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Abstract

Social distancing is an effective population-level mitigation strategy to prevent COVID19

propagation but it does not reduce the number of susceptible individuals and bears severe

social consequences—a dire situation that can be overcome with the recently developed

vaccines. Although a combination of these interventions should provide greater benefits

than their isolated deployment, a mechanistic understanding of the interplay between them

is missing. To tackle this challenge we developed an age-structured deterministic model in

which vaccines are deployed during the pandemic to individuals who do not show symp-

toms. The model allows for flexible and dynamic prioritization strategies with shifts between

target groups. We find a strong interaction between social distancing and vaccination in

their effect on the proportion of hospitalizations. In particular, prioritizing vaccines to elderly

(60+) before adults (20-59) is more effective when social distancing is applied to adults or

uniformly. In addition, the temporal reproductive number Rt is only affected by vaccines

when deployed at sufficiently high rates and in tandem with social distancing. Finally, the

same reduction in hospitalization can be achieved via different combination of strategies,

giving decision makers flexibility in choosing public health policies. Our study provides

insights into the factors that affect vaccination success and provides methodology to test dif-

ferent intervention strategies in a way that will align with ethical guidelines.

Author summary

A major question in epidemiology is how to combine intervention methods in an optimal

way. With the recent deployment of COVID19 vaccine, this question is now particularly

relevant. Using a data-driven model in which vaccines are deployed during the pandemic

and their prioritization can shift between target groups we show that there is a strong

interplay between these interventions. For example, prioritizing vaccines to elderly—the
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common strategy worldwide—results in a larger reduction in hospitalizations when social

distancing is applied to adults than to elderly. Importantly, reduction in hospitalizations

can be achieved via multiple combination of intervention strategies, allowing for flexible

public health policies.

Introduction

Vaccines are an essential tool for reducing the burden of endemic diseases such as measles,

hepatitis, and influenza. For such diseases, vaccine development and production is, by now, a

well-practiced process. Nevertheless, developing, producing, and deploying vaccines in the

midst of a pandemic is a great challenge. For example, during the H1N1 pandemic vaccines

were limited and their deployment required prioritization [1]. COVID19 is a typical example

of such a situation. Without vaccines, the only strategy to contain COVID19 is to cut transmis-

sion chains by reducing contacts. Public health measures such as social distancing, improved

hygiene, and face masks effectively reduce the risk of infection but do not reduce susceptibility

among the population. Moreover, social-distancing interventions also bear social, economic,

and psychological consequences [2, 3]. Therefore, vaccine development for COVID19 has

been carried out at an unprecedented pace. Nevertheless, even now, when a vaccine is avail-

able, its deployment requires prioritization due to high demand and low supply. Thinking

ahead about relevant strategies for deployment may save not only valuable time for policy

makers [1, 4], but eventually lives and it is therefore at the forefront of debate and research

[5–9].

Social distancing is the main strategy we currently have to deal with silent infections. There-

fore, it is crucial to consider the interplay between vaccination and social distancing because,

even when a vaccine is deployed, social-distancing is still enforced at some level. Several stud-

ies have examined vaccination strategies [6, 10–14], addressing multiple aspects of this issue.

While these studies vary in their modeling frameworks, a general emerging result is that vac-

cines should be prioritized to the elderly and essential workers. Yet no study that we know of

has explicitly tested the interplay between these two interventions in a realistic scenario in

which vaccines are deployed according to a prioritization strategy. A mechanistic understand-

ing of this interplay can serve to hone adequate strategies and understand possible caveats with

a particular choice of strategy.

Here, we examine combinations of vaccine deployment and social distancing, and the inter-

action between them, using a data-driven, age-structured, deterministic model. We implement

vaccination dynamics that reflect real-world scenarios by deploying vaccines to individuals

who, in the eye of public health, are susceptible: presymptomatic and asymptomatic (exposed

and infectious), those that have recovered from an asymptomatic infection, and susceptible

individuals (those who were never infected). We model a scenario in which vaccines are

deployed while social distancing is still in place—a highly likely situation in every country. Our

goal is to illuminate qualitative effects of the interplay between vaccine deployment and social

distancing. Which strategy combination can minimize adverse outcomes, and how? We focus

on reduction in hospitalizations because hospital care is a limited resource in public health,

which is also correlated with mortality. We show that the interplay between these interventions

can have a synergistic effect. Moreover, the same reduction in hospitalization can be achieved

via different combination of strategies, giving decision makers flexibility in choosing public

health policies. These results were consistent for four countries.
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Results

We developed an age-structured deterministic compartmental model that reflects the main

states of COVID19 progression, including a presymptomatic stage, which has been shown to

affect transmission and possible control efforts [15, 16] (Fig 1 and S1 Fig). We used 10-yr inter-

val age-grouping (0–9, 10–19,. . .,70–79,80+), in line with previous studies of COVID19 (e.g,

[17]) and with the data management protocols of most countries. The model and choice of

parameter values are detailed in the Methods.

Vaccines are deployed at a constant rate of κ vaccines per day, which we measure as the per-

centage of population that a government can vaccinate a day (e.g., κ = 0.2 translates to deploy-

ment of 16,000 vaccines per day in a population of 8 million people). The amount of daily

vaccines is divided proportionally to the size of the target age groups. Following [18] we apply

an 80% vaccination acceptance proportion for the target groups. We explore two vaccination

strategies: (i) ‘elderly first’, in which elderly (ages 60+) are vaccinated first and adults (20–59)

Fig 1. Model description. Individuals transition between states with rates specified by Greek letters. Small Latin letters are probabilities. Subscripts j
and l depict age groups. Individuals start at a susceptible state (S) and upon infection with an age-dependent rate βlj become infected with the virus (E).

