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Abstract
The COVID-19 pandemic created a worldwide debilitating health crisis with the entire humanity suffering from the del-
eterious effects associated with the high infectivity and mortality rates. While significant evidence is currently available 
online and targets various aspects of the disease, both inflammatory and noninflammatory kidney manifestations secondary 
to COVID-19 infection are still largely underrepresented. In this review, we summarized current knowledge about COVID-
19-related kidney manifestations, their pathologic mechanisms as well as various pharmacotherapies used to treat patients 
with COVID-19. We also shed light on the effect of these medications on kidney functions that can further enhance renal 
damage secondary to the illness.
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Overview of the COVID‑19 pandemic

Coronaviruses have caused two epidemics in the past 2 dec-
ades, the Severe Acute Respiratory Syndrome (SARS) 
and the Middle East Respiratory Syndrome (MERS) [1]. 
In December 2019, a novel coronavirus, later was named 
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2), began to spread in Wuhan, China. It has then rap-
idly spread worldwide, and the World Health Organization 

(WHO) declared this outbreak a pandemic on the  11th of 
March, 2020 [2]. The WHO has officially named the infec-
tious disease that is caused by SARS-CoV-2 as Coronavirus 
Disease-2019 (COVID-19) [3]. At the time of this writing, 
the WHO reported a little over 236 M confirmed COVID-19 
cases and 4.8 M related deaths globally.

SARS-CoV-2 belongs to the Coronaviruses family; it 
shares 79.6% sequence identity with the previously identified 
SARS-CoV-1 [1, 4]. Studies done by Stockman et al., during 
the SARS outbreak in 2002–2003 revealed no significant 
improvement in patients treated with steroids but clear mani-
festations of side effects such as diabetes, avascular necrosis, 
psychosis, and prolonged viremia [5]. SARS-CoV-2 spreads 
majorly through droplets, aerosols, and direct contact, while 
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it is detected in stool, urine, and blood [6, 7]. It enters the 
host cell through binding to angiotensin-converting enzyme 
II (ACE2) receptors that are abundant in the lungs, heart, 
blood vessels, and intestines [2]. Once in the cytoplasm, 
SARS-CoV-2 releases its genomic RNA and starts replicat-
ing inside the host cell [1]. Its median incubation period is 
estimated to be 5.1 days, with 97.5% of symptomatic infec-
tions becoming evident within 11.5 days [8].

Clinically, features of COVID-19 range from asympto-
matic to acute respiratory distress syndrome (ARDS) and 
multi-organ dysfunction. The most common clinical features 
include coughing, fever, headache, sore throat, fatigue, and 
breathlessness. In some patients, the disease may adversely 
progress to pneumonia, respiratory failure, and death [9, 10]. 
This progression results basically from a severe inflamma-
tory response characterized by an extreme rise of inflamma-
tory cytokines and chemokines, which include IL-2, IL-7, 
IL-10, granulocyte colony-stimulating factor (GCSF), mono-
cyte chemoattractant protein (MCP1), macrophage inflam-
matory protein 1 alpha (MIP1A), tumor necrosis factor 
(TNF), CXC-chemokine ligand 10 (CXCL-10), and C-reac-
tive protein [11, 12]. Accumulating evidence suggest that the 
severity of COVID-19 is directly associated with increased 
levels of the above-listed cytokines and chemokines [12]. 
Noteworthy, among all the elevated inflammatory mediators, 
the blood IL-6 level is highly correlated with disease mortal-
ity, which suggests that fatal COVID-19 is characterized by 
a cytokine release syndrome (CRS) induced by a cytokine 
storm [13–15].

The kidney is among the different organs that are signifi-
cantly afflicted by the SARS-CoV-2 infection. In this regard, 
studies have reported that many patients with COVID-19 
pneumonia have presented multiple types of kidney injuries, 
while others who have died from COVID-19 illness showed 
severe kidney damage [16]. We will review herein the clini-
cal manifestations of kidney injury in COVID-19 subjects 
with a focus on the currently approved treatment/vaccines 
and their effect on renal function.

Clinical manifestations

Many reports have shown that renal dysfunction is an 
increasing clinical indicator of COVID-19 propagation. The 
most common clinical manifestation is proteinuria, which 
is found in more than half of the COVID-19 patients, in 
addition to hematuria, elevated blood urea nitrogen, and 
elevated serum creatinine. Moreover, radiographic abnor-
malities of the kidneys have also been observed [17–20]. 
In addition, SARS-CoV-2 was detected in urine analysis 
and postmortem samplings from the kidney tissues of the 
infected patients, confirming that the kidney is a definite 
target to these viral particles [21, 22]. From the pathological 

point of view, inflammation, edema, and a reduced density 
have also been reported in suffering kidney tissues [18]. 
Acute kidney injury (AKI) is infrequent in the context of 
mild-to-moderate COVID-19 individuals (5%). In these 
patients, the most common kidney abnormalities were sub-
clinical [23]. Nevertheless, recent evidence shows that AKI 
is more common in critically ill COVID-19 patients [24]. 
The majority of COVID-19 patients (80%) have mild/mod-
erate symptoms, while the remaining 20% develop severe/
critical infections requiring oxygen supplementation and 
cardiopulmonary support [25]. The inflammatory response 
has been correlated with the severity of SARS-CoV-2 infec-
tion, exhibiting increased IL-6, IL-2R, IL-8, IL-10, TNF-α, 
and WBC counts, including the neutrophil-to-CD8+ T cell 
ratio [26, 27]. The following parameters were suggested 
to be implicated in the progression from mild/moderate 
to severe/critical conditions: IL-2R level > 793.5 U/mL, 
WBC > 9.5 × 10^9/L or neutrophil count > 7.305 × 10^9/L. 
Similarly, overproduction of IL-6 levels and reduction 
in  CD8+ T cells were more pronounced among severe/
critical patients [26]. Significant increases in IL-2, IL-7, 
IL-10, IP-10, MCP1, MIP1A, GCSF, and TNF-α were also 
recorded in severe/critical cases of ICU patients [9]. CCL17 
levels were also considered as predictive markers for the 
differentiation of mild/moderate cases from severe/critical 
COVID-19 infections, with higher CCL17 levels in mild/
moderate cases during early infection [28].

Renal cellular entry of SARS‑CoV‑2 
and cellular damage

Although the respiratory system is the major target of 
COVID‐19, reports indicated that kidney involvement is 
frequent and ranges from mild proteinuria to an advanced 
acute kidney injury (AKI). Proposed mechanisms of kidney 
injury in COVID-19 patients include complex processes 
with virus-mediated damage, cytokine storm, Angiotensin 
II pathway activation, dysregulation of complement, hyper-
coagulation, and microangiopathy [16, 29].

