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The impacts of the tumor microenvironment (TME) on tumor evolvability remain unclear.
A challenge for nearly all cancer types is spatial heterogeneity, providing substrates
for the emergence and evolvability of drug resistance and leading to unfavorable
prognosis. Understanding TME heterogeneity among different tumor sites would provide
deeper insights into personalized therapy. We found 9,992 cell profiles of the TME in
human lung adenocarcinoma (LUAD) samples at a single-cell resolution. By comparing
different tumor sites, we discovered high TME heterogeneity. Single-sample gene set
enrichment analysis (ssGSEA) was utilized to explore functional differences between
cell subpopulations and between the core, middle and edge of tumors. We identified
8 main cell types and 27 cell subtypes of T cells, B cells, fibroblasts and myeloid
cells. We revealed CD4+ naive T cells in the tumor core that express high levels
of immune checkpoint molecules and have a higher activity of immune-exhaustion
signaling. CD8+ T cell subpopulations in the tumor core correlate with the upregulated
activity of transforming growth factor-β (TGF-β) and fibroblast growth factor receptor
(FGFR) signaling and downregulated T cell activity. B cell subtypes in the tumor
core downregulate cytokine production. In this study, we revealed that there was
immunological heterogeneity in the TME of patients with LUAD that have different ratios
of immune cells and stromal cells, different functions, and various degrees of activation
of immune-related pathways in different tumor parts. Therefore, clarifying the spatial
heterogeneity of the tumor in the immune microenvironment can help clinicians design
personalized treatments.

Keywords: single-cell sequencing, spatial heterogeneity, lung adenocarcinoma, immune microenvironment,
immunity

Abbreviations: TME, tumor microenvironment; LUAD, lung adenocarcinoma; ssGSEA, single-sample gene set enrichment
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INTRODUCTION

Tumors are hierarchical, heterogeneous and evolving complex
ecosystems. The continuous interaction between tumor cells
and their microenvironment greatly promotes the development,
metastasis and evolution of tumors (Sharma et al., 2019; Turajlic
et al., 2019). Cancer cells respond to treatment under the action
of other cell types in the tumor microenvironment (TME).
Recently, the TME has become an important therapeutic target
(Lin et al., 2019, 2020). In addition, the spatial heterogeneity of
tumors has caused substantial challenges for tumor treatment
(Allam et al., 2020). There are hundreds to thousands of
subclones in each tumor, which makes it difficult for researchers
to fully understand the TME in different areas of the tumor.
Therefore, clarifying the spatial heterogeneity of the tumor within
the TME would help clinicians design personalized treatments
(Allam et al., 2020).

Studies of tumor heterogeneity and tumor evolution using
multiregion samples and spatial transcriptome analysis have
provided much help for understanding tumor pathogenesis and
treatment. Sharma et al. (2019) used multiregion samples of
lung squamous cell carcinoma (LUSC) after bulk sequencing
from genome, transcriptome, and tumor-immune interactions
and histopathology to analyze the intratumoral heterogeneity
(ITH) and tumor evolution process of LUSC. Darmanis et al.
(2017) performed single-cell RNA sequencing (scRNA-seq) on
a total of 3,587 cells in the tumor core and surrounding areas
from 4 malignant glioma patients and found that the tumor
core contained a concentrated distribution of macrophages and
high expression of anti-inflammatory genes and pro-angiogenic
factors, such as the anti-inflammatory regulator interleukin (IL)-
1 receptor antagonist (IL1RN); in contrast, the surrounding
area was mainly enriched in microglia and highly expressed
pro-inflammatory genes, such as the inflammation marker IL-
1α/β.

ScRNA-seq reveals the functional state of cells at a single-
cell resolution and is a powerful tool for studying the TME
(Liu et al., 2020). Single-cell transcriptome data provide a
more comprehensive understanding of the complexity of the
immune system of the TME of lung cancer. The immune
microenvironments of different parts of tumors, of tumors
from different individuals, and in different disease states are
obviously different. With an understanding of the immune
microenvironment at a single-cell resolution (Lambrechts et al.,
2018; Smith and Hodges, 2019; Maynard et al., 2020), we
have a more comprehensive understanding of how the immune
system kills tumors.

Recently, studies on immune cells in the immune
microenvironment from different levels of lung adenocarcinoma
(LUAD) have not been reported. In addition, there is very
little research on immune cells and interstitial cells at the
single-cell level to different levels of LUAD. By studying
this topic, we can understand the immune infiltration of
LUAD at different levels from different spatial dimensions.
The situation and the activation of abnormal pathways of
different immune cell subtypes could finally help achieve
personalized medicine.