After an incubation period of 1/α days individuals become presymptomatic (P) for 1/ϕ days and infectious. The disease can then progress to be either

asymptomatic (A) with a probability m, or symptomatic (I). Symptomatic individuals are identified and removed to quarantine (R) within 1/η days or,

with a given age-dependent probability hj develop severe symptoms and go to the hospital (H). Asymptomatic individuals naturally recover (U) within

1/γ days. All individuals that do not show symptoms can get a vaccine (V) at a constant rate of μ vaccines per day. See Methods for a comprehensive

description of the model equations, parameters and vaccination strategies. See examples of model run in (S1 and S2 Figs).

https://doi.org/10.1371/journal.pcbi.1009319.g001
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next, and (ii) ‘adults first’, in which adults are vaccinated before elderly (S3 Fig). The elderly

first strategy is currently being applied in most countries that have started vaccination cam-

paigns (e.g., Israel). Once the prioritized age group is fully vaccinated, the vaccines are applied

to the next group (S2 and S3 Figs). Vaccines are currently not developed for children and we

therefore did not include ages 0–19 in vaccination strategies.

We present results in the main text for Israel, a small country of� 8.7 million people, but

we also tested our model using age demographics and contact matrices for Italy, Belgium and

Germany, and results were qualitatively the same for all countries (see Sensitivity Analyses in

Methods).

Social distancing affects vaccination strategies non-linearly

A combination of social distancing and vaccination is expected to have a synergistic, stronger

effect in decreasing hospitalizations than any of these measures alone, and this effect should

increase with stronger social distancing and higher vaccination rates. However, it is unclear

how this interplay will be affected by vaccination rates and the strategy of social distancing. To

test this, we apply social distancing either uniformly, to all the population regardless of age, or

in a targeted way towards elderly or adults. We impose social distancing by reducing contact

rates of specific ages (see Methods). We measure the impact of vaccine deployment as the per-

cent of reduction in hospitalizations (in all the population) compared to a no-vaccination sce-

nario as

FH ¼ 1 �

P
jHjðkÞ
P

jH0
j

; ð1Þ

where Hj(κ) is the total cumulative number of hospitalizations in age group j for a given deploy-

ment rate κ, and H0
j is the total number of hospitalizations in age group j when a vaccine is not

deployed (S4 Fig).

As expected, vaccine impact increases with increasing vaccination rates (line colors in Fig 2).

Prioritizing vaccines to adults does not reduce hospitalizations as effectively as when prioritizing

to elderly (compare left to right columns in Fig 2). However, there is a strong interaction

between vaccination and social distancing strategies in their effects on FH. Combining an elderly

first strategy with adult-targeted or uniform social distancing increases FH in a non-linear, syn-

ergistic way (Fig 2A and 2C), while targeting both interventions at the elderly is not as effective

(Fig 2B). In fact, when both interventions are targeted at the same group (elderly or adults), FH
varies very little or decreases with increasing strength of social distancing (Fig 2B and 2D). This

is because strong social distancing by itself can prevent hospitalizations, overriding the need for

vaccinations (as long as it is applied). This phenomenon also explains the decrease in FH when

social distancing is applied to all the population too strongly (Fig 2C and 2F).

Proportion hospitalized is determined by the interplay between

intervention strategies

Because we find that social distancing can affect vaccination deployment efficiency, we now

turn to quantify the joint effects of these interventions on the proportion of the population

hospitalized across ages (depicted as PH). To illustrate this, we first focus on a scenario in

which κ = 0.5 as an example (Fig 3 and S5 Fig). We find that increasing levels of social distanc-

ing can have different effects on PH, depending on the targeted groups. For example, targeting

social distancing at elderly under an adults first vaccination strategy reduces PH more effec-

tively than under an elderly first strategy (compare trends in purple lines in Fig 3).
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Nevertheless, the elderly first strategy has overall lower PH. In addition, under elderly first, a

uniform or adult social distancing is preferred. A comparison to simulations in which the

probability of hospitalizations (hj) is uniform across all age groups indicates that age-depen-

dent disease severity is a major factor underlying these patterns (S5 and S6 Figs).

To explore which vaccination strategy works better under different social distancing strate-

gies in a systematic manner, we measured the difference in number of hospitalizations

between the vaccination strategies as

DH ¼
Ha � He

Ha
; ð2Þ

where He and Ha are the total cumulative number of hospitalizations by the end of the simula-

tion under the elderly first or adults first strategies, respectively (across ages) (S7 Fig). For

Fig 2. Effect of joint interventions on vaccination efficiency. The plot depicts FH (y-axis) as a function of strength of social distancing (x-axis),

vaccination rates (κ; line colors), vaccination strategies (columns) and social distancing strategies (rows).

https://doi.org/10.1371/journal.pcbi.1009319.g002
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example, if He = 15, 000 and Ha = 20, 000 then DH = 25%. Hence, DH> 0 indicates that vacci-

nating elderly is preferred to adults.

We detect a general trend in which an elderly first strategy is preferable when combined

with a uniform or adult-targeted social distancing (Fig 4). In tandem with our results on

Fig 3. Effects of joint interventions on the proportion of the population hospitalized (PH). Each data point represents a combination of a

vaccination strategy (solid vs. dotted lines) and a social distancing strategy (colors) at particular social distancing strength (x-axis). Simulations were run

using a daily deployment of κ = 0.5% of the population.

https://doi.org/10.1371/journal.pcbi.1009319.g003

Fig 4. Systematic comparison between vaccination strategies in reducing hospitalizations. Each square in the heat maps depicts the percent

difference in the number of hospitalizations between the two vaccination strategies (DH = (Ha −He)/Ha; see text for explanation) for a given strength of

social distancing (x-axis), vaccine deployment rate (κ, y-axis) and social distancing strategy (panels A-C). Color scale depicts the advantage of an elderly

first strategy compared to an adults first strategy. Combinations higher than the median DH are marked with a + sign. An example for the values

underlying Ha and He for a 50% reduction in contacts can be found in S7 Fig.

https://doi.org/10.1371/journal.pcbi.1009319.g004
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vaccine efficiency, under very strong social distancing (⪆ 0.6) targeted at the elderly, the effect

of vaccination is overridden by that of social distancing, and vaccinating adults is preferred

(Fig 4B). Finally, an elderly first strategy is mainly preferred in high vaccination rates when

social distancing is low (Fig 4). This observation is crucial because it indicates that with low

vaccination rates an elderly first strategy may have only a marginal benefit under some condi-

tions. However, with moderate-high vaccination rates and social distancing targeted at adults,

an elderly first strategy performs better than an adults first strategy, even under low levels of

social distancing.