Mechanisms of renal entry

SARS-CoV-2 mainly binds ACE2 proteins, which are 
expressed in kidneys on the brush border of the apical 
membrane of proximal tubules and to a lesser extent in 
podocytes. Thus, it could be hypothesized that the virus 
enters the arteriole and the glomerular capillaries and ini-
tially infects the glomerular endothelial cells. Consequently, 
podocytes are infected, and the virus enters the tubular fluid 
and binds to its receptors in proximal tubules, leading to 
acute tubular necrosis protein leakage in Bowman’s capsule, 
collapsing glomerulopathy, and mitochondrial impairment 
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[29]. Initially, the virus gains access to the kidneys through 
the bloodstream, whereby many COVID-19 patients were 
reported to have SARS-CoV-2 RNAemia [9]. Although 
viremia in COVID-19 subjects remains a matter of debate, 
the virus was found in extracellular vesicles, allowing a sys-
temic spread across the body and damage of various organs, 
particularly the kidneys [30–32]. Of concern is the ability of 
the SARS-CoV-2 to integrate its RNA within the genomic 
DNA of the host cells after reverse transcription [33]. This 
could possibly translate into the expression of viral proteins 
in kidney cells, a transformation that could lead to autoim-
mune disease.

Thus, the first step of SARS-CoV-2 infection in humans 
is the contact of the virus with cell-surface ACE2. ACE2 
interacts with external SARS-CoV-2 by binding to the 
receptor-binding domain (RBD) of the viral spike protein. 
This process is followed by proteolytic cleavage of the spike 
protein, which allows fusion to cells, and transmembrane 
protease serine 2 (TMPRSS2) has been identified as a pro-
tease responsible for the reaction (Fig. 1).

Another recently studied mode of entry of the virus is 
through employing the NRP-1 receptor [34]. NRP-1 is a 
catalytic and signaling protein widely known for its role in 
cellular signaling and its function as a cell-surface receptor. 
It was shown to serve as an entry factor and to potentiate 
SARS-CoV-2 infectivity in vitro [34, 35]. NRP-1 has two 
isoforms: a truncated secreted form and a transmembrane 
form which interacts mainly with SARS-CoV-2 particles 
[34]. The transmembrane form has a ligand-binding site 
for growth factors such as VEGF, also co-opted by dif-
ferent viruses including EBV, human T cell lymphotropic 
virus-1 (HTLV-1) as well as SARS-CoV-2 [34–37]. In 
severe COVID-19 cases, arterial injury results in a potential 
upregulation of the NRP-1 receptor [32, 34]. Analysis of a 
cryopreserved diabetic kidney single-nucleus RNA sequenc-
ing dataset showed that NRP-1 was the only receptor signifi-
cantly upregulated [34].

Acute kidney injury in COVID‑19 patients

According to a study done in China in 2020, 75.4% of 333 
patients with SARS-CoV-2 infection had renal involve-
ment, with proteinuria and hematuria. The incidence 
of AKI was estimated to be 4.7% in the total cohort by 
KDIGO criteria. Compared to those with moderate dis-
ease, a greater incidence of proteinuria and hematuria 
were demonstrated in patients with severe or critically 
ill COVID-19 pneumonia. In general, 43.9% of critically 
ill cases developed acute kidney injury during the hos-
pital stay. The patients with renal involvement, includ-
ing hematuria, proteinuria, and acute kidney injury, had 
a higher overall mortality of 11.2% compared to 1.2% of 
those without renal involvement [19]. Similarly, of 710 

patients admitted to Wuhan Jin Yin-tan hospital with 
confirmed SARS-CoV-2 pneumonia, 52 patients were 
considered critically ill patients. Most patients had organ 
function damage, including 29% with acute kidney injury, 
17% of those required renal replacement therapy [38]. 
Moreover, and in a different study, serum creatinine and 
blood urea nitrogen (BUN) were shown to be elevated 
while the glomerular filtration rate was low on the admis-
sion of patients with SARS-CoV-2 infection. In general, 
3.9% of those patients had proteinuria, and 26.7% had 
hematuria. Interestingly, patients with elevated baseline 
serum creatinine demonstrated a higher leukocyte count 
and lower lymphocyte and platelet counts with coagula-
tion pathway abnormalities linking to a critical disease. 
During hospitalization, acute kidney injury occurred in 
5.1% of those patients with the incidence being highest in 
the subjects with elevated baseline serum creatinine. In-
hospital death occurred in 33.7% of patients with elevated 
baseline serum creatinine, elevated baseline blood urea 
nitrogen, proteinuria, hematuria, and acute kidney injury 
[17]. In another study, acute kidney injury occurred in 46% 
of patients admitted at the Mount Sinai Health System dur-
ing 2020 with COVID-19; 19% of those patients required 
dialysis. Although it seemed consistent, the proportions of 
patients with acute kidney injury and those in the ICU var-
ied in the five Mount Sinai Health System locations. This 
study concluded that of the 4,000 patients with COVID-
19 admitted to Mount Sinai Health System, acute kidney 
injury occurred in nearly half of the patients, and nearly 
a quarter of those patients required acute dialysis. Acute 
kidney injury was independently associated with higher 
mortality: 35% of survivors did not recover kidney func-
tion by hospital discharge and, of all patients with acute 
kidney injury, only 30% survived and regained kidney 
function [39]. Compared to previous pandemics with the 
same virus family, the current COVID-19 pandemic, just 
like the severe acute respiratory syndrome coronavirus 1 
outbreak in 2005, yielded a higher incidence of AKI, open-
ing thereafter a way for potential future research [40]. In 
a recent Brazilian cohort study, 55% of the patients devel-
oped AKI, and more than half of that progressed into stage 
3 that was correlated with a high mortality rate compared 
to those without AKI [41]