MATERIALS AND METHODS

Single-Cell Gene Expression
Quantification and Determination of the
Major Cell Types
Raw gene expression matrices that were generated in each
sample using Cell Ranger (version 2.0.0) were combined in
R (version 3.6.1) and converted to a Seurat object using the
Seurat R package (version 3.1.4). From this, all cells that had
either fewer than 201 UMIs, over 6,000 or below 101 expressed
genes, or over 10% UMIs derived from the mitochondrial
genome were removed. The FindIntegrationAnchors function
and IntegrateData function were used to eliminate the batch
effects. To reduce the dimensionality of this dataset, the first
5,000 variably expressed genes were summarized by principal
component analysis, and the first 9 PCs were further summarized
using tSNE dimensionality reduction using the default settings of
the RunTSNE function.

scRNA-Seq Data Acquisition and Data
Preprocessing
The raw sequencing data from 3 sets of LUAD specimens
were downloaded from the ArrayExpress database (accessions
E-MTAB-6149 and E-MTAB-6653) (Lambrechts et al., 2018).
Each LUAD patient had 4 samples: samples from the core of the
tumor, the middle of the tumor, the edge of the tumor and the
adjacent tissues. The sampling sites, the clinical characteristics,
upstream analysis and downstream analysis (including quality
control (QC) and clustering) details of scRNA-seq of these three
LUAD patients have been published elsewhere (Supplementary
Table 1; Lambrechts et al., 2018). Supplementary Figures 1A–C
shows the gene number, the unique molecular identifier (UMI),
the mitochondrial content of these 12 samples, their correlation,
and the origin of these samples and batches. In addition, the
details of the raw data analysis and data preprocessing are shown
in Supplementary Methods and Figure 1A.

Dimensionality Reduction, Clustering
and Reclustering of the Main Cell Types
After QC (Supplementary Figures 2A–F), we used the Seurat
R package to perform data normalization (LogNormalize),
dimensionality reduction, and clustering analysis. The cellular
components in the immune microenvironment of LUAD
were identified using the FindNeighbors, FindClusters and
FindAllMarkers functions to cluster cells and identify genes that
were differentially expressed in the cell subsets [with cutoffs of
min.pct = 0.15 and logfc.threshold = log2(2)]. Then, published
literature and the CellMarker database were used to annotate the
marker genes of each cluster, and we identified a total of 8 types of
cells. To further identify the cell subpopulations in each cluster,
we performed separate clustering and downstream analysis on
each of the types of cells. To determine the cell subgroups in each
cluster, we used marker genes in published literature (Lambrechts
et al., 2018) and the CellMarker database to annotate each cell
subgroup (Zhang et al., 2019).
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FIGURE 1 | Overview of 9,993 single cells from LUAD and adjacent non-malignant LUAD. (A) Overview of the scRNA-seq analysis in this study. (B) tSNE of the
9,993 cells profiled, with each cell color-coded for (left to right) its batch group (batch 1 and batch 2), the corresponding patient, the associated cell type and the
sample origin (tumor or non-malignant tissue), and the number of transcripts (UMIs) detected in that cell (log scale is defined in the inset). (C) Expression of marker
genes for the cell types defined above each panel.

Cell Function, Immune Function, and
Trajectory Analyses
To identify the differences in cell function in different areas, the
single-sample gene set enrichment analysis (ssGSEA) (Liberzon
et al., 2015) algorithm in the gene set variation analysis (GSVA)
(Hänzelmann et al., 2013) package was used to evaluate the
activity of different pathways [from the Molecular Signatures
Database (MsigDB)] (Liberzon et al., 2011) in each cell, and the
ssGSEA score was used to reflect the activation and inhibition of
the pathway in each cell. Lists of immune checkpoint inhibitors
and cytotoxicity molecules were extracted from published
literature (Rooney et al., 2015; Lambrechts et al., 2018; Li
et al., 2018). The monocle package was used to reconstruct
the development and differentiation trajectories of immune cells
(Qiu et al., 2017).

Statistics
For gene expression, comparisons between two groups were
performed using an unpaired two-tailed Mann-Whitney U-test.
For the ssGSEA score, comparisons between the two groups

were performed using the limma R package. Box plot, violin
plot and histograms in the ggplot2 (Wickham, 2011) package
were used for visualization. The pathways presented in the
heatmaps were significantly different between the two groups
(adjusted P < 0.05). All statistical analyses were performed using
R (version 3.6.1).

RESULTS

ScRNA-Seq Transcriptomic Profiles of
LUAD
All 3 LUAD patients had undergone lobectomy, and nearly 66.7%
of these LUAD patients (2/3; 66.7%) had mild chronic obstructive
pulmonary disease (COPD). Four samples, namely, a sample
from the center, edge, and periphery of the tumor and a sample
of normal tissue from each patient with LUAD were obtained
from the end of the same lung tissue. These samples were all
examined using single-cell sequencing with the 10X genomics
protocol. We used CellRanger software to analyze the original
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data (see Supplementary Methods for details). According to the
coloring of the sample batch of each cell, we found that the
samples of the two batches of data were not well integrated, and
there was an obvious batch effect (Supplementary Figure 1C).
We used the FindIntegrationAnchors and the IntegrateData
functions in the Seurat package to integrate the first 5,000 variably
expressed genes and remove batches of genes (Supplementary
Figure 2A). In addition, we colored each cell according to the
COPD type, sex, patient source, sampling site, and sample type
(Supplementary Figures 2B–F). Next, we performed cluster
analysis on this batch of cells. According to the differences
between the first 5,000 variably expressed genes and the first
9 principle components (PCs), 9,992 cells were clustered to
obtain a total of 8 cell types. A total of 3,313 cells (33.2%)
belonged to non-tumor tissues, and 6,679 cells (66.8%) belonged
to tumor tissues (Figure 1B), which were defined according
to the specific high expression genes of each cell subgroup
(Supplementary Table 2). We defined 3 lymphocyte subgroups
[myeloid cells (marker gene: LYZ), T cells (marker gene: CD3D),
and B cells (marker gene: CD79A)], endothelial cells (marker
gene: CLDN5), alveolar cells (marker gene: CLDN18), fibroblasts
(marker gene: COL1A1), epithelial cells (marker gene: CAPS),
and cancer cells (marker gene: EPCAM) (Figure 1C and
Supplementary Table 3).

