus (vong means circular in Lao). The sin-
gle species Human associated gemyvongvirus 1 (Table 1) within the
genus shares between 56 and 62% genome-wide sequence simi-
larity with viruses in other genera and is a divergent taxon in
the phylogenetic trees constructed from either Rep or full ge-
nome sequences (Figs 2 and 3).

3.6 Gemytondvirus

The name of the genus is an acronym of words geminivirus-like
and myco-like tond virus (tond means round in Maltese). The
single species Ostrich associated gemytondvirus 1 (Table 1) within
the genus shares between 53 and 61% genome-wide sequence
similarity with viruses in other genera and is a divergent taxon
in the phylogenetic trees constructed from either Rep or full ge-
nome sequences (Figs 2 and 3).

3.7 Gemykroznavirus

The name of the genus is an acronym of words geminivirus-like
and myco-like krozna virus (krozna means circular in Slovenian).
The single species Rabbit associated gemykroznavirus 1 (Table 1)

Gemyecircularvirus

Gemyduguivirus

Gemygorvirus

Gemykibivirus

Gemykolovirus

Gemykrogvirus

Gemykroznavirus

Gemytondvirus

Gemyvongvirus

80

|:| Number of species

. Number of isolates

. Percentage diversity

Figure 5. Summary of genera and the associated species and their diversity
(within genera) within the Genomoviridae family.
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Figure 6. Summary of conserved motifs, that is nonanucleotide and Rep motifs illustrated using WebLogo3 (Crooks et al. 2004) identified in the family Genomoviridae as
a whole and its nine genera separately. Note the highly derived Walker A motif (GPHRRRRT) in the sole member of the genus Gemytondvirus.

within the genus shares between 56 and 61% genome-wide
sequence similarity with other sequences in other genera and is
a divergent taxon in the phylogenetic trees constructed from
either Rep or full genome sequences (Figs 2 and 3).

3.8 Gemyduguivirus

The name of the genus is an acronym of words geminivirus-like
and myco-like dugui virus (dugui means circular in Mongolian).
The single species Dragonfly associated gemyduguivirus 1 (Table 1)
within the genus shares between 57 and 62% genome-wide se-
quence similarity with viruses in other genera and is a divergent
taxon in the phylogenetic trees constructed from either Rep or
full genome sequences (Figs 2 and 3).

4. Conserved sequence motifs in the
Genomoviridae

CRESS DNA viruses replicate through the rolling circle replica-
tion (RCR) mechanism which is similar to that used by bacterial
plasmids (Khan 1997; Chandler et al. 2013; Ruiz-Maso et al.
2015). RCR is initiated by the Rep, encoded by CRESS DNA
viruses, cleaving the dsDNA between positions 7 and 8 of a
nonanucleotide sequence located at a putative stem-loop
structure at the origin of replication (Heyraud-Nitschke et al.
1995; Laufs et al. 1995b; Timchenko et al. 1999; Rosario,
Duffy, and Breitbart, 2012). In the case of genomoviruses, this

nonanucleotide is variable (TAWWDWRN’) with ‘TAATWYAT’
being the consensus nonanucleotide for gemycircularviruses,
whereas gemykibiruses display the greatest variation in
this motif—WATAWWHAN’ (Fig. 6; Supplementary Data S1).
In contrast, we note that within the Geminiviridae family,
including all recently described geminiviruses (Varsani et al.
2009; Briddon et al. 2010; Krenz et al. 2012; Loconsole et al. 2012;
Bernardo et al. 2013; Heydarnejad et al. 2013; Ma et al. 2015;
Bernardo et al. 2016), the consensus nonanucleotide motif is
‘TRAKATTRC.

The N terminus of the Rep contains motifs that are impor-
tant for initiating RCR and it is not surprising that some of these
motifs are well conserved across many ssDNA viruses, phages,
and plasmids that replicate using the RCR mechanism (Ilyina
and Koonin, 1992; Vega-Rocha et al. 2007a; Rosario, Duffy, and
Breitbart, 2012; Krupovic, 2013). The presence of a single cata-
lytic tyrosine residue in the RCR motif III classifies genomovi-
rus, geminivirus, bacilladnavirus, circovirus and nanovirus Reps
as members of superfamily II (Ilyina and Koonin, 1992;
Krupovic, 2013).