In summary, while comparing different populations of 
COVID-19 patients in different locations and studies, it 
was shown that, clinically, patients with severe and critical 
COVID-19 infections were at substantially higher risk of 
developing acute kidney injury with varying outcomes of 
sustained kidney injury, recovery, need for renal replace-
ment therapy, or death. Predictor factors for severe acute 
kidney injury overlapped between the different studies and 
included old age, high creatinine, and blood urea nitrogen 
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Fig. 1  Mechanisms of renal entry and kidney injury in COVID-19 
infection. COVID-19 infection in humans proceeds by the interac-
tion of the receptor-binding domain (RBD) of the viral spike protein 
with the cell-surface angiotensin-converting enzyme II (ACE2). This 
is followed by the proteolytic cleavage of the spike protein through 
proteases like the transmembrane protease serine 2 (TMPRSS2). 
The virus interacts with CD147, expressed on the proximal convo-
luted tubules (PCT) of the nephron and on infiltrating inflammatory 
cells, resulting in acute tubular necrosis, protein leakage in Bowman’s 
capsule, collapsing glomerulopathy, and mitochondrial impairment. 
Simultaneously, the activated lymphocytes from the inflammatory 
infiltrates (lymphocytes, plasma cells and eosinophils) in the renal 

interstitium destroy renal cells and induce a cytokine storm of per-
forin, granulysin, and proinflammatory cytokines. The cytokine storm 
activates macrophages leading to erythro‐phagocytosis and anemia, 
induces capillary leak syndrome and thrombosis both linked to dis-
seminated intravascular coagulation (DIC), and contributes to renal 
cell damage also caused by direct renal infection. Oversecretion of 
key cytokine, interleukin-6 (IL‐6), that binds the IL‐6 receptor and 
activates the vascular endothelial growth factor (VEGF), decreases 
the expression of E‐cadherin, increases vascular permeability, shock, 
and MOD while increasing kidney vascular permeability and micro-
circulatory dysfunction. (Created with Biorender.com)
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at presentation, gender (being male), and history of hyper-
tension and diabetes.

Renin–angiotensin–aldosterone system impairment 
by SARS‑CoV‑2

The renin–angiotensin–aldosterone system (RAAS) regu-
lates tissue perfusion, extracellular volume, and blood pres-
sure homeostasis via opposing pressor and depressor path-
ways [42, 43]. Renin release is the first biochemical-limiting 
step in the activation of RAAS. The factors that contribute 
to the release of renin include reduced-sodium delivery to 
the distal convoluted tubule, reduced perfusion pressure in 
the afferent arteriole of the kidneys, hypovolemia, and sym-
pathetic stimulation [44–46]. On the contrary, the release 
of renin is inhibited by the atrial natriuretic peptide (ANP), 
released secondary to the mechanical stretch of myocardial 
walls induced by volume overload or high blood pressure 
[47–49]. In the circulation, renin metabolizes angiotensino-
gen, liberating angiotensin I (Ang 1–10). Next, the angi-
otensin-converting enzyme (ACE), released from vascular 
endothelial cells in the lungs and in smaller proportions by 
the kidneys, converts Ang I (Ang 1–10) to the potent vaso-
constrictor Angiotensin II (Ang 1–8). Ang II (Ang 1–8) acts 
to separately activate two G-protein coupled receptor sub-
types, angiotensin type‐1 and type‐2 receptors  (AT1R and 
 AT2R, respectively), each of which mediates different physi-
ological outcomes. Ang II (Ang 1–8)-mediated activation 
of  AT1R in the endothelium of arterioles causes significant 
vasoconstriction, inflammation, and fibrotic remodeling, as 
well as sodium retention with aldosterone and renin release 
[44–46, 50]. Conversely, activation of  AT2R by Ang II (Ang 
1–8) initiates opposing effects to  AT1R, hence producing 
vasodilatory effects and inhibiting growth [50]. On the other 
hand, ACE2 cleaves Ang I (1–10) into Ang 1–9 and converts 
Ang II (Ang 1–8) to Ang 1–7. Products of the ACE2 pepti-
dase, Ang 1–9 and Ang 1–7 provide vasoprotection through 
vasodilatory, anti-inflammatory, and anti-fibrotic properties 
[50].

Under normal conditions, the two opposing pathways of 
the RAAS system coordinate to match increases in ACE and 
Ang II (pressor pathway) with rises in ACE2 and Ang 1–7 
(depressor pathway) to keep homeostatic balance [51–53]. 
However, under pathological conditions, an imbalance 
between both pathways can be noted and is unopposed 
skewed towards ACE and Ang II activities, potentially driv-
ing renal injury [54, 55]. Similarly, upregulated levels of 
Ang II were found among COVID-19 patients [56], which 
raises the possibility of Ang II involvement in renal pathol-
ogy. For example, the ion channel TRPC6 is directly acti-
vated in podocytes by Ang II and causes excessive proteinu-
ria and kidney damage [57–59]. TRPC6 is further involved 
in manifestations of COVID-19 infection, including pain, 

and currently, a specific TRPC6 inhibitor is being devel-
oped by Boehringer Ingelheim. TRPC6 is heavily involved 
in pulmonary edema [60] and endothelial barrier dysfunc-
tion with increased endothelial permeability of pulmonary 
blood vessels [61].

During COVID-19 infection, the binding of the SARS-
CoV-2 virus to its ACE2 receptor downregulates the lat-
ter and contributes to the loss of ACE2 catalytic activity in 
RAAS [62]. ACE2 loss promotes the activation of  AT1R 
by  AT2R, hence amplifies the oxidative stress response and 
cytokine production, contributing to more inflammation and 
disruption of the glomerular filtration barrier [63]. Studies 
on ACE2-deficient mice reported cardiovascular defects, 
including endothelial disruption [64], high blood pressure 
[65], and cardiac structural abnormalities [66]. Furthermore, 
a subsequent drop in Ang (1–7) from ACE2 inactivation 
might drive a shift towards the pressor pathway of RAAS 
and the corresponding deleterious cardiovascular effects in 
COVID-19 patients [50].

Mechanisms of renal injury

COVID-19 causes kidney injury by either direct infec-
tion or systemic effects, including host immune clearance 
and immune tolerance disorders, endothelium-mediated 
vasculitis, thrombus formation, glucose and lipid metabo-
lism disorder, and hypoxia [20]. Starting with direct renal 
infection, evidence suggested that SARS-CoV-2 binds to 
ACE2 through the S1 subunit, thus directly causing dam-
age to intrinsic renal cells. Human tissue single-cell RNA 
sequencing data and ACE2 staining revealed that the kidneys 
and bladder are enriched with ACE2, which increases their 
chance of viral invasion [67, 68].