Immunological Differences Among the
T Cell Subpopulations
With 1,928 cells detected, T cells represented the most prevalent
cells. T lymphocytes were regrouped into 6 cell subgroups
(Figure 2A and Supplementary Table 4). Most of the cells
were located in the core and middle of the tumor, which are
CD4+ naive T cells (SELL, CCR7, and C1orf162; clusters 0
and 2); regulatory T cells (Tregs; FOXP3, IL2RA, TNFRSF18,
and TNFRSF4; cluster 4); CD8+ T cells/natural killer (NK)
cells (CD8A, GZMA, GZMB, and NKG7; clusters 1 and 3)
and other T cells (unclassified; cluster 6; Figure 2B). Next, we
used the ssGSEA algorithm to estimate the activity of each
cell in the 6 types of T cell subgroups in the pathological
pathway and compared the up- or downregulated pathological or
immune-related pathways of each T cell subgroup (Figure 2C).
CD4+ naive T cells significantly upregulated the activity of
gamma delta T cells (γδ T cells). The activity of CD8+ T cells/NK
cells in the cell cycle and DNA damage-related pathways is
significantly higher than that of other T cell subgroups.

To further explore the differences between the subgroups of
932 CD4+ naive T cells and the functional differences in each
subgroup at different tumor sites (Figure 3A and Supplementary
Table 4), we found that the CD4+ naive T cells (cluster 0)
located at the core of the tumor in the activities of angiogenesis
and Wnt-regulating cell proliferation are significantly higher
than those at the edge of the tumor; in contrast, the activity
in cytokines (such as interferon) and inflammatory response
as significantly lower at the core of the tumor than at the
edge of the tumor (Figure 3B). Similarly, CD4+ naive T cells
(cluster 0) located at the core of the tumor have significantly
higher activation levels in angiogenesis, epoxygenase cytochrome

P450, NOTCH3 signaling, lipid particle organization and other
pathways than those at the edge of the tumor. CD4+ naive
T cells (cluster 0 and cluster 2) at the core of the tumor
express more immune checkpoint molecules, such as CTLA4,
which has been used in clinical practice, and LAG3, HAVCR2,
and TNFRSF9/CD137, which are currently undergoing clinical
trials (Figure 3C) than those at other locations. Additionally,
the functional activity of some immunostimulation-related
pathways in CD4+ naive T cells (clusters 0 and 2) located
at the core of the tumor was significantly lower than that
of CD4+ naive T cells located in the middle or periphery
of the tumor; these pathways included cytokine synthesis,
which mediates the recruitment of lymphocytes (Figure 3D). In
contrast, some pathway activities related to immune depletion
were significantly activated in CD4+ naive T cells (clusters
0 and 2) located in the core of the tumor; these pathways
included FGFR signaling, lipid fatty acid synthesis, and MAPK
signaling (Figure 3D).

CD8+ T cells and NK cells play an important role in
killing tumor cells. We reclustered 719 CD8+ T cells and NK
cells (Figure 4A and Supplementary Table 4) and identified
4 subgroups based on their marker genes (Figure 4B and
Supplementary Figure 4A): exhausted CD8+ T cells (marker
gene: HAVCR2; cluster 0); naive CD8+ T cells (marker gene:
CCR7; cluster 1); proliferating CD8+ T cells (marker gene:
MKI67; clusters 2 and 4), and NK cells (marker gene: KLRC1,
KLRB1, and SEC11C; clusters 3 and 5). We also compared the
expression levels of marker genes in CD8+ T cell NK cells
at different tumor sites (Supplementary Figure 3A). CD8+ T
cells, CD4+ naive T cells, and Tregs have different expression
levels of marker genes in different tumor sites (Supplementary
Figures 3B–D). In addition, we found that compared with that
of proliferating CD8+ T cells, the expression of proliferation
gene markers in exhausted CD8+ T cells and naive CD8+ T
cells was lower (Supplementary Figure 4B). Compared with
those in the middle or periphery of the tumor, the exhausted
CD8+ T cells located in the core of the tumor had a lower
proliferation function (Supplementary Figure 4C). In addition,
we found that different subgroups of CD8+ T cells may perform
different cellular functions. For example, exhausted CD8+ T
cells (cluster 0) had a higher degree of activation in the
FGFR, transforming growth factor-β (TGF-β) and fatty acid
synthesis pathways. In contrast, proliferating CD8+ T cells
(cluster 2) were significantly more active in ATP, cytolysis,
and MHC-IB signaling than other cell subgroups (Figure 4C).
Similarly, immune checkpoint molecules, such as PDCD1,
CTLA4, HAVCR2, and TNFRSF9/CD137, were significantly
higher in exhausted CD8+ T cells (cluster 0) than in other cell
subsets; in contrast, cytotoxic molecules, such as GZMK, were
significantly lower in exhausted CD8+ T cells than in naive
CD8+ T cells (cluster 1) and proliferating CD8+ T cells (cluster
2; Figure 4D). Next, we compared the functional differences
between each CD8+ T cell subgroup at different tumor sites
(Figures 4E,F). Most of the pathway activities were related to
immune depletion and included fatty acid lipid metabolism,
stem cell proliferation, and fibroblast growth. Factor receptor
signaling is significantly higher in the CD8+ T cell subgroups
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FIGURE 2 | T cell clusters in LUAD. (A) tSNE plot of 1,928 T cells, which are color-coded by their associated cluster or the sample location. (B) tSNE plot, which is
color-coded for expression of marker genes for the cell types, as indicated. (C) Differences in pathway activities scored per cell by ssGSEA between the different T
cell clusters.