Reproductive number Rt depends on the combination of vaccination and

social distancing

A key objective of interventions is to bring the number of active cases to a level that would pre-

vent further transmission in the population. During the course of an epidemic, this is typically

quantified using the reproductive number Rt, which is the time-varying analog of R0. When Rt

< 1 every person will infect on average less than one other person, indicating that the disease

can no longer spread. We estimated Rt from simulation data using the method of [19] as rec-

ommended by [20]. This method is also used by the Israeli Ministry of Health. Briefly, Rt is cal-

culated as

Rt ¼
ztPt

s¼0
zt� sws

: ð3Þ

In empirical data, zt is the number of new infected individuals detected at day t but in our sim-

ulations we have full knowledge on active cases and use zt = It + At + Pt. The denominator is

the sum of the infection potential of those that were infected within the previous s days. It is

calculated using ws, which is a probability distribution for the interactivity profile, dependent

on the time since infection. Following [21] and references therein, and the Israel Ministry of

Health, we estimated ws using a gamma distribution with a mean of 4.5 and standard deviation

of 2.5, and calculated Rt over a period of s = 7 days.

Intuitively, the time it takes to reach Rt = 1 will be fastest when the disease is allowed to

spread without any interventions because the amount of susceptible individuals decreases rap-

idly. We indeed observe this pattern (Fig 5A). Nevertheless, this is an undesired situation that

will cost many lives. The goal is therefore not necessarily to bring Rt below 1 as fast as possible,

but to reduce it to prevent massive infections and resulting hospitalizations. Social distancing

significantly increases the time it takes to reach Rt = 1 (Fig 5) but lowers it. Vaccination posi-

tively interacts with social distancing, further reducing Rt, but only when vaccination rates are

high enough. In our model, a daily deployment to 0.1% of the population has only a marginal

benefit, whereas that of 0.5% significantly reduces Rt, especially when combined with a strong

social distancing (Fig 5C). Interestingly, under uniform social distancing, which is the most

common strategy applied, Rt is little affected by the vaccination strategy (see S8 Fig for other

strategies).

Discussion

We used a deterministic compartmental model to mechanistically explore the qualitative inter-

play between vaccination and social-distancing on COVID19 disease dynamics. Strong social

distancing keeps the number of susceptible individuals high but without a vaccine, infection

and concomitant hospitalizations are inevitable. From a public health standpoint, social dis-

tancing and vaccination are short- and long-term interventions, respectively. Hence, a combi-

nation of these should provide greater benefits than when applied separately. We find that
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synergism between interventions can indeed be obtained via particular combinations. For

example, by prioritizing vaccines to elderly and applying social distancing to adults. However,

there are also quantitative effects. Most notably, under low vaccination rates the elderly first

strategy that has been found to be preferable (e.g., [11, 13]) may have only a marginal benefit

over an adult first strategy, including for bringing Rt below 1, but increasing social distancing

can increase this vaccination strategy’s efficiency.

Modeling is instrumental to informing policy makers and the public about possible sce-

narios of disease progression and the potential efficacy of different intervention methods [17,

22–24]. Estimation of the parameters necessary for accurate modeling is improving consider-

ably, including social parameters. For example, a recent study showed only about 70% vac-

cine acceptance in Israel [18]. In our simulations we found no qualitative difference in effect

on hospitalizations between 70%, 80% and 100% acceptance (see sensitivity analyses) because

deployment to individuals with vaccine hesitancy is obtained when infections may be close to

their peak. An effect of vaccine hesitancy may be notable under higher rates of vaccination or

within other modeling frameworks. Researchers should recognize limitations of this kind

and that inaccurate parameterization or ignoring model assumptions (e.g., geographical het-

erogeneity) could potentially lead to erroneous conclusions [25]. Our model assumes homo-

geneous mixing in space and reflects an average population—for example, it does not include

household, school, or work dynamics, which are relevant when investigating epidemic infec-

tions via contacts. Therefore, results should be considered qualitatively to provide general

guidelines.

Nevertheless, when interpreted within the known limitations, our study provides valuable

insights into the joint effect of vaccination and social distancing and the mechanisms under-

ling their interplay. It also provides initial guidelines for policy makers. For example, for some

Fig 5. Rt for a uniform social distancing strategy. Each panel represents a proportion of reduction in contact rates: 0 (no social distancing, panel A),

0.2 (B), and 0.5 (C). Rt was calculated weekly (x-axis) as descried in the main text. Other social distancing strategies are presented in S8 Fig.

https://doi.org/10.1371/journal.pcbi.1009319.g005
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strategy combinations, vaccine efficiency varies little with increasing strength of social distanc-

ing, indicating that the social burden of social distancing may be relaxed. In addition, despite

the synergism with social distancing, vaccination has little effect on Rt when deployed at low

rates. This is because a vaccine is deployed during the pandemic, while non-vaccinated indi-

viduals continuously get infected. We considered deployment rates typical for the world aver-

age but the effect of vaccine should be more notable with higher deployment rates. In contrast

to vaccination which reduces the number of susceptible individuals, social distancing increases

the time to reach Rt = 1 because it only impedes infections. Therefore, social distancing is a

strategy to “flatten the curve” but, as we show here, the way that it is applied and combined

with vaccinations can change its outcomes.