At the immunologic level, inflammatory infiltration of 
the renal interstitium predominantly consists of lymphocytes 
and plasma cells, with some eosinophils [69]. The activated 
lymphocytes migrate to kidney tissues to destroy infected 
renal cells and release inflammatory cytokines, which results 
in local inflammation and tissue injury. In addition, cytotoxic 
particles such as perforin, granulysin, and proinflammatory 
cytokines, which are highly expressed in lymphocytes, also 
contribute to kidney damage [70, 71]. The exaggerated 
release of cytokines leads to a cytokine storm [72, 73]. The 
cytokine storm may contribute to AKI in COVID‐19 cases 
by cooperating with renal resident cells and promoting tubu-
lar and endothelial dysfunction [29]. Among all cytokines, 
IL-6 has been a key player by inciting renal endothelial 
cells to secret pro‐inflammatory chemokines/cytokines 
and induced kidney vascular permeability, playing a part 
in microcirculatory dysfunction [72]. Pro‐inflammatory 
cytokines can also induce capillary leak syndrome and the 
production of thrombosis, which may result in disseminated 
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intravascular coagulation [74]. Erythro‐phagocytosis and 
anemia are also observed since cytokines can activate mac-
rophages (Fig. 1). Altogether, the disturbances of vascular 
hemostasis, anemia, and cytokine‐induced injuries lead to 
kidney failure [75].

The aforementioned conditions, as well as COVID‐19, 
may result in over secretion of IL‐6 that can bind to IL‐6 
receptors leading to activation of vascular endothelial 
growth factor and decreased expression of E‐cadherin, 
promoting vascular permeability, shock, and MOD [76]. 
Mechanisms of kidney injury in COVID-19 infection are 
depicted in Fig. 1.

Histopathologic findings (autopsies and biopsies)

Histological changes were overtly seen in the kidneys of 
COVID-19 subjects. Although renal parenchyma and the 
interstitium can be affected, renal biopsy and autopsy 
records presented significant acute tubular injury (ATI), 
indicating that interstitial injury is more severe than glo-
merular damage [68, 77, 78]. The kidney autopsy results 
showed diffused acute proximal tubular injury with loss of 
brush border, and pigment casts were observed in the lumen 
of renal tubules [79]. In addition, glomerular capillary loops 
were reported to be obstructed, and diffused erythrocyte 

aggregations were presented [68]. Edema was reported in 
the interstitium, along with an associated inflammatory 
infiltrate that predominantly consisted of lymphocytes and 
plasma cells with scattered eosinophils [71]. Distal tubules 
and collecting ducts had cellular swelling and edematous 
expansion of the interstitial space without significant inflam-
mation. The changes with endothelial injury include swell-
ing, sub-endothelial lucent expansion, and endothelial pro-
liferation with the deposition of IgG, IgA, IgM, and C3 [68]. 
Occasional podocytes vacuolation and detachment from the 
glomerular basement membrane were also observed. Cres-
cents and hyper-cellular or inflammatory lesions of glomer-
uli were also noted. Ischemic changes with an accumula-
tion of plasma in Bowman’s space were also documented. 
Focal segmental glomerulosclerosis (FSGS) was observed 
in patients with diabetes. Lymphocytes were not presented 
in glomeruli, and no immune reactants were detected there 
as well, which suggested that lymphocyte infiltration and 
immune reactions are uncommon in glomeruli after viral 
infection [77]. Histopathologic findings in COVID-19 infec-
tion are summarized in Fig. 2.

Fig. 2  Histopathologic findings in COVID-19 infection. (Created with Biorender.com)



45Mechanisms of COVID-19-induced kidney injury and current pharmacotherapies  

1 3

The heart–kidney crosstalk in COVID‑19 patients

Cardiovascular manifestations, a hallmark of the initial 
stages of COVID-19 infection, contribute to the develop-
ment of heart failure, myocardial infarction, and myocar-
ditis through imbalances in the RAAS linked to increased 
troponin and natriuretic peptides levels. RAAS imbalance 
further exacerbates the clinical course of infection via 
microvascular damage, hyperinflammation, and endothe-
lial dysfunction [80]. This inflammatory state may lead to 
thrombosis and diffuse microangiopathy, or arrhythmias, 
myocarditis, acute coronary syndrome, and even sudden 
death [81]. In severe COVID-19 infections, myocardial 
dysfunction may result from hypoxia, thrombosis, cytokine 
storm, and/or direct viral injury [82]. Similarly, the hyper-
coagulable state in critical COVID-19 patients may prompt 
irreversible kidney damage by extension of the acute tubular 
necrosis to cortical necrosis, thus causing microinfarctions 
in the kidney [29]. Further increased circuit clotting has been 
noted in COVID-19 patients undergoing dialysis [83]. These 
findings suggest a connection between the renal and cardio-
vascular systems, which can be explained by the expression 
of the ACE2 receptor, the COVID-19 port of entry to the 
cell, in both cardiac and renal tissues. Of note, the expres-
sion of ACE2 is downregulated during the course of the 
infection, thus causing the loss of angiotensin-(1–7) cardio-
protection and/or increased action of angiotensin II [84], 
which could reveal detrimental on the heart and the kidneys.

Reportedly, hypertension coexists along with other car-
diovascular disorders in COVID-19 patients [85]. It is sig-
nificantly prevalent in severe forms of the disease compared 
to mild cases [86, 87], yet, based on the Centers for Disease 
Control and Prevention (CDC), hypertension is not con-
sidered as a risk determinant of COVID-19 severity [88]. 
However, chronic kidney disease (CKD) is the common-
est indicator of secondary hypertension and an independ-
ent contributor to cardiovascular mortality and morbidity 
[89–91]. Therefore, additional research is needed to unveil 
the interplay of these variables in the context of COVID-
19 infection. In fact, the heart–kidney crosstalk has been 
strongly implicated by Pelayo et al. (2020), suggesting an 
unwavering link between acute kidney injury (AKI) and 
heart failure (HF) in COVID-19 patients. The incidence 
of HF in AKI patients was nearly four times (19% vs. 4%) 
more prevalent than the general population of COVID-
19-infected patients with increased hypertension (80 vs. 
64%) and CKD (27 vs. 9%), thus hinting at the contribution 
of cardiorenal communication to kidney and heart func-
tion deterioration [85]. The cardiorenal syndrome (CRS) 
may develop in COVID-19 patients with underlined HF 
[92, 93]. CRS implies that dysfunction in either the heart 
or the kidney will reciprocally impair the other organ [94]. 
For example, concomitant COVID-19-induced myocarditis 

and right-ventricular dysfunction cause venous congestion 
and diastolic dysfunction with declined cardiac output. 
The resultant compromised end-organ perfusion similarly 
translates to kidney injury by jeopardizing its perfusion and 
creating local congestions [29, 94]. Interestingly, right-ven-
tricular dilation has been strongly linked to an increased risk 
of death in severe COVID-19 patients [82]. Besides right-
ventricular failure, left ventricular dysfunction is directly 
linked to decreased cardiac output and incomplete arterial 
filling. Subsequently, the kidneys suffer from hypoperfu-
sion which translates into a reduced glomerular filtration 
rate (GFR) [95, 96]. In the same vein, cardiomyopathy due 
to cytokine storm and/or myocarditis can lead to Type 1 
CRS phenotype [92, 93] displayed by endothelial damage, 
which causes intra-abdominal hypertension, edema, pleural 
effusion, intravascular fluid drop, and hypotension [16, 93]. 
While Type 3 CRS phenotype occurs as a consequence of 
cardiomyocyte damage from AKI, Type 5 CRS phenotype is 
restricted to kidneys and heart damage due to microthrombi, 
inflammatory response, and increased vascular permeability 
[16, 92, 93].

