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Background and Objective. To determine if using a multi-input deep learning approach in the image analysis of optical coherence
tomography (OCT), OCT angiography (OCT-A), and colour fundus photographs increases the accuracy of a CNN to diagnose
intermediate dry age-related macular degeneration (AMD). Patients and Methods. Seventy-five participants were recruited and
divided into three cohorts: young healthy (YH), old healthy (OH), and patients with intermediate dry AMD. Colour fundus
photography, OCT, and OCT-A scans were performed. +e convolutional neural network (CNN) was trained on multiple image
modalities at the same time. Results. +e CNN trained using OCTalone showed a diagnostic accuracy of 94%, whilst the OCT-A
trained CNN resulted in an accuracy of 91%.Whenmultiple modalities were combined, the CNN accuracy increased to 96% in the
AMD cohort. Conclusions. Here we demonstrate that superior diagnostic accuracy can be achieved when deep learning is
combined with multimodal image analysis.

1. Introduction

In the developed world, age-related macular degeneration
(AMD) is the leading cause of irreversible vision loss in the
population over 60 years old [1, 2]. Broadly AMD can be
categorised in neovascular and non-neovascular AMD, with
the later being far more prevalent. Characteristic features of
non-neovascular AMD include macular drusen, RPE ab-
normalities, and, in the late stage, geographic atrophy [3].
Pigment abnormalities detected by colour fundus photog-
raphy (CFP) are now well recognised to be one of the major
risk factors for the development of late stage AMD [3–6].

Over time, optical coherence tomography (OCT) and
fundus autofluorescence (FAF) have also joined the battery
of imaging techniques that are now considered essential for
the monitoring of non-neovascular AMD.+is list has more
recently been joined by optical coherence tomography an-
giography (OCT-A) andmulticolour confocal scanning laser

ophthalmoscopy (SLO) [7]. With the introduction of OCT
and OCT-A guided AMD treatment regimens, there has
been an exponential increase in the number of images
obtained and stored in large electronic databases [8]. Fur-
thermore, the multiple imaging techniques that are now
routinely used in clinical practice mean that the cumulative
time spent by retinal specialists interpreting these images is
also increasing [8]. Utilising software or computation power
to automate image analysis may have the potential to im-
prove the efficiency and accuracy of this process in the clinic
[9]. Computer-assisted image assessment is also less prone to
human factors such as bias, fatigue, and mindset [10].
Computer-assisted diagnosis is not a new concept: radiology
adopted this approach when the increasing demand for
imaging studies outstripped the ability of radiologists to
interpret and report on the studies [11].

Within the field of ophthalmology, automated image
analysis has been applied to the detection of diabetic
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retinopathy, mapping visual field defects in glaucoma, and
grading cataract [12–14]. Concentrating on macular disease,
both semiautomated and automated techniques have already
been used and validated in the detection of drusen, reticular
drusen, and geographic atrophy [15–19]. +e majority of
these studies have developed networks using only a single
imaging modality, namely, OCT [20–24], and very few have
combined image data from more than one modality, e.g.,
CFP and OCT images [25], or infrared, green FAF, and SLO
[26].

+e purpose of this study is to determine whether a
multimodal deep learning approach; training the CNN on
OCT, OCT-A, and CFP, will diagnose intermediate dry
AMD more accurately, when compared to conventional
CNN trained on the single modalities of CFP, OCT, and
OCT-A.