As COVID19 vaccine is novel and its rollout urgent, clear guidelines on who to vaccinate

have been constantly developing. For example, in Israel, at the beginning of deployment, vac-

cines were given to individuals who have not been confirmed as positive. Without population-

wide serological surveys, this guideline is logical. The strict link between symptom history and

vaccine eligibility in our study follows this guideline as we aim to model a scenario of limited

vaccine availability with a need for prioritization. However, this may also be a model limita-

tion, since in real life some fraction of those with asymptomatic infection may know their sta-

tus via routine contact tracing or serological surveys. Moreover, guidelines may change as the

public health community gains more experience and/or when availability increases. In Israel,

the decision of vaccinating previously-positive individuals was given only after a major pro-

portion of the eligible population has been vaccinated (pers. communication of co-author

Davidovitch with COVID19 cabinet members.)

Our model contains, beyond an age structure and age-dependent contact matrices, all the

main states of COVID19 and its implementation allows for flexible prioritization strategies:

One can choose a certain order of age groups to vaccinate, and if the number of individuals to

vaccinate at a certain group is depleted but there are still vaccines available, the model shifts

dynamically to the next group. While these features have been used in separate studies, they

have not been combined in a single framework of deterministic modeling. Our model is there-

fore an excellent tool to mechanistically test a range of hypotheses and strategies for interven-

tions. For example, we did not include children in our targeted interventions because vaccine

was not available for them at the time of writing, and to reduce the complexity of the study

design. This is, however, a necessary future direction.

Vaccine prioritization is an ethical issue to which some guidelines have been laid out [8, 9].

We advocate for a mechanistic understanding of the factors that affect vaccination success and

how to combine interventions in a way that will align with ethical guidelines. Our study pro-

vides insights towards these goals.

Methods

Ethics statement

All the data we use originates from publicly available resources, such as academic literature or

online epidemiological sources. We do not use any clinical data that requires IRB.

Model structure

The model is a mass action model that reflects a situation in which the number of contacts is

independent of the population size–a reasonable choice for directly-transmitted diseases [26].

It follows a population of N individuals, divided into nine age groups, depicted with the
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subscript j (S1 Table) and is described in the following equations:

dSj
dt

¼ �
X

l

bjlðIl þ Albþ PlbÞ
Sj
Nl
� mjSj ð4aÞ

dEj

dt
¼

X

l

bjlðIl þ Albþ PlbÞ
Sj
Nl
� aEj � mjEj ð4bÞ

dPj

dt
¼ aEj � �Pj � mjPj ð4cÞ

dIj
dt
¼ ð1 � mjÞ�Pj � ZIj ð4dÞ

dAj

dt
¼ mj�Pj � gAj � mjAj ð4eÞ

dRj

dt
¼ ð1 � hjÞZIj ð4fÞ

dUj

dt
¼ gAj � mjUj ð4gÞ

dHj

dt
¼ hjZIj ð4hÞ

dVj

dt
¼ mjðSj þ Ej þ Pj þ Aj þ UjÞ ð4iÞ

Model states and parameters

Parameters for this kind of model are of two kinds. First, “biological” parameters, the variation

of which is less related to country-specific demographics. These include, for example, recovery

time (γ), the probability of developing an asymptomatic disease (m), incubation period (α),

time spent in a presymptomatic stage (ϕ) and age-dependent probability of hospitalization (h).

We obtained these parameters from the literature (see below). Second, demographic “social”

parameters that may vary between countries and include age structure and contact rates

between age groups. We obtained age structure from https://unctadstat.unctad.org/wds. Below

we detail model states and the parameters we use to transition between them (see S2 Table for

a summary).

Infected states. Individuals start at a susceptible state (S) and become infected upon an

encounter with infectious individuals that are either presymptomatic (P), symptomatic (I) or

asymptomatic (A). Following [16], we include a “scaling parameter”, b, ranging between 0–1

that determines the degree of infectiousness of states A and P compared to I (1 means a/pre-

symptomatic are as infectious as symptomatic). We present results with b = 0.5 [16] but our

results do not change qualitatively with other values. Infections occur at a rate specified by the

infection matrix βlj, which we calculated as the product of the infection probability q and con-

tact rates between age groups j and l, given by the contact matrix Clj. Therefore, βlj = q � Clj and

we now detail how we obtained Clj and q.

Infection parameters. We obtained Clj for different countries from [27], which is cur-

rently the most comprehensive empirical (not inferred, e.g. [28]) survey of contacts relevant

for the transmission of diseases such as COVID19, using the R package socialmixr. These con-

tact matrices describe the daily mean number of contacts that participants have with people at

different age groups (S9 Fig). We used the Italian contact network for Israel as a one for Israel
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is not available but results were qualitatively consistent across countries, including Italy. Mos-

song et al. [27] defined physical contacts as those that included interactions such as a kiss or a

handshake and nonphysical contacts as those involving being in close proximity for a certain

amount of time (e.g., a two-way conversation without skin-to-skin contact). Because SARS-

COV-2 can also be transmitted via air droplets and aerosols, we included all physical contacts

and those non-physical contacts that lasted for 15 minutes or more. Infection due to an

encounter with individuals from the same age group occurs when l = j. We halved the matrix

diagonal to avoid counting the same interaction twice.

Estimating infection probability, q. We calculated the average rate of infection b̂ by fit-

ting an exponential model of the form IðtÞ ¼ eðb̂ � gÞt (sensu [29]) to Israeli case data across

ages. This equation describes the invasion of the virus to a completely susceptible population

at the early stages of the disease (days 1–35, before interventions were forced in Israel). This

model gave a value of b̂ ¼ 0:38 infections per day (p< 0.001, fit: R2 = 0.98). Estimating b̂

from R0 gave a similar estimate of 0.41 and this difference does not affect the results (see

sensitivity analysis). Because b̂ is an average across all the population, we calculated the

infection probability given an encounter between a susceptible and infected individuals as

q ¼ b̂= < Clj >. We then incorporated the recent estimates by [21] that children ages 0–20

are 43% less susceptible and 63% less infected than adults by reducing q for these ages

proportionally.