From the therapeutic point of view, extracorporeal mem-
brane oxygenation (ECMO) is widely used in COVID-19 
patients to sustain the heart and lungs, sometimes coupled 
with continuous kidney replacement therapy (CKRT) [93]. 
Nonetheless, excessive positive pressure ventilation admin-
istered to COVID-19 patients potentially leads to adverse 
hemodynamic effects of decreased cardiac output, thus 
amplifying kidney hypoperfusion. Consequently, AKI may 
be either induced or intensified in COVID-19 subjects, 
depending on the severity of the case and the implemented 
therapies [97]. Recommendations for treatment of cardiore-
nal syndrome in COVID-19 patients suggest maintenance 
of a mean arterial pressure > 65 mmHg, good oxygenation, 
and prevention of volume overload. Despite the initial con-
troversy against the use of ACE inhibitors and angiotensin 
II receptor blockers since they might increase ACE2 expres-
sion, RAAS blockade is still recommended as no evidence 
indicates any deleterious effects [98, 99].

Effect of various treatments adopted for COVID‑19 
on kidney function

COVID-19 may have a biphasic clinical course, with an 
initial viral replication phase followed by a cascade of 
inflammatory events. As such, the consensus is generally 
moving towards the need for a biphasic pharmacological 
approach for treatment. The first phase of the disease (from 
the onset of the symptoms up to 7–10 days) is character-
ized by viral-induced cytopathic effects, and antiviral drugs 
may be administered (e.g., chloroquine, hydroxychloroquine, 
lopinavir/ritonavir, and darunavir/cobicistat). The second 
phase (beginning 7–10 days from the onset of symptoms) 
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is associated with hyperinflammatory and cytokines release 
syndromes and carries the risk of death. It is characterized 
by progressive lung involvement and occasionally signs of 
hemophagocytic syndrome, with escalating needs for oxy-
gen supplementation and ventilatory support. Immunosup-
pressive and immunomodulatory drugs may be of benefit at 
this stage (e.g., glucocorticoids, anti-cytokine drugs, toci-
lizumab) [100]. In severe cases, hypercoagulability states 
are reached in response to the cytokine storms, and antico-
agulation therapies are imperative to avoid various organ 
failure and death (unfractionated heparin enoxaparin and 
low-molecular-weight heparins) [101].

For patients with kidney disease, the management of 
COVID-19 poses a great challenge, especially in those 
who are immunosuppressed or with severe comorbidities 
[100]. Given the high incidence of kidney involvement in 
COVID-19 and the increased mortality in patients with pre-
existing chronic kidney disease (CKD) and those undergoing 
renal replacement therapy with hemodialysis, it is essential 
to thoroughly examine all available treatment options and 
consider their effects on renal function [96]. Furthermore, 
to reduce the incidence and severity of acute kidney disease 
in critically ill COVID-19 patients with kidney conditions, it 
might be useful to implement the Kidney Disease: Improv-
ing Global Outcomes (KDIGO) supportive care guidelines 
(ex: avoidance of nephrotoxins, regular monitoring of serum 
creatinine and urine output, consideration of hemodynamic 
monitoring), though this requires validation [102]. In fact, 
personalized therapy in COVID-19 ill patients is impera-
tive to avoid treatment-induced kidney failure. Universally 
adopted treatment for COVID-19 and their kidneys-related 
complications are detailed below.

Antivirals

Azithromycin

Azithromycin (AZM) is a macrolide-type antibiotic used 
mainly to treat respiratory infections. It has shown broad 
antiviral effects at both in vitro and in vivo stages against 
Ebola, Zika, influenza H1N1, respiratory syncytial virus, 
and rhinoviruses. In the case of SARS-CoV-2, it has shown 
synergistic effects when used with chloroquine and hydroxy-
chloroquine in clinical settings [103]. AZM acts by bind-
ing to viral particles and blocking their attachment to lipid 
rafts, while chloroquine competitively prevents virus bind-
ing to gangliosides. Their similar mechanisms of action 
might explain the synergistic effects of the combination 
therapy [104]; however, combination therapy was associ-
ated with serious side effects such as prolonged QT interval 
and other GI symptoms like nausea, vomiting, and diarrhea, 

particularly in patients with a GFR less than 10 mL/min 
[105]. Azithromycin is eliminated mainly in the gastrointes-
tinal tract via the biliary secretion, while liver metabolism 
renders inactive metabolites eliminated in the urine; thus, no 
dose adjustments are needed in patients with renal disease 
[106]. Randomized clinical trials showed no clinical ben-
efit; therefore, the use of azithromycin, alone or in combina-
tion with hydroxychloroquine, for treating COVID-19 was 
dropped [107–110].

Favipiravir

Favipiravir (FP) [6-fluoro-3-hydroxy-2-pyrazinecarbox-
amide (T-705, favipiravir)] is an RNA-dependent RNA 
polymerase (RdRp) inhibitor approved only in Japan for its 
anti-influenza activity [111]. FP might also work against 
COVID-19 via inhibiting the RNA polymerase [112]. The 
FP regimen against COVID-19 in Japan consists of 1600 mg 
three times daily (TID) on day 1, followed by 600 mg TID 
for 4 days [113] amidst a lack of published data on the dos-
age, duration safety, and efficacy of this drug in COVID-19 
treatment [113, 114]. FP was also approved in China for use 
in COVID-19 treatment [115], and preliminary data of a 
Chinese clinical trial unveiled better antiviral activity than 
lopinavir/ritonavir [116]. Moreover, FP administration has 
resulted in a shorter hospital stay and decreased the need for 
mechanical ventilation [117]. FP is not recommended for 
the treatment of COVID-19 as current data on FP showed 
no clear conclusion since most of these studies had other 
therapies administered along with FP [118–120].