2. Methods

Seventy-five participants were recruited through Auckland
Optometry Clinic and Milford Eye Clinic, Auckland, New
Zealand. All participants provided written informed consent
prior to imaging. Ethics approval (#018241) from the
University of Auckland Human Participants Ethics Com-
mittee was obtained for this study. +is research adhered to
the tenets of the Declaration of Helsinki. Participants were
divided into three groups: young healthy (YH), old healthy,
(OH) and high-risk intermediate AMD (AMD). A total of 20
participants were recruited into the YH group, 21 into the
OH group, and 34 into the AMD group. A comprehensive
eye exam was conducted on each participant prior to the
OCT and OCT-A scans including dilated fundal examina-
tion and high contrast best-corrected visual acuity (BCVA)
to determine the ocular health status of the fundus. Patients
with any posterior eye disease that could potentially affect
the choroidal or retinal vasculature including but not limited
to glaucoma, polypoidal choroidal vasculopathy, DR, hy-
pertensive retinopathy, and high myopia (≥6D) were ex-
cluded from the study. Patients with any history of
neurological disorders were also excluded. None of our
recruited participants fit the exclusion criteria. +e YH
group consisted entirely of individuals between the ages of
20 and 26 and a best corrected visual acuity of ≥6/9 in the eye
under test. +e OH group consisted of individuals over the
age of 55 years who had a best corrected visual acuity of ≥6/9
in the eye under test and a normal ocular examination. +e
“AMD cohort” consisted entirely of patients with high-risk
intermediate dry AMD. +is was diagnosed if the individual
had at least two of the following risk factors: reticular
pseudodrusen, established neovascular AMD in the fellow
eye, and confluent soft drusen with accompanying changes
within the retinal pigment epithelium. In order to ensure
that all patients in the “AMD cohort” could maintain fix-
ation during OCT-A imaging, only those patients with a
BCVA of 6/15 or better were enrolled. +e mean age of the
participants in the YH, OH, and AMD groups were 23± 3,
65± 10, and 75± 8 years, respectively. Only one eye of each
patient was used for the analysis, and if the patient had both
eyes scanned, the OCT-A scan that had the better quality

(assessed subjectively by the clinical grader) of the two was
used. Mean BCVA for the YH, OH, and AMD groups were
6/6, 6/9, and 6/12, respectively. +e ocular health of all
participants was assessed at Auckland Optometry Clinic, by
a registered optometrist, prior to enrolment in the study.+e
macular status of patients enrolled into the AMD group was
assessed separately by an experienced retinal specialist (DS).

2.1. SS-OCT-A Device and Scanning Protocol. Participants
were dilated with 1.0% tropicamide if the pupils were
deemed too small for adequate OCTscans. +e swept source
(SS) OCT-A device (Topcon DRI OCT Triton, Topcon
Corporation, Tokyo, Japan) was used to obtain the following
images: 3× 3mm2 macular en-face OCT and 3× 3mm2

macular en-face OCT-A.
Raw OCT, OCT-A, and CFP image data were exported

using Topcon IMAGEnet 6.0 software. No image processing
was performed prior to image analysis. +e retinal layers
were identified using the IMAGENET 6.0 automated layer
detection tool (Figure 1). En-face OCT and OCT-A images
from layers 6 to 9 of the scan were selected (ONL-IS, OS,
RPE, and choroid), plus a single fundus photo. +e dataset
was divided into 0.6/0.2/0.2 for training, validation, and test
sets. +is division was based on participants (not images) in
order to avoid data leakage between the training, validation,
and test sets. As there were multiple OCT and OCT-A
images per patient, appropriate measures were taken to
ensure that there was no patient overlap between the
training, validation, or test sets (Figure 2).

2.2. Convolutional Neural Network Design. +e original
design of the convolutional neural network (CNN) used here
was based on the INCEPTION-RESNET-V2 design, since it
appeared to have the advantage of faster convergence speed.
+is design was further modified to enable the network to be
trained on multiple image modalities at the same time
(Figure 3). Each imaging stream was then set up to initiate
with a resizing layer, which was then followed by three
repetitions of a 2D convolutional layer, batch normalization,
and RELU activation layer. Separate modalities were then
concatenated using a global pooling layer. +e main body of
the CNN followed the classic INCEPTION-RESNET-V2
design, where blocks of inception cells (A, B, and C) were
used in series, where each block included cells with varying
kernel sizes and channels, as well as feed forwards bypasses.
+e Python code for creating the CNN is released and freely
available here: https://medium.com/@mannasiladittya/
building-inception-resnet-v2-in-keras-from-scratch-
a3546c4d93f0.