Parameters of infection progression. Upon infection, the virus has an average latency

period of 6.4 days (α = 1/6.4) [30]. Individuals remain in presymptomatic stage for an average

of 2.1 days (ϕ = 1/2.1) [31], after which individuals become either asymptomatic with a proba-

bility mj or develop symptoms with probability 1 −mj. The fraction of asymptomatic

COVID19 infections was estimated at 30–40% [32]. In the absence of data on age-specific

asymptomatic infections [16], we have set m = mj = 0.4 for all ages. However, our model

retains the flexibility to quantify the role of age-dependent asymptomatic probabilities in

COVID19 epidemiology (mj) because a previous study on corona viruses (not including

SARS-COV-2) found that children tend to be less symptomatic than adults [33].

Parameters for infection outcomes. Asymptomatic individuals stop infecting (U) within

7 days (γ = 1/7)—an estimate from [34] that lies between that of [31] (mean 5 days) and that of

[35] (mean 11 days). Results were qualitatively the same when we used the estimate by Davies

et al [31], also used in [11]. We assume that symptomatic individuals are identified and

removed to quarantine (R) within 1 day (η = 1). Depending on age, with probability hj individ-

uals can develop severe symptoms and be hospitalized (H). Therefore, Hj represents the cumu-

lative number of hospitalized individuals at any given time. We calculated hj using data from

[36] as the fraction of hospitalized cases out of all cases (see S1 Table for details). This probabil-

ity is not expected to vary greatly between countries as age-dependent hospitalization has a

strong biological rather than social component in countries which are culturally similar. Effec-

tively, individuals in states V, U, R and H cannot further infect. Separating between R and U is

useful for scenarios in which quarantine should be considered separately from asymptomatic

recovery (e.g., for economic reasons because some quarantined individuals cannot work).

Interventions

Vaccination. We administer vaccines to people in states S, E, P, A and U, as they do not

show symptoms and are therefore considered susceptible from a public health perspective.

We assume the vaccine prevents infection as well as disease, has an efficiency of 95%, and

affects all individuals in the same way. Vaccines are deployed from the beginning of the
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simulation at a constant rate of κ vaccines per day, which we set as the percentage of the total

population that a government can vaccinate a day. For example, in Israel (population about

8.7 million), vaccinating 0.2% of the population every day translates into deployment of about

17400 vaccines daily and over 1.5 million vaccines in the course of 90 days. We use values of κ
ranging from 0.1% to 0.5%. The current rate at the EU, for example is 0.2–0.3%, and the world

average is 0.1% (https://ourworldindata.org/covid-vaccinations).

In our simulations κ is first divided across the target age groups in proportion to the num-

ber of people left to vaccinate in each group (κj). Then, the rate of vaccination (vaccines per

person per day) is calculated as:

mjðtÞ ¼
kj

Sj þ Ej þ Pj þ Aj þ Uj
e ð5Þ

where e is vaccine efficiency, set to 95% [37].

Social distancing. Social distancing is the act of reducing contacts. Hence, we define

b
S
lj ¼ ð1 � xljÞblj, where elements of xlj range between 0 (no social distancing) and 1 (no con-

tacts whatsoever), and act to reduce contacts within and between groups. xlj is the quantity

depicted on the x-axis of figures (e.g., Fig 2). We note that the multiplication xljβlj is an ele-

ment-by-element multiplication rather than a matrix multiplication and that intervention is

symmetric. For example, x1,1 = 0.4 will reduce contacts between juveniles within the age group

0–9 to 60% of the non-intervention level and x3,1 = x1,3 = 0.9 is a strong social distancing inter-

vention reducing contacts between age groups 0–9 and 20–29 to 10% of their non-intervention

level.

Model implementation and sensitivity analyses

We implement the mathematical model with the package deSolve in R [38]. To facilitate future

studies and study replication, we have developed a pipeline that allows changing parameters

and running the model on High Performance Computing systems or locally with relative ease.

This is described in the GitHub repository.

We run simulations for 24 weeks and have conducted multiple sensitivity analyses for the

following parameters: γ, α, ϕ, η, b, and the proportion vaccinated (70% and 100% acceptance).

For β, we tried an alternative estimation by calculating the R0 for Israel (across ages) using the

method of [39] implemented in the R package R0 [40]. We used case data on days 1–35, before

interventions were forced because R0 describes the invasion of the virus to a completely sus-

ceptible population at the early stages of the disease. This analysis gave an R0 = 2.9. We then

calculated b̂ ¼ R0=g ¼ 0:41 [26]. Qualitatively, our results for all sensitivity analyses were

robust to changes in these parameters. We also repeated our analyses for Belgium, Germany

and Italy using R0 estimates from [41], and obtained similar results. Finally, calculating Rt

using the method of [39] did not change the results qualitatively. Outputs of all these simula-

tions can be found in the GitHub repository, along with the code.

Supporting information

S1 Fig. Epidemiological curves without vaccine. Epidemiological curves for the baseline

model, with no vaccination or social distancing. The model follows a population divided to

nine age groups as depicted in the figure. S: susceptible; E: exposed; P: presymptomatic; I:
infectious and symptomatic; A: infectious and asymptomatic; R: removed to quarantine and

then recovered naturally, and immune; U: recovered naturally, and immune; H: hospitalized.

(PDF)
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S2 Fig. Epidemiological curves with vaccine. Epidemiological curves with vaccination (κ =

0.2) and no social distancing. The model follows a population divided to nine age groups as

depicted in the figure. S: susceptible; E: exposed; P: presymptomatic; I: infectious and symp-

tomatic; A: infectious and asymptomatic; R: removed to quarantine and then recovered natu-

rally, and immune; U: recovered naturally, and immune; H: hospitalized; V: vaccinated.