located at the core of the tumor than in the CD8+ T cell
subgroups located at the edge of the tumor. In contrast, the
activities of immune-related cytokine synthesis, chemokines,

inflammatory response and other pathways at the core of the
tumor were significantly lower than those of the CD8+ T cell
subgroups located at the edge of the tumor. Since the existence
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FIGURE 3 | CD4+ naive T cell clusters in LUAD. (A) tSNE plot of 932 CD4+ naive T cells, which are color-coded by their associated cluster or the sample location.
(B) Differences in pathway activities scored per cell by GSVA between the tumor core and tumor edge in the CD4+ naive T cells (cluster 0) and CD4+ naive T cells
(cluster 2). T-values are from a linear model. (C) Violin plots showing the smoothed expression distribution of selected genes involved in T cell activity and in immune
checkpoints, stratified by CD4+ naive T cell clusters (clusters 0 and 2). (D) Heatmap depicting the mean differences in pathway activities scored per cell by GSVA
between the tumor core and tumor edge across the CD4+ naive T cells (cluster 0) and CD4+ naive T cells (cluster 2). The x-axis of the heatmap indicates different
CD4+ naive T cell clusters, and the y-axis indicates pathway activities scored per cell by GSVA. Each square represents the fold change or difference in each
indicated pathway activity scored per cell by GSVA between the tumor core and tumor edge across the CD4+ naive T cells (cluster 0) and CD4+ naive T cells
(cluster 2). Red indicates upregulation, while blue indicates downregulation. *P < 0.05; **P < 0.01; ****P < 0.0001.

of exhausted CD8+ T cells had a great impact on the efficacy
and prognosis of immunotherapy, we further compared the
functional activities of exhausted CD8+ T cells in different
parts of the tumor. We found that the exhausted CD8+ T
cells located in the core of the tumor had a higher expression

of immune checkpoint molecules, including PDCD1, CTLA4,
LAG3, TNFRSF9/CD137, CD27, and HAVCR2. In contrast, there
were significantly more cytotoxic markers, such as GZMB, in
exhausted CD8+ T cells at the edge of the tumor than at the
core of the tumor (Figure 4G). Trajectory analysis based on
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FIGURE 4 | CD8+ T cells/NK cells cluster in LUAD. (A) tSNE plot of 719 CD8+ T cells/NK cells, which are color-coded by their associated cluster or the sample
location. (B) tSNE plot, which color-coded for the expression of marker genes for the cell types, as indicated. (C) Heatmap of the ssGSEA score, as estimated using
gene sets from the MsigDB, for four CD8+ T cell clusters: exhausted CD8+ T cells (cluster 0), CD8+ naive T cells (cluster 1), proliferating CD8+ T cells (cluster 2),
and proliferating CD8+ T cells (cluster 4). (D) Violin plots showing the smoothed expression distribution of selected genes involved in T cell activity and in immune
checkpoints, stratified by CD8+ T cell clusters: exhausted CD8+ T cells (cluster 0), CD8+ naive T cells (cluster 1), proliferating CD8+ T cells (cluster 2), and
proliferating CD8+ T cells (cluster 4). (E) Heatmap depicting the mean differences in pathway activities scored per cell by GSVA between tumor core and tumor edge
across the exhausted CD8+ T cells (cluster 0), CD8+ naive T cells (cluster 1), proliferating CD8+ T cells (cluster 2), and proliferating CD8+ T cells (cluster 4). The
x-axis of the heatmap indicates different CD8+ T cell clusters, and the y-axis indicates pathway activities scored per cell by GSVA. Each square represents the fold
change or difference in each indicated pathway activity scored per cell by GSVA between the tumor core and tumor edge across the exhausted CD8+ T cells
(cluster 0), CD8+ naive T cells (cluster 1), proliferating CD8+ T cells (cluster 2), and proliferating CD8+ T cells (cluster 4). Red indicates upregulation, while blue
indicates downregulation. (F) Heatmap of the ssGSEA score, as estimated using gene sets from MsiDB, between the tumor core and tumor edge across the
exhausted CD8+ T cells (cluster 0). (G) Violin plots showing the smoothed expression distribution of selected genes involved in T cell activity and in immune
checkpoints between the tumor core and tumor edge across the exhausted CD8+ T cells (cluster 0). (H) The cell trajectory of CD8+ T cells. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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CD8+ T cells suggests that proliferating CD8+ T cells (clusters 2
and 4) may eventually gradually transition to exhausted CD8+ T
cells (Figure 4H).