FP is extensively metabolized by the liver to produce 
inactive oxidative metabolites progressively excreted in the 
urine, reaching 80–100% in a week [121], thus necessitating 
proper monitoring of elderly patients and those with kidney 
malfunction. Nonetheless, no evidence calls for dose sup-
plementation to dialysis treatments [122].

Remdesivir

Remdesivir and other nucleoside and nucleotide analogs 
were first used as broad-spectrum antivirals in the treat-
ment of HIV, herpesvirus, and Hepatitis B and C infections. 
However, they were used more often after showing effi-
ciency against viral families such as Picornaviridae, Fla-
viviridae, Caliciviridae, and Coronaviridae, due to amino 
acid sequence similarities with HCV [123], and phyloge-
netic similarities to the RNA-dependent polymerases [124]. 
Remdesivir is converted to an active metabolite, Remdesivir 
triphosphate, that targets and competitively inhibit the viral 
RNA genome replication mechanism [125]. In COVID-19, 
it works to terminate RNA synthesis at three positions after 
its incorporation into the strand [126]. Remdesivir has been 
shown to have in vitro activity against SARS-CoV-2 [127].
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The US Food and Drug Administration (FDA) has 
approved Remdesivir, under the brand name Veklury, to be 
used as an emergency oral treatment in pediatric patients 
[128]. COVID-19 patients receiving remdesivir showed 
a faster recovery rate in a 10-day period as compared to 
patients taking a placebo [129]. The US FDA issued an 
emergency authorization for the use of baricitinib, a Janus 
kinase inhibitor, in combination with remdesivir. Baricitinib 
has been reported to have antiviral effects via interference 
with the viral entry, in addition to its immunomodulatory 
effects [130]. In patients with renal impairment, the phar-
macokinetics of remdesivir in these patients is unclear; in 
addition, since it is prepared in a cyclodextrin vehicle, it can 
accumulate to toxic levels in patients with renal impairment. 
However, cyclodextrin vehicle is used in small concentra-
tions, and the treatment duration with remdesivir is relatively 
short. Thus, the risks of toxicity can be considered minimal 
[131]. Several studies reported that Remdesivir is safe in 
patients with renal impairment [132]. The national clinical 
management protocol stated that Remdesivir is contraindi-
cated in patients with a GFR < 30 mL/min, and in patients 
on hemodialysis [133, 134]

Lopinavir/ritonavir

The drug combination “lopinavir-ritonavir” was proposed 
as an antiviral treatment for COVID-19 [135]. Lopinavir is 
an HIV-1 protease inhibitor and is combined with ritonavir 
to increase its plasma half-life [130, 136]. It is indicated 
for HIV-1 infections in adult and pediatric patients [137]. 
A study of lopinavir–ritonavir in a ferret model of COVID-
19 showed reduced clinical symptoms in treated animals 
with no effect on viral titers [138]. Results from a rand-
omized clinical trial performed by a Chinese group found 
no additional benefit of using lopinavir/ritonavir in hospi-
talized adult patients with severe infection beyond stand-
ard care [139]. In fact, The National Institutes of Health’s 
(NIH) COVID-19 guidelines recommended against the use 
of lopinavir/ritonavir and other HIV-1 protease inhibitors to 
treat COVID-19 [140].

This drug is primarily excreted by the fecal route, with 
renal elimination accounting for less than 2% of the total 
elimination rate [141]. Therefore, no dose adjustment for 
lopinavir/ritonavir is needed in patients with kidney injury. 
However, these drugs are highly bound to plasma proteins 
and can, therefore, be displaced by other serum protein 
bound-medications that can increase lopinavir/ritonavir free 
fractions in these patients [105]. Additional precautions and 
close monitoring are required in elderly patients since the 
data on the possible reactions in these patients remain insuf-
ficient [142, 143].

Anti‑inflammatory drugs

Dexamethasone and other glucocorticoids

Glucocorticoids are natural hormones produced by the 
adrenal cortex. They have potent inflammatory and immu-
nosuppressive properties by inhibiting several intracellular 
proinflammatory pathways. Glucocorticoids were often used 
in SARS and MERS outbreaks and are widely used in the 
COVID-19 pandemic [144]. A daily dose of 6 mg of dexa-
methasone reduced the monthly mortality rate in COVID-
19 patients receiving supplemental oxygen therapy when 
compared to those with the usual care, and patients in need 
of mechanical ventilation benefited the most [145]. Dexa-
methasone (or other glucocorticoids) is not recommended 
for the treatment in patients with mild-to-moderate COVID-
19 [146, 147]. However, according to the World Health 
Organization, corticosteroids are usually not recommended 
as they inhibit viral clearance and exacerbate viremia [148]. 
Moreover, within 24 h of intake, 65% of dexamethasone is 
excreted unchanged in urine and may cause fluid retention 
in the elderly or in patients suffering from kidney failure. 
Dexamethasone dosage is not altered by dialysis, but patients 
using methylprednisolone should maintain the constant 
usual dosing procedure after dialysis [149].

Tocilizumab

Tocilizumab (TOC) is a humanized monoclonal antibody 
that inhibits the interleukin‐6 (IL-6) receptor to potentially 
reverse the effects of COVID-19-induced cytokine storm 
[150, 151]. TOC decreased the mortality rate in severe 
COVID-19 patients [152] and is reserved for this category 
of patients [151] due to immunosuppression and increased 
risk of infection [153]. However, a recent meta-analysis did 
not reveal a statistically significant rise in infection rates 
in TOC-administered patients compared to those given the 
standard of care [152]. Larger randomized clinical trials 
adjusted for the standard of care medications are needed 
to establish guidelines for TOC administration in severe 
cases [152]. No TOC dose adjustments are recommended in 
patients on dialysis [149]. Tocilizumab is not renally elimi-
nated due to its high molecular weight (148 kDa) [154] and 
limited data are available on the effects of TOC on the kid-
ney and its renal clearance [155].

Unfractionated heparin

Unfractionated heparin is an intravenous anticoagulant drug 
[156] that exerts its effect by binding and stabilizing the 
complex formed between antithrombin (AT)-thrombin, and 
AT-factor Xa, in addition to the inhibition of other clotting 
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factors. This drug is indicated for the prevention and treat-
ment of venous thrombosis and pulmonary embolism (PE), 
prevention of mural thrombosis after myocardial infarc-
tion (MI), and treatment of unstable angina and MI [157]. 
Heparin is cleared from the circulation mainly through the 
liver, and reticuloendothelial cell-mediated uptake into the 
extravascular space [156].