(PDF)

S3 Fig. Comparison of dynamics between two prioritization strategies. Dashed and solid

lines depict two strategies, respectively: (i) vaccinating all elderly (60+) and then all adults (20-

59) and (ii) vaccinating all adults and then all elderly. This example is for κ = 0.5 (0.5% of the

population is vaccinated per day), with no social distancing. In the first strategy, after about 35

days there are no more elderly to vaccinate and the model shifts to vaccinating adults (gray

dashed line). In the second strategy, the switch to vaccinating elderly occurs after about 75

days because the number of adults in the population is larger than that of elderly. Most of the

reduction in hospitalizations is obtained when the elderly are prioritized (compare black

lines). I: infectious and symptomatic (red); H: hospitalized (black); V: vaccinated (gray).

(PDF)

S4 Fig. Comparison of control to vaccine intervention. Dashed lines depict control (no vac-

cine). Solid lines depict a strategy in which we first vaccinate elderly (60+) and then adults (20-

59). In this example we use κ = 0.4 (0.4% of the population is vaccinated per day) and there is

no social distancing. After about 25 days there are no more elderly to vaccinate and the model

shifts to vaccinating adults (gray solid line). It is clear that most of the reduction in hospitaliza-

tions is obtained for the elderly groups (compare dashed to solid black lines). The orange and

green dots mark the Hj(κ=0.4) and H0
j values (for j = 80+) used in Eq 1 in the main text, respec-

tively. Model was run for 30 weeks but 12 weeks are plotted here for clarity. I: infectious and

symptomatic (red); H: hospitalized (black); V: vaccinated (gray).

(PDF)

S5 Fig. Effect of joint interventions on the proportion of hospitalization using age-uniform

hospitalization probabilities. The plot depicts PH (y-axis) as a function of strength of social

distancing (x-axis), vaccination rates (κ; line colors), vaccination strategies (columns) and

social distancing strategies (rows).

(PDF)

S6 Fig. Effects of joint interventions on the proportion of the population hospitalized (PH)

using age-uniform hospitalization probabilities. Each data point represents a combination

of vaccination strategy (solid vs. dotted lines), social distancing strategy (colors) at particular

social distancing strength (x-axis). Simulations were run for daily deployment of κ = 0.5% of

the population. The probability of hospitalization was equal to the mean probability across

ages (i.e., mean of hj).
(PDF)

S7 Fig. Accumulation curves of hospitalizations. Columns and rows represent social distanc-

ing and vaccination strategies, respectively. This example is for a 50% reduction in contacts.

The dashed lines mark the total number of hospitalizations for a κ = 0.5 vaccination rate. For

example, under the adult social distancing scenario, Ha = 219, 882 and He = 84, 321.

(PDF)

S8 Fig. Rt for different social distancing strategies. Columns represent three levels of propor-

tion of reduction in contact rates: 0 (no reduction), 0.2, and 0.5. Each row is a social distancing
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strategy. Rt was calculated for 7-day periods as descried in the main text.

(PDF)

S9 Fig. An example of age-dependent contact rates. (A) Contact matrix for Italy calculated

from data collected by Mossong et al. (2008). Matrix cells depict the mean number of daily

contacts between people in different age groups. Diagonal cells depict contacts between indi-

viduals from the same age group. (B) The same data as in (A), represented as a network of con-

tacts. Edge widths depict contact rates.

(PDF)

S1 Table. Population structure of Israel and relevant parameters.

(PDF)

S2 Table. Study parameters.

(PDF)

Acknowledgments

We thank Profs. Yoav Tsori and Rony Granek for comments on a previous version of the

model.

Author Contributions

Conceptualization: Sharon Guerstein, Rami Puzis, Shai Pilosof.

Data curation: Oren Miron.

Formal analysis: Sharon Guerstein, Victoria Romeo-Aznar, Shai Pilosof.

Funding acquisition: Nadav Davidovitch, Rami Puzis, Shai Pilosof.

Investigation: Sharon Guerstein, Victoria Romeo-Aznar, Oren Miron, Nadav Davidovitch,

Rami Puzis, Shai Pilosof.

Methodology: Sharon Guerstein, Victoria Romeo-Aznar, Ma’ayan Dekel, Shai Pilosof.

Project administration: Shai Pilosof.

Resources: Shai Pilosof.

Software: Ma’ayan Dekel, Shai Pilosof.

Supervision: Shai Pilosof.

Visualization: Ma’ayan Dekel, Shai Pilosof.

Writing – original draft: Sharon Guerstein, Rami Puzis, Shai Pilosof.

Writing – review & editing: Sharon Guerstein, Victoria Romeo-Aznar, Nadav Davidovitch,

Rami Puzis, Shai Pilosof.

References
1. Lee BY, Brown ST, Korch GW, Cooley PC, Zimmerman RK, Wheaton WD, et al. A computer simulation

of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic. Vaccine.

2010; 28(31):4875–4879. https://doi.org/10.1016/j.vaccine.2010.05.002 PMID: 20483192

2. Barrot JN, Grassi B, Sauvagnat J. Sectoral Effects of Social Distancing; 2020.

3. Venkatesh A, Edirappuli S. Social distancing in covid-19: what are the mental health implications? BMJ.

2020; 369:m1379. PMID: 32253182

PLOS COMPUTATIONAL BIOLOGY The interplay between COVID19 vaccination and social distancing strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009319 August 20, 2021 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009319.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009319.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009319.s011
https://doi.org/10.1016/j.vaccine.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20483192
http://www.ncbi.nlm.nih.gov/pubmed/32253182
https://doi.org/10.1371/journal.pcbi.1009319


4. Balicer RD, Huerta M, Davidovitch N, Grotto I. Cost-benefit of stockpiling drugs for influenza pandemic.

Emerg Infect Dis. 2005; 11(8):1280–1282. https://doi.org/10.3201/eid1108.041156 PMID: 16102319

5. Khamsi R. If a coronavirus vaccine arrives, can the world make enough. Nature. 2020; 580(7805):578.

https://doi.org/10.1038/d41586-020-01063-8 PMID: 32273621

6. Matrajt L, Eaton J, Leung T, Brown ER. Vaccine optimization for COVID-19, who to vaccinate first? Sci-

ence Adv. 2020. https://doi.org/10.1126/sciadv.abf1374

7. Gallagher ME, Sieben AJ, Nelson KN, Kraay ANM, Lopman B, Handel A, et al. Considering indirect

benefits is critical when evaluating SARS-CoV-2 vaccine candidates. medRxiv. 2020. https://doi.org/10.