Immunological Differences Among the
B Cell Subpopulations
We detected 1,136 B cells, and reclustering revealed 5 B cell
subgroups (Figure 5A and Supplementary Table 4). Among
these B cell subgroups, we found that follicular B cells (clusters
0, 1, and 3) highly expressed CD20 (MS4A1), memory B cells
(cluster 2) highly expressed CD27, plasma cells (cluster 7)
highly expressed CD9, and mucosa-associated lymphoid tissue-
derived (MALT) B cells highly expressed IGLL5 (clusters 5
and 8; Figure 5B and Supplementary Figure 5A). Next, we
further compared the functional activity of the five types of
B cell subgroups (Figure 5C), and follicular B cells (clusters
0 and 3) had a higher activity in the TGF-β, NOTCH and
other pathways. However, follicular B cells (cluster 1) had a
significantly higher activity in the cell cycle and DNA damage
repair pathways than other B cell subgroups. Plasma cells
(cluster 7) had a higher functional activity in MHC-I synthesis.
We found that follicular B cells (clusters 0, 1, and 3) and
plasma cells (cluster 7) located in the core of the tumor were
significantly more active in immune depletion-related pathways
than the B cell subsets located at the edge of the tumor; these
pathways included epithelial cell adhesion, fibroblast growth
factor binding, VEGFR2-mediated cell proliferation, oxidative
stress-stimulated hypoxia, and stress-inhibited cytokine synthesis
(Figure 5D). Similarly, the memory B cells (cluster 2) located
in the core of the tumor significantly increased the activity of
the angiogenesis, lipid synthesis, NOTCH signaling and other
pathways but significantly downregulated the functional activity
of inflammatory factor synthesis (Figure 5E).

Immunological Differences Among the
Myeloid Cell and Fibroblast
Subpopulations
A total of 1,524 myeloid cells were reclustered into 5 categories
(Figure 6A and Supplementary Table 4). Two types of cells
were annotated as macrophages; their marker genes are FOLR2
(cluster 0) and CRIP1 (cluster 2). The other type of cells were
Langerhans cells (cluster 1; Supplementary Figure 5B), which
highly expressed FCER1A, CD1A, CD1C, and CD1E, and cross-
presenting dendritic cells (cluster 3), which highly express IDO1.
The last category is granulocytes, which highly express S100A12
(Figure 6B). Then, to further explore the differences in cell
functions among the five subgroups, we found that the two
types of macrophages had similar activation levels in autophagy,
macrophage chemotaxis and other pathways. Langerhans cells
(cluster 1) had a significantly higher activity in pathways such
as antigen presentation and IL-1 production than the other
subgroups. Cross-presenting dendritic cells (cluster 3) have
higher antigen presentation and cytokine production (IL-9, IL-
21, IL-35, IL-6) activities (Figure 6C). To compare the differences
in the cell functions of the myeloid cell subgroups in the different
tumor sites, we analyzed the differences in the ssGSEA scores of

the pathways of each subgroup according to the tumor site and
displayed them in the form of heatmaps (Figure 6D). We found
that each type was located at the core of the tumor. The vascular
proliferation, FGFR, fatty acid synthesis and hypoxia activities
were significantly higher in the cell subpopulations at the core
of the tumor than at the cell subpopulations the edge of the
tumor. In contrast, the activities of cytokines (such as interferons
and interleukins), antigen presentation, inflammatory response,
chemokine recruitment and other pathways were significantly
higher in the various subgroups located at the edge of the tumor
than in the various cell subgroups located at the core of the tumor.

After reclustering, 259 fibroblasts were divided into 3
categories, of which 2 types of cells were annotated as fibroblasts
(clusters 0 and 2); the other type of cells was normal lung
fibroblasts. These cells are rarely located in the core of the tumor,
and most of these cells are located at the edge and in the middle of
the tumor (Figure 7A and Supplementary Table 4). Fibroblasts
(cluster 0) highly expressed COL10A1, SFRP4, SULF1, ASPN,
and HTRA3. Normal lung fibroblasts (cluster 1) highly expressed
CFD and PTGDS. Fibroblasts (cluster 2) highly expressed
COL4A1 and PDGFRB (Figure 7B). We found that extracellular
matrix collagen binding, cell adhesion, TGF-β, FGFR, IL-10 and
other pathway activities were significantly higher in fibroblasts
(cluster 0) than in the other cell subgroups (Figure 7C). In
addition, fibroblasts (clusters 0 and 2) located at the edge of the
tumor had a higher activity in regulating lymphocyte chemotaxis
and cytokine synthesis pathways (Figures 7D,E).