The observation of high rates of coagulopathy, thrombo-
sis, and venous thromboembolism in COVID-19 suggested 
that administration of heparin may improve health-related 
outcomes in those patients [158]. Furthermore, heparin may 
decrease infectivity by binding to the SARS-CoV-2 spike 
protein and functioning as a potential competitive inhibi-
tor for viral entry [159]. In patients with kidney failure, 
estimation of renal function is necessary when prescribing 
unfractionated heparin due to the increased risk of both 
thrombotic and bleeding complications. Unfractionated hep-
arin generally does not require dose adjustment with renal 
dysfunction. However, close monitoring of anticoagulation 
therapy is recommended when high doses are administered 
in patients with chronic renal impairment [160]. Patients 
may benefit from prophylactic doses of heparin, in addition 
to therapeutic doses, based on individual risk of thrombosis 
and coagulopathy [161].

Low‑molecular‑weight heparins and enoxaparin

Enoxaparin is a low-molecular-weight Heparin (LMWH) 
with antithrombotic activity, administered subcutaneously 
or intravenously for the prevention of deep-vein thrombosis 
(DVT) in abdominal surgery, hip replacement surgery, knee 
replacement surgery, or restricted mobility [156]. These 
drugs provide an advantage over unfractionated heparin, 
such as better predictable bioavailability and longer half-
life, simplified dosing, predictable anticoagulant response, 
lower risk of heparin-induced thrombocytopenia, and osteo-
porosis [162]. Nevertheless, LMWHs also pose the disad-
vantage of accumulating in patients with renal failure and 
therefore have the potential to produce serious bleeding in 
these patients [163]. Therefore, enoxaparin requires dose 
adjustment in patients with renal dysfunction (creatinine 
clearance < 30 mL/min) [156] due to decreased renal clear-
ance (around 30%) and increased bioavailability. Moreo-
ver, a large fraction of the active and inactive metabolites 
(around 40%) is excreted through the renal route and can be 
accumulated in these patients. In addition, 80% of the drug 
is bound to plasma protein and easily displaced in patients 
with renal failure that might increase drugs’ free fractions in 
the blood [105]. Accordingly, it is recommended to reduce 
prophylactic doses to 20–30 mg/day and reduce therapeutic 
doses by 0.5–1 mg/Kg/day in patients with a GFR < 30 mL/
min [164].

Anakinra

Anakinra is an interleukin-1 (IL-1) receptor antagonist 
used mainly in the treatment of rheumatoid arthritis to 
prevent permanent articular damage [165]. It was consid-
ered as a potential COVID-19 treatment due to the ability 
of the virus to induce the production of various cytokines 
such as IL-1β, IL-6, tumor necrosis factor, and others 
[12]. Anakinra was proven efficient in reducing mortality 
rates among COVID-19 patients and decreasing the need 
for mechanical ventilation in severe cases [166], and it is 
majorly cleared by the kidney [167]. In patients with nor-
mal renal function, the recommended dose is 100 mg daily, 
however, in patients with renal impairment as measured 
with a GFR < 30 mL/min, the dose is adjusted to 100 mg 
on alternating days [149].

Renal replacement therapy

Renal replacement therapy (RRT) is a method of blood 
purification using a countercurrent exchange of solutes 
with a dialysis fluid through a semi-permeable membrane. 
It is commonly indicated for toxin removal, acid–base or 
electrolyte abnormalities, and chronic or acute renal fail-
ure [168]. During the COVID-19 pandemic, hospitals have 
seen an increasing need for RRT. In 2020, a metanalysis 
by Robins-Juarez et al. showed that approximately 5% of 
all COVID-19 patients required RRT [169]. Interestingly, 
patients with AKI were most likely to require RRT and less 
likely to recover kidney function when compared to patients 
without AKI [170]. Moreover, COVID-19 patients admit-
ted to the ICU showed higher rates for RRT (16.5%) [171], 
while 20–31% of patients showed indications for RRT [172]. 
The use of RRT in COVID-19 patients could be challeng-
ing since it requires monitoring of the procedure from out-
side the quarantined area (longer tubing) along with higher 
dialysate flow and longer time for the daily treatment. In 
addition, COVID-19 patients requiring RRT should not be 
transferred to a central dialysis unit but rather should receive 
RRT in the specialized quarantined area. In addition, it was 
preferred to keep the number of medical personnel available 
on the floors to a minimum, with limited entry into quaran-
tine rooms [173].

Renal transplantation

Although the impact of COVID-19 was studied in patients 
with kidney transplants, there is limited data on kidney 
transplantation after, or as treatment of, COVID-19 
induced kidney injury [174]. Two recent published cases 
showed the efficacy of kidney transplantation in patients 
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who recovered from COVID-19 that was proven with at 
least 2 negative PCR tests and serum IgG titers against 
SARS-CoV-2. Both the donor and recipient were tested 
negative (PCR) at the time of transplantation [175]. 
Recommendations by the National Transplant Organiza-
tion state that a thorough medical history must always 
be conducted prior to transplantation, with emphasis on 
inquiries regarding contact with suspected or confirmed 
COVID-19 cases. To be eligible for transplantation, a 
negative PCR result must be provided, while viral antigen 
tests and serology are not considered as adequate alterna-
tives [174].

Vaccines against COVID‑19

To mitigate the spread of COVID-19 and help return society 
to normal, multiple COVID-19 vaccines were developed and 
tested at an unprecedented speed. The efficacy and effects of 
some of the most widely used vaccines are discussed in this 
section. As of September 2021, all of them were reviewed by 
the World Health Organization’s Strategic Advisory Group 
of Experts on Immunization (SAGE), which has issued 
interim recommendations for their use.

mRNA‑based vaccines

Pfizer‑BioNTech (BNT162b2)

The BNT162b2 vaccine is a 2-dose mRNA vaccine devel-
oped by Pfizer-BioNTech. It is made with a lipid nanopar-
ticle-formulated, nucleoside-modified RNA that encodes a 
membrane-anchored SARS-CoV-2 spike protein. A multina-
tional, placebo-controlled, observer-blinded, pivotal efficacy 
clinical trial performed by Pfizer demonstrated a 95.0% effi-
cacy for this vaccine against COVID-19. Among the 43,252 
participants aged 16 years and older, this result was gener-
ally consistent across age, sex, race, ethnicity, obesity, and 
presence of a coexisting condition [176]. In addition, under 
emergency use authorization, the vaccine continues to be 
available for individuals 12 years of age and older, for the 
administration of a third dose in certain immunocompro-
mised people, and for a single booster dose in people 65 and 
older, 18–64 years of age individuals at high risk of severe 
COVID-19, and 18–64 years of age individuals with high 
exposure to SARS-CoV-2 [177]. As of August 2021, this 
vaccines became the first FDA-approved COVID-19 vaccine 
for patients 16 years and older.