Experiments were run on an Intel Xeon Gold 6128 CPU
@ 3.40GHz with 16GB of RAM memory and a NVIDIA
GeForce TiTan V VOLTA 12GB, for 100 epochs. +e
training-stop criterion was as CNN validation loss (mea-
sured as negative log-likelihood and residual sum of squares)
had reached a stable minimum over the last 3 EPOCHs of
training. Hence, any further training would have led to
model “overfitting,” in which the neural network
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“memorizes” the training examples. It is worth noting that
this approach is scalable to include more modalities (>3).

Several network training episodes were undertaken.
Firstly, only a single imagemodality was used: OCT, OCT-A,
or CFP. Further training episodes combined both OCT and
OCT-A image data. +e last training episode utilised
multimodal image analysis from OCT, OCT-A, and CFP.

To better understand the nature of “learning” from our
CNN in each modality, attention maps were produced from

each modality. +is method is explained in detail elsewhere
[27–29]. Briefly, the output of the last convolutional layer
prior to the global concatenation was extracted, resized, and
smoothed for visualization.

3. Results

Table 1 shows that the sensitivity and specificity of the CNNs
trained using a single modality are high. However, when

Vitreous
NFL Macula

GCL-IPL
INL
OPL

ONL-IS
OS
RPE

Choroid

Figure 1: +e retinal layers automatically identified by IMAGEnet 6.0 software. NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner
plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; IS: inner segment; OS: outer segment; RPE:
retinal pigment epithelium.

AMD OLD Young

Figure 2: Examples of en-faceOCT (top row), en-faceOCT-A (middle row), and colour fundus photographs (bottom row) from each of the
three cohorts (AMD, OH, and YH). +e images within each column are from the same patient, from the labeled cohort at the top.
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more than one image modality is used during the training of
the CNN, the sensitivity and specificity increase with each

additional image modality added.+e CNN with the highest
accuracy, sensitivity, and specificity was the multimodal
image-trained network.

If the CNN results are considered for each imaging
modality, it would suggest that each modality is better suited
for classifying certain categories. +e CFP single modality
CNN was the most sensitive to AMD closely followed by
OCT-A. In contrast, the single modality OCT was more
sensitive to ageing, identifying the young and old cohorts
more accurately. Combining the imaging modalities into a
single “multimodal” CNN resulted in an accuracy of 99.8%,
being able to identify both ageing and disease with high
sensitivity and specificity (Table 1).

To investigate the apparent different sensitivities for each
modality, “attention maps” of each modality were generated
(Figure 4) from the same images in Figure 2. +ese maps
demonstrate the image features that were “noticed” by
multiple CNNs for each modality or participant group.

+e attention maps of the OCT images in each cohort
pay highest attention to the background homogeneity. In the
OCT-A images, the areas of highest attention are what
appear to be projection artefacts of the retinal vessels seen
within the choricapillaris OCTA slab, and the surrounding
background OCTA signal of the adjacent tissues. In CFP, the
area of highest attention is at the optic disc and the peri-
papillary region in young and AMD and additionally at the
macula in the old cohort.

4. Discussion

In the current study, we wanted to compare the accuracy of
different CNN designs, trained on the same dataset, to
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Figure 3: Modification to the top layers of INCEPTION-RESNET-V2 architecture.

Table 1: +e accuracy, sensitivity, and specificity of each CNN
design (single modality vs. dual modality vs. multimodality) in
classification of three cohorts of YH, OH, and AMD.

Patient cohort
YH OH AMD

Single modality CNN Overall accuracy
94.4%

OCT sensitivity (%) 99.6 98.9 77.8
OCT specificity (%) 98.8 86.7 100

Single modality CNN Overall accuracy
91.9%

OCT-A sensitivity (%) 95.5 83.2 97.6
OCT-A specificity (%) 99.6 96.2 76.4

Single modality CNN Overall accuracy
93.8%

CFP sensitivity (%) 81.0 84.6 100
CFP specificity (%) 94.4 78.6 86.7

Dual modality CNN (OCT+OCT-A) Overall accuracy
96.7%

Sensitivity (%) 100 95.7 92.1
Specificity (%) 97.6 94.6 98.7

Dual modality CNN (OCT+CFP) Overall accuracy
92.9%

Sensitivity (%) 98.1 96.3 100
Specificity (%) 100 97.0 96.0

Multimodality CNN (