DISCUSSION

The discovery and development of immune checkpoints has
opened the door to hope to overcome tumors. However, the
efficacy of tumor immunotherapy is limited to some patients, and
there are obvious individual differences (Whiteside et al., 2016).
How to improve the efficacy of immunotherapy and expand
the population that received benefits have become the focus of
tumor immunotherapy research. Growing evidence attributes
the difference in treatment outcomes to the heterogeneity of
the TME (Tang et al., 2016). The development of scRNA-
seq technology has greatly aided the understanding of the
TME (Lambrechts et al., 2018; Maynard et al., 2020). In this
study, we compared the immune microenvironment of LUAD
at different tumor sites from the resolution of the single-cell
transcriptome and found that there is a large immunogenic
heterogeneity at different tumor sites. The proportion of cells in
the immune microenvironment of different parts of the tumor
and the functions of immune and stromal cells are quite different.
Understanding the role of the immune microenvironment in
different parts of a tumor can better help researchers understand
tumor evolution.

The TME is composed of tumor cells and infiltrating immune
cells around the tumor, new blood vessels and their endothelial
cells, cancer-associated fibroblasts (CAFs) and the extracellular
matrix, which can promote tumor deterioration, increase tumor
invasiveness, and increase the antitherapeutic response (Swartz
et al., 2012; Lin et al., 2019; Sharma et al., 2019). In the TME,
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FIGURE 5 | B cell clusters in LUAD. (A) tSNE plot of 1,136 B cells, which are color-coded by their associated cluster or the sample location. (B) tSNE plot, which is
color-coded for expression of marker genes for the cell types, as indicated. (C) Heatmap of the ssGSEA score, as estimated using gene sets from MsiDB, for eight B
cell clusters: follicular B cells (cluster 0), follicular B cells (cluster 1), memory B cells (cluster 2), follicular B cells (cluster 3), other B cells (cluster 4), MALT B cells
(cluster 5), other B cells (cluster 6), plasma B cells (cluster 7), and MALT B cells (cluster 8). (D) Heatmap depicting the mean differences in pathway activities scored
per cell by GSVA between the tumor core and tumor edge across the follicular B cells (cluster 0), follicular B cells (cluster 1), memory B cells (cluster 2), follicular B
cells (cluster 3), other B cells (cluster 4), MALT B cells (cluster 5), other B cells (cluster 6), plasma B cells (cluster 7), MALT B cells (cluster 8). The x-axis of the
heatmap indicates different B cell clusters, and the y-axis indicates pathway activities scored per cell by GSVA. Each square represents the fold change or difference
in each indicated pathway activity scored per cell by GSVA between the tumor core and tumor edge across the follicular B cells (cluster 0), follicular B cells (cluster
1), memory B cells (cluster 2), follicular B cells (cluster 3), other B cells (cluster 4), MALT B cells (cluster 5), other B cells (cluster 6), plasma B cells (cluster 7), and
MALT B cells (cluster 8). Red indicates upregulation, while blue indicates downregulation. (E) Differences in pathway activities scored per cell by GSVA between
tumor core and tumor edge in the follicular B cells (cluster 0), follicular B cells (cluster 1), memory B cells (cluster 2), follicular B cells (cluster 3), other B cells (cluster
4), MALT B cells (cluster 5), other B cells (cluster 6), plasma B cells (cluster 7), and MALT B cells (cluster 8). T-values are from a linear model. *P < 0.05; **P < 0.01.
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FIGURE 6 | Myeloid cell clusters in LUAD. (A) tSNE plot of 1,524 myeloid cells, which are color-coded by their associated cluster or the sample location. (B) tSNE
plot, which is color-coded for expression of marker genes for the cell types, as indicated. (C) Heatmap of the ssGSEA score, as estimated using gene sets from
MsiDB, for five myeloid cell clusters from macrophages (cluster 0), Langerhans cells (cluster 1), macrophages (cluster 2), cross-presenting dendritic cells (cluster 3)
and granulocytes (cluster 4). (D) Heatmap depicting the mean differences in pathway activities scored per cell by GSVA between the tumor core and tumor edge
across the macrophages (cluster 0), Langerhans cells (cluster 1), macrophages (cluster 2), cross-presenting dendritic cells (cluster 3) and granulocytes (cluster 4).
The x-axis of the heatmap indicates different myeloid cell clusters, and the y-axis indicates pathway activities scored per cell by GSVA. Each square represents the
fold change or difference in each indicated pathway activity scored per cell by GSVA between the tumor core and tumor edge across macrophages (cluster 0),
Langerhans cells (cluster 1), macrophages (cluster 2), cross-presenting dendritic cells (cluster 3) and granulocytes (cluster 4). Red indicates upregulation, while blue
indicates downregulation. *P < 0.05; **P < 0.01.

tumor-infiltrating lymphocytes (TILs) serve as the target cells of
immune checkpoint inhibitors, and their infiltration degree and
type significantly affect the effect of immunotherapy. Studies have
pointed out that in a variety of solid tumors, the composition and
degree of infiltration of TILs in patient tissue samples have value
in predicting the prognosis of patients receiving immunotherapy
(Lin et al., 2019, 2020). For example, high infiltration of CD8+ T
cells or CD4+ T helper 1 (Th1) cells suggests a better prognosis
(Lin et al., 2019, 2020; Zhang et al., 2020). However, infiltrating
immune cells can have many different subtypes. These cell
populations can have tumor-promoting or antitumor functions,
and their activation status, functions, intratumoral localization