Possible systemic effects of the vaccine include headache, 
fatigue, and fever [176]. In keeping with the kidney, cases 
of minimal change disease [178], acute kidney injury [179], 
and ANCA-associated vasculitis following vaccination [180] 
were reported.

Moderna COVID‑19 (mRNA‑1273)

Similar to the Pfizer-BioNTech vaccine, the Moderna vaccine 
is also a lipid nanoparticle-encapsulated mRNA-based vaccine 
encoding the spike protein of the SARS-CoV-2 virus, and it is 
administered over 2 doses [181]. Results from the phase 3 ran-
domized, observer-blinded, placebo-controlled clinical trial, 
conducted in the United States and enrolled 30,420 volunteers 
aged 18 and above attributed a 94.1% efficacy of the mRNA-
1273 vaccine against COVID-19 [181]. The FDA issued an 
EUA for the emergency use of Moderna COVID-19 Vaccine 
for the prevention of COVID-19, the authorization of use was 
for individuals 18 years of age and older.

Systemic side effects of the injection included fever, 
headache, fatigue, myalgia, arthralgia, nausea or vomiting, 
and chills [181]. With respect to kidney safety, the vaccine 
has been associated with minimal change disease [182], de 
novo vasculitis [183], and ANCA glomerulonephritis [184].

Vector‑based vaccines

Janssen Ad26.COV2.S

The Ad26.COV2.S, also known as Janssen, or Johnson and 
Johnson, consists of a vector virus using a double-stranded 
DNA encoding a SARS-CoV-2 spike glycoprotein variant 
within a recombinant, replication-incompetent human ade-
novirus type 26 [185, 186]. The Janssen vaccine received 
emergency approval from FDA in February 2021 to be 
used in adults aged at least 18 years old [187]. The vaccine 
is given as a single dose and was found to protect against 
symptomatic and asymptomatic COVID-19 patients while 
also proven efficient against critical and severe COVID-19 
illness [188].

Common adverse effects included fever, fatigue, head-
ache, myalgia, and pain at the site of injection [189]. Severe 
side effects, less frequently encountered, included thrombo-
cytopenia syndrome and Guillain–Barré syndrome [190]. 
Minimal change disease was reported in a case 1-week post-
administration of the Janssen vaccine, with the patient pre-
senting with weight gain, foamy urine, and edema, which 
then worsened with decreased urine volume [191].

Oxford/AstraZeneca ChAdOx1 (nCoV‑19)

The ChAdOx1 nCoV-19, also known as the Oxford-Astra-
Zeneca vaccine, is a replication-incompetent chimpanzee 
adenovirus vector containing SARS-CoV-2 structural sur-
face glycoprotein genes [192]. Currently, the vaccine did 
not receive FDA approval, although many countries have 
authorized its use within their borders for adults aged at 
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least 18 [193]. Although studies have shown the efficacy 
of a single dose of the ChAdOx1 nCoV-19 vaccine, recom-
mendations stated that a booster dose of the vaccine could 
be administered at least 12 weeks after the initial dose [194].

Common adverse effects included fatigue, fever, chills, 
diarrhea, nausea, injection site pain, and myalgia, while 
more severe, yet less frequent side effects included thrombo-
embolism and blood clots [195, 196]. There has been a case 
of minimal change disease and severe acute kidney injury 
13 days post-administration of the first vaccine dose. The 
case, however, did not offer conclusive evidence of a cor-
relation between the ChAdOx1 nCoV-19 vaccine and the 
development of minimal change disease [197].

Inactivated viruses

Sinovac‑CoronaVac

CoronaVac (Sinovac Life Sciences, Beijing, China) is a 
2-dose β-propiolactone-inactivated virus, an aluminum 
hydroxide-adjuvanted vaccine developed against COVID-
19 [198]. A phase 3 clinical trial run in Brazil showed a 
51% efficacy of the vaccine against symptomatic COVID-
19 cases [199]. Compared with other COVID-19 vaccines, 
the occurrence of fever after vaccination was relatively low 
[200]. The reported adverse side events included pain at the 
injection site, headache, fatigue, and myalgia [199]. There 
have been case reports of patients presenting with nephrotic 
syndrome, and acute kidney injury with rapid deterioration 
in kidney function [201].

Sinopharm (BBIBP‑CorV)

The Sinopharm, or Vero Cell vaccine, is a 2-dose 
β-propiolactone-inactivated virus, an aluminum hydroxide-
adjuvanted vaccine for the prevention against COVID-19. A 
multi-country phase 2 clinical trial demonstrated an overall 
efficacy of 78.1%, which was more or less consistent across 
subgroups varying in age, sex, and comorbidities. The only 
exception was individuals with diabetes, for which efficacy 
dropped to 63.7% [202].

Most adverse side effects associated with vaccination 
were mild to moderate, including headache and fatigue. 
However, two serious adverse events have been potentially 
linked to the vaccine, and these are serious nausea and 
inflammatory demyelination syndrome/acute disseminated 
encephalomyelitis [202].

Conclusion

Based on the available literature, renal manifestations are 
often seen in COVID-19 patients, and they are associated 
with increased mortality in subjects admitted to the ICU. 
It is becoming clear that SARS-CoV-2 particles strike the 
kidneys in addition to the cytokine storm that perpetu-
ates renal damage in these patients. In the same view, it 
is evident that some of the currently approved medications 
to treat COVID-19 patients influenced renal function and 
must be administered with extreme care. Nonetheless, while 
some of the adopted vaccines were associated with minimal 
change disease, none of them was discontinued. Thus, kid-
ney safety in COVID-19 patients remains of utmost concern 
view the central role that kidneys play in regulating blood 
pressure and filtering blood from toxic substances. There-
fore, constant monitoring of kidneys’ fitness along with 
cardiac hemodynamics in COVID-19 subjects is imperative 
to reduce the burden of COVID-19 on human lives. This 
involves close cardiorenal monitoring to prevent kidney 
damage in COVID-19 patients.
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