1101/2020.08.07.20170456 PMID: 32817958

8. Cohen J. The line is forming for a COVID-19 vaccine. Who should be at the front. Science. 2020; 369

(6499):15–16.

9. Emanuel EJ, Persad G, Kern A, Buchanan A, Fabre C, Halliday D, et al. An ethical framework for global

vaccine allocation. Science. 2020; 369(6509):1309–1312. https://doi.org/10.1126/science.abe2803

PMID: 32883884

10. Foy BH, Wahl B, Mehta K, Shet A, Menon GI, Britto C. Comparing COVID-19 vaccine allocation strate-

gies in India: A mathematical modelling study. Int J Infect Dis. 2021; 103:431–438. https://doi.org/10.

1016/j.ijid.2020.12.075 PMID: 33388436

11. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al. Model-informed COVID-19 vac-

cine prioritization strategies by age and serostatus. Science. 2020.

12. Buckner JH, Chowell G, Springborn MR. Optimal Dynamic Prioritization of Scarce COVID-19 Vaccines.

medRxiv. 2020.

13. Jentsch P, Anand M, Bauch CT. Prioritising COVID-19 vaccination in changing social and epidemiologi-

cal landscapes; 2020.

14. Yang J, Zheng W, Shi H, Yan X, Dong K, You Q, et al. Who should be prioritized for COVID-19 vaccina-

tion in China? A descriptive study. BMC Med. 2021; 19(1):45. https://doi.org/10.1186/s12916-021-

01923-8 PMID: 33563270

15. Moghadas SM, Fitzpatrick MC, Sah P, Pandey A, Shoukat A, Singer BH, et al. The implications of silent

transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A. 2020; 117(30):17513–

17515. https://doi.org/10.1073/pnas.2008373117 PMID: 32632012

16. Subramanian R, He Q, Pascual M. Quantifying asymptomatic infection and transmission of COVID-19

in New York City using observed cases, serology, and testing capacity. Proc Natl Acad Sci U S A. 2021;

118(9). https://doi.org/10.1073/pnas.2019716118 PMID: 33571106

17. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceu-

tical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College;

2020.

18. Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, Zigron A, et al. Vaccine hesitancy: the next

challenge in the fight against COVID-19. Eur J Epidemiol. 2020; 35(8):775–779. https://doi.org/10.

1007/s10654-020-00671-y PMID: 32785815

19. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying

reproduction numbers during epidemics. Am J Epidemiol. 2013; 178(9):1505–1512. https://doi.org/10.

1093/aje/kwt133 PMID: 24043437

20. Gostic KM, McGough L, Baskerville EB, Abbott S, Joshi K, Tedijanto C, et al. Practical considerations

for measuring the effective reproductive number, Rt. PLoS Comput Biol. 2020; 16: e1008409. https://

doi.org/10.1371/journal.pcbi.1008409 PMID: 33301457

21. Dattner I, Goldberg Y, Katriel G, Yaari R, Gal N, Miron Y, et al. The role of children in the spread of

COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infec-

tivity of children. PLoS Comput Biol. 2021; 17(2):e1008559. https://doi.org/10.1371/journal.pcbi.

1008559 PMID: 33571188

22. Colbourn T. COVID-19: extending or relaxing distancing control measures. Lancet Public Health. 2020;

5(5):e236–e237. https://doi.org/10.1016/S2468-2667(20)30072-4 PMID: 32220654

23. Karin O, Bar-On YM, Milo T, Katzir I, Mayo A, Korem Y, et al. Adaptive cyclic exit strategies from lock-

down to suppress COVID-19 and allow economic activity. medRxiv. 2020;

(medrxiv;2020.04.04.20053579v4).

24. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to

reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lan-

cet Public Health. 2020; 5(5):e261–e270. https://doi.org/10.1016/S2468-2667(20)30073-6 PMID:

32220655

25. Holmdahl I, Buckee C. Wrong but Useful—What Covid-19 Epidemiologic Models Can and Cannot Tell

Us; 2020.

PLOS COMPUTATIONAL BIOLOGY The interplay between COVID19 vaccination and social distancing strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009319 August 20, 2021 15 / 16

https://doi.org/10.3201/eid1108.041156
http://www.ncbi.nlm.nih.gov/pubmed/16102319
https://doi.org/10.1038/d41586-020-01063-8
http://www.ncbi.nlm.nih.gov/pubmed/32273621
https://doi.org/10.1126/sciadv.abf1374
https://doi.org/10.1101/2020.08.07.20170456
https://doi.org/10.1101/2020.08.07.20170456
http://www.ncbi.nlm.nih.gov/pubmed/32817958
https://doi.org/10.1126/science.abe2803
http://www.ncbi.nlm.nih.gov/pubmed/32883884
https://doi.org/10.1016/j.ijid.2020.12.075
https://doi.org/10.1016/j.ijid.2020.12.075
http://www.ncbi.nlm.nih.gov/pubmed/33388436
https://doi.org/10.1186/s12916-021-01923-8
https://doi.org/10.1186/s12916-021-01923-8
http://www.ncbi.nlm.nih.gov/pubmed/33563270
https://doi.org/10.1073/pnas.2008373117
http://www.ncbi.nlm.nih.gov/pubmed/32632012
https://doi.org/10.1073/pnas.2019716118
http://www.ncbi.nlm.nih.gov/pubmed/33571106
https://doi.org/10.1007/s10654-020-00671-y
https://doi.org/10.1007/s10654-020-00671-y
http://www.ncbi.nlm.nih.gov/pubmed/32785815
https://doi.org/10.1093/aje/kwt133
https://doi.org/10.1093/aje/kwt133
http://www.ncbi.nlm.nih.gov/pubmed/24043437
https://doi.org/10.1371/journal.pcbi.1008409
https://doi.org/10.1371/journal.pcbi.1008409
http://www.ncbi.nlm.nih.gov/pubmed/33301457
https://doi.org/10.1371/journal.pcbi.1008559
https://doi.org/10.1371/journal.pcbi.1008559
http://www.ncbi.nlm.nih.gov/pubmed/33571188
https://doi.org/10.1016/S2468-2667(20)30072-4
http://www.ncbi.nlm.nih.gov/pubmed/32220654
https://doi.org/10.1016/S2468-2667(20)30073-6
http://www.ncbi.nlm.nih.gov/pubmed/32220655
https://doi.org/10.1371/journal.pcbi.1009319


26. Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Keeling MJ, Rohani P, edi-

tors. Princetone, New Jersey: Princeton University Press; 2008.

27. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing pat-

terns relevant to the spread of infectious diseases. PLoS Med. 2008; 5(3):e74. https://doi.org/10.1371/

journal.pmed.0050074 PMID: 18366252

28. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and

demographic data. PLoS Comput Biol. 2017; 13(9):e1005697. https://doi.org/10.1371/journal.pcbi.

1005697 PMID: 28898249

29. Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, et al. Inferring change points in

the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020; 369(6500). https://

doi.org/10.1126/science.abb9789 PMID: 32414780

30. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infec-

tions among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020; 25(5). https://doi.

org/10.2807/1560-7917.ES.2020.25.5.2000062 PMID: 32046819

31. Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, et al. Age-dependent

effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020; 26(8):1205–1211.

https://doi.org/10.1038/s41591-020-0962-9 PMID: 32546824

32. Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. Suppres-

sion of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature. 2020; 584(7821):425–429.

https://doi.org/10.1038/s41586-020-2488-1 PMID: 32604404

33. Galanti M, Birger R, Ud-Dean M, Filip I, Morita H, Comito D, et al. Rates of asymptomatic respiratory

virus infection across age groups. Epidemiol Infect. 2019; 147:e176. https://doi.org/10.1017/

S0950268819000505 PMID: 31063096

34. Cheng HY, Jian SW, Liu DP, Ng TC, Huang WT, Lin HH, et al. Contact Tracing Assessment of COVID-

19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symp-

tom Onset. JAMA Intern Med. 2020; 180(9):1156–1163. https://doi.org/10.1001/jamainternmed.2020.

2020 PMID: 32356867

35. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respira-

tory Specimens of Infected Patients. N Engl J Med. 2020; 382(12):1177–1179. https://doi.org/10.1056/

NEJMc2001737 PMID: 32074444

36. Florida Department of Health. Florida Department of Health Open Data;. https://open-fdoh.hub.arcgis.

com/datasets/florida-covid19-case-line-data-3/data.

37. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the

BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020; 383(27):2603–2615. https://doi.org/10.1056/

NEJMoa2034577 PMID: 33301246

38. Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: Package deSolve; 2010.

39. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and repro-

ductive numbers. Proc Biol Sci. 2007; 274(1609):599–604. https://doi.org/10.1098/rspb.2006.3754

PMID: 17476782

40. Boelle PY, Obadia T. R0: Estimation of R0 and Real-Time Reproduction Number from Epidemics;

2015.

41. Ke R, Romero-Severson E, Sanche S, Hengartner N. Estimating the reproductive number R0 of SARS-

CoV-2 in the United States and eight European countries and implications for vaccination. J Theor Biol.

2021; 517:110621. https://doi.org/10.1016/j.jtbi.2021.110621 PMID: 33587929

PLOS COMPUTATIONAL BIOLOGY The interplay between COVID19 vaccination and social distancing strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009319 August 20, 2021 16 / 16

https://doi.org/10.1371/journal.pmed.0050074
https://doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/pubmed/18366252
https://doi.org/10.1371/journal.pcbi.1005697
https://doi.org/10.1371/journal.pcbi.1005697
http://www.ncbi.nlm.nih.gov/pubmed/28898249
https://doi.org/10.1126/science.abb9789
https://doi.org/10.1126/science.abb9789
http://www.ncbi.nlm.nih.gov/pubmed/32414780
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://www.ncbi.nlm.nih.gov/pubmed/32046819
https://doi.org/10.1038/s41591-020-0962-9
http://www.ncbi.nlm.nih.gov/pubmed/32546824
https://doi.org/10.1038/s41586-020-2488-1
http://www.ncbi.nlm.nih.gov/pubmed/32604404
https://doi.org/10.1017/S0950268819000505
https://doi.org/10.1017/S0950268819000505
http://www.ncbi.nlm.nih.gov/pubmed/31063096
https://doi.org/10.1001/jamainternmed.2020.2020
https://doi.org/10.1001/jamainternmed.2020.2020
http://www.ncbi.nlm.nih.gov/pubmed/32356867
https://doi.org/10.1056/NEJMc2001737
https://doi.org/10.1056/NEJMc2001737
http://www.ncbi.nlm.nih.gov/pubmed/32074444
https://open-fdoh.hub.arcgis.com/datasets/florida-covid19-case-line-data-3/data
https://open-fdoh.hub.arcgis.com/datasets/florida-covid19-case-line-data-3/data
https://doi.org/10.1056/NEJMoa2034577
https://doi.org/10.1056/NEJMoa2034577
http://www.ncbi.nlm.nih.gov/pubmed/33301246
https://doi.org/10.1098/rspb.2006.3754
http://www.ncbi.nlm.nih.gov/pubmed/17476782
https://doi.org/10.1016/j.jtbi.2021.110621
http://www.ncbi.nlm.nih.gov/pubmed/33587929
https://doi.org/10.1371/journal.pcbi.1009319