and density will be different (Tosolini et al., 2011). In this study,
we found that CD4+ naive T cells located at the core of the tumor
had higher expression levels of immune checkpoint molecules
than those in other locations of the tumor. For example,
CD4+ naive T cells (cluster 0/cluster 2) located at the core of the
tumor expressed more immune checkpoint molecules, such as
CTLA4, LAG3, HAVCR2, and TNFRSF9/CD137 (Pardoll, 2012).
In addition, CD4+ naive T cells located at the core of the tumor
had significantly higher VEGF-mediated angiogenesis and Wnt
regulation of cell proliferation than those located at the edge
of the tumor; in contrast, the cytokine (such as interferon) and
inflammatory response activity of these cells was significantly
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FIGURE 7 | Fibroblast clusters in LUAD. (A) tSNE plot of 259 fibroblasts, which are color-coded by their associated cluster or the sample location. (B) tSNE plot,
which is color-coded for expression of marker genes for the cell types, as indicated. (C) Heatmap of the ssGSEA score, as estimated using gene sets from MsiDB,
for three fibroblast clusters from fibroblasts (cluster 0), normal lung fibroblasts (cluster 1), and fibroblasts (cluster 2). (D) Differences in pathway activities scored per
cell by GSVA between the tumor core and tumor edge in fibroblasts (cluster 0), normal lung fibroblasts (cluster 1), and fibroblasts (cluster 2). T-values are from a
linear model. (E) Heatmap depicting the mean differences in pathway activities scored per cell by GSVA between the tumor core and tumor edge across fibroblasts
(cluster 0), normal lung fibroblasts (cluster 1), and fibroblasts (cluster 2). The x-axis of the heatmap indicates different fibroblast clusters, and the y-axis indicates
pathway activities scored per cell by GSVA. Each square represents the fold change or difference in each indicated pathway activity scored per cell by GSVA
between the tumor core and tumor edge across fibroblasts (cluster 0), normal lung fibroblasts (cluster 1), and fibroblasts (cluster 2). Red indicates upregulation, while
blue indicates downregulation. *P < 0.05; **P < 0.01.

lower at core of the tumor than at the edge of the tumor. Tumor
cells use inhibitory signaling pathways in the immune system,
such as the PD-1/PD-L1, CTLA-4, LAG-3, Tim-3, and CD160
signaling pathways, to inhibit the function of TILs in the TME,
resulting in tumor immunosuppression (Wherry, 2011;

Chen and Flies, 2013). Tumor cells can also secrete
immunosuppressive factors, such as VEGF, into the
microenvironment to increase tumor microvessel density and
inhibit immune cell function, ultimately inhibiting antitumor
effects (Beatty and Gladney, 2015; Span and Bussink, 2015).
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In addition, we found that most of the processes related to
immune depletion, including fatty acid metabolism, stem
cell proliferation, FGFR signaling, and TGF-β signaling, were
significantly higher in the CD8+ T cell subgroups located
at the core of the tumor than in those at the edge of the
tumor. In contrast, the immune-related cytokine synthesis,
chemokine, inflammatory response pathway and cytotoxicity
marker (GZMB) activity in CD8+ T cells in the core of the
tumor was significantly lower than that in the same cells at
the edge of the tumor. Mariathasan et al. (2018) found that
TGF-β may ultimately lead to reduced antitumor immunity by
limiting the infiltration of T cells, and the use of TGF-β inhibitors
and PD-L1 inhibitors together in a mouse model not only
inhibited the TGF-β signaling pathway in interstitial cells but
also promoted CD8+ T cells to enter the tumor and increases the
secretion of granzyme B, which ultimately enhanced antitumor
immunity and reduced the size of the tumors. In addition,
functionally quiescent T cells showed high levels of oxidization
and metabolism of fatty acids/lipids, and increased fatty acid
transport and uptake were found to promote cancer metastasis
(Kim et al., 2019; Zhao et al., 2019).

Tumor-infiltrating B cells have been identified, but their
overall functional role in cancer is not fully understood (Garg
et al., 2016; Tsou et al., 2016; Sarvaria et al., 2017). Preliminary
evidence shows that there is a correlation between the response
to immunotherapy and the presence of B cells, but the exact
role of B cells in immunotherapy is still unclear (Griss et al.,
2019). Helmink et al. (2020) showed that the same properties
responsible for the functions of memory B cells and plasma
cells in adaptive immune responses may also contribute to
effective T cell responses with immunotherapy. B cells may
change the activation state and function of T cells. For example,
memory B cells can act as antigen-presenting cells, driving the
expansion of memory B cells and naive tumor-associated T
cells. B cells can also secrete a series of cytokines (including
TNF, IL-2, IL-6, and IFNγ), which can activate and recruit
other immune effector cells, including T cells. We found that
plasma cells located at the core of the tumor had significantly
increased activity in immune depletion-related processes, such
as epithelial cell adhesion, FGF binding, VEGFR2-mediated cell
proliferation, oxidative stress-stimulated hypoxia, and inhibitory
cytokine synthesis, than the B cell subsets located at the edge of
the tumor. Similarly, the memory B cells located in the core of the
tumor had significantly increased angiogenesis, lipid synthesis,
NOTCH signaling and other processes, but inflammatory factor
synthesis was significantly lower in memory B cells in the
core of the tumor than in those in the periphery of the
tumor. In tumor tissues, a variety of transcription factors, such
as hypoxia inducible factor (HIF), can trigger the expression
of VEGF and other proangiogenic factors, leading to an
increase in tumor microvessel density. Hypoxia can promote the
formation of tumor blood vessels by upregulating the expression
of proangiogenic factors and HIF-1α (Brahimi-Horn et al.,
2007), inducing tumor cells to undergo epithelial-mesenchymal
transition, increasing their malignancy and triggering tumor
spread and metastasis (Wu et al., 2011). We found that the
macrophages located at the core of the tumor had significantly