In genomoviruses, the conserved sequence of the RCR
motif I, which is thought to be involved in the recognition of
iterative sequences associated with the origin of replication,
is predominantly ‘uuTYxQ' (u denotes hydrophobic residues
and x any residue) (Fig. 6; Supplementary Data S1), with the
exception of the Reps of currently known gemykoloviruses
and gemykrogviruses. The genomovirus RCR motif II, ‘xHxHx’
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(Fig. 6; Supplementary Data S1), resembles that found in gemini-
viruses, and early work has shown that histidines in this motif
coordinate divalent metal ions, Mg2+or Mn2+, which are
important cofactors for endonuclease activity at the origin of
replication (Koonin and Ilyina 1992; Laufs et al. 1995b).
Genomoviruses have an RCR motif III of “YxxK’ and based on
other Rep studies, this motif is involved in the dsDNA cleavage
and subsequent covalent attachment of Rep through the
catalytic tyrosine residue to the 5 end of the cleaved product
(Laufs et al. 1995a, b; Orozco and Hanley-Bowdoin, 1998;
Timchenko et al. 1999; Steinfeldt, Finsterbusch, and Mankertz,
2006; Rosario, Duffy, and Breitbart, 2012). The conserved lysine
residue in the RCR motif III (Fig. 6; Supplementary Data S1) is
proposed to mediate binding and positioning during catalysis
(Vega-Rocha et al. 20074, b). A fourth conserved motif, the gemi-
nivirus Rep sequence (GRS), is only found in geminiviruses and
genomoviruses (Fig. 6). In geminiviruses, it enables appropriate
spatial arrangements of RCR motifs II and III (Nash et al. 2011).
Site-directed mutagenesis of the GRS domain in tomato golden
mosaic virus yielded non-infectious clones, demonstrating that
the GRS is essential for geminivirus replication (Nash et al. 2011)
and it is likely this is also the case for genomoviruses.

Rep is a multifunctional protein, with both endonuclease
and helicase activities. Rep helicase activity is mediated by con-
served motifs known as Walker A, Walker B and motif C located
in a C-terminal NTP-binding domain (Fig. 6; Supplementary
Data S1) (Gorbalenya, Koonin, and Wolf 1990; Koonin, 1993;
Choudhury et al. 2006; Clerot and Bernardi 2006). The helicase
domain found in Rep proteins of eukaryotic ssDNA viruses be-
longs to the helicase superfamily 3 (Gorbalenya, Koonin, and
Wolf 1990; Koonin 1993). The conserved Walker A motif of
genomoviruses is ‘GxxxxGKT’, with the exception of gemytond-
virus which contains a highly derived variant of this motif
(GPHRRRRT; Fig. 6). Previous studies have shown that during
synthesis of progeny strands, Rep helicase activity unwinds the
dsDNA intermediate in the 3'-5' direction using nucleotide tri-
phosphates as an energy source (Choudhury et al. 2006; Clerot
and Bernardi 2006). Walker A motif forms part of the ‘P-loop’
structure in the NTP-binding domain that facilitates ATP recog-
nition and binding with a conserved lysine residue (Desbiez et al.
1995; Timchenko et al. 1999; Choudhury et al. 2006; Clerot and
Bernardi 2006; Rosario, Duffy, and Breitbart 2012; George et al.
2014). The Walker B of genomoviruses is predominantly ‘uuDDu’
(Fig. 6; Supplementary Data S1), whereas the motif C is ‘uxxN’
(u denotes hydrophobic residues and x any residue; Fig. 6,
Supplementary Data S1). The hydrophobic residues in Walker B
motif contribute to ATP binding and are essential for ATP hydro-
lysis, whereas the one in motif C (Fig. 6; Supplementary Data S1)
interacts with the gamma phosphate of ATP and the nucleo-
philic water molecule via a conserved asparagine residue
(Choudhury et al. 2006; George et al. 2014).

Genomoviruses from different genera display distinct signa-
tures within the nonanucleotide as well as conserved nuclease
and helicase motifs, which are generally consistent with the
proposed taxa (Fig. 6; Supplementary Data S1).

5. Concluding remarks

The Reps of genomoviruses are most closely related to those of
geminiviruses and hence here we used a geminivirus
taxonomy-informed approach to classify 121 genomoviruses
into Rep sequence-based genera. Within the Genomoviridae fam-
ily we establish eight new genera in addition to the one created
previously (Krupovic et al. 2016). Detailed analysis of sequence
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motifs conserved within the genomoviral genomes further sup-
ports the validity of the proposed genera. We also define a spe-
cies demarcation criterion of 78% genome-wide identity, that is
sequences that share>78% pairwise identity with other
genomovirus sequences belong to the same species and those
that share <78% can be considered as new species. It is worth
noting that despite the fact that geminiviruses have been stud-
ied for over two decades, the sequence diversity of all known
geminiviruses is similar to that of the recently discovered
genomoviruses (46 vs 47%, respectively). This observation
strongly suggests that the extent of sequence diversity within
this expansive virus group remains largely unexplored.

Although the guidelines presented here are tailored for the
classification of viral genomes in the family Genomoviridae, a
similar sequence-based framework can be easily adapted for
other virus clusters identified though metagenomics studies
and lacking a pre-existing taxonomic framework, in particular
for novel CRESS DNA viruses. We do acknowledge that this ap-
proach deviates from a previous norm that used a set of criteria
including biological properties such as host range, pathology,
vectors, etc. coupled with sequence data. However, given that
the rate at which genome sequences of uncultivated viruses are
being identified from various sources, we need to establish
more robust classification approaches that can easily be imple-
mented on the bases of sequence data alone. Indeed, this neces-
sity is acknowledged by the ICTV which encourages
submissions of taxonomic proposals for classification of viruses
that are known exclusively from their genome sequences
(Simmonds et al. 2017). This new tide in virus taxonomy is ex-
pected to catalyze the comprehension of the diversity, ecology
and evolution of the global virome.

Supplementary data

Supplementary data are available at Virus Evolution online.
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This article is based on the taxonomic proposal 2016.001a-
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