higher blood vessel proliferation, FGFR signaling, fatty acid
synthesis and hypoxia signaling than the cell subsets at the
edge of the tumor. In contrast, the activities of cytokines
(such as interferons and interleukins), antigen presentation,
the inflammatory response, chemokine recruitment and other
processes were significantly higher in the various subgroups
located at the edge of the tumor than in the various cell subgroups
located at the core of the tumor. MHC-II on macrophages
activates T cells by presenting antigens to produce a powerful
inflammatory response (Lambrechts et al., 2018). In addition,
fibroblasts located at the core of the tumor had significantly
higher extracellular matrix collagen binding, cell adhesion, and
TGF-β, FGFR, IL-10, and other signaling than other fibroblasts
at the tumor margins. The secretion of collagen promotes the
reconstruction of the microenvironmental matrix and enhances
the ability of tumor cells to invade along the collagen fiber
(Shimoda et al., 2010; Lambrechts et al., 2018). Tumor cells
can also secrete immunosuppressive factors, such as TGF-β,
IL-2, IL-10, and VEGF, into the microenvironment and train
infiltrating immune cells to inhibit their antitumor effects (Beatty
and Gladney, 2015; Maynard et al., 2020).

However, our research has certain limitations. First, we discuss
only the heterogeneity of the TME from the perspective of
single-cell transcriptomes. In the future, we still need to explore
the heterogeneity of the tumor immune microenvironment
from the perspective of multiomics. Second, we used only
bioinformatics algorithms to infer the function of each type
of cell and compare the functional differences of different cell
types; however, in future analyses, we still need to explore the
interactions between cells.

CONCLUSION

Our research shows that there is heterogeneity in the immune
microenvironment in different parts of the tumor, and this
includes the different ratios of immune cells and stromal cells,
different functions, and the activation degree of immune-
related pathways in different tumor parts. Therefore,
clarifying the spatial heterogeneity of the tumor in the
immune microenvironment could help clinicians design
personalized treatments.
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Supplementary Figure 1 | Before QC of single cells. (A) Before QC, overview of
the number of mRNAs, the mRNA reads, and the percentage of mitochondrial
genes in this study. (B) Before QC, the relationship among the percentage of
mitochondrial genes, the mRNA reads and the amount of mRNA. (C) Before QC,
the tSNE plot showing the sample position and batch effect.

Supplementary Figure 2 | After QC of single cells. (A) After QC, tSNE plot
showing the batch group. (B) After QC, tSNE plot showing the COPD status. (C)
After QC, tSNE plot showing the sex of the patient. (D) After QC, tSNE plot
showing the corresponding patient. (E) After QC, tSNE plot showing the tumor
site. (F) After QC, tSNE plot showing the sample type of origin.

Supplementary Figure 3 | (A) Violin plots showing the smoothed expression
distribution of selected genes involved in marker genes of CD8+ T cells/NK cells
between tumor core, tumor middle and tumor edge across the CD8+ T cells/NK
cells. (B) Violin plots showing the smoothed expression distribution of selected
genes involved in marker genes of CD8+ T cells between the tumor core, tumor
middle and tumor edge across CD8+ T cells. (C) Violin plots showing the
smoothed expression distribution of selected genes involved in marker genes of
CD4+ naive T cells between tumor core, tumor middle, and tumor edge across
CD4+ naive T cells. (D) Violin plots showing the smoothed expression distribution
of selected genes involved in marker genes of Tregs between the tumor core,
tumor middle, and tumor edge across the Tregs.

Supplementary Figure 4 | (A) tSNE plot, which is color-coded for expression of
additional marker genes of CD8+ T cells for the cell types, as indicated. (B) Violin
plots showing the smoothed expression distribution of selected genes involved in
proliferation between exhausted CD8+ T cells (cluster 0), CD8+ naive T cells
(cluster 1), proliferating CD8+ T cells (cluster 2), and proliferating CD8+ T cells
(cluster 4). (C) Violin plots showing the smoothed expression distribution of
selected genes involved in proliferation between tumor core, tumor middle, and
tumor edge tumors across the exhausted CD8+ T cells (cluster 0).

Supplementary Figure 5 | (A) tSNE plot, which is color-coded for expression of
additional marker genes of B cells for the cell types, as indicated. (B) tSNE plot,
which is color-coded for expression of additional marker genes of Langerhans
cells for the cell types, as indicated.

Supplementary Table 1 | Detailed information on the clinical characteristics of
scRNA-seq in LUAD samples.

Supplementary Table 2 | The differentially expressed genes between the
eight cell clusters.

Supplementary Table 3 | The marker genes for the eight cell clusters.

Supplementary Table 4 | Subtype characteristics for the four cell types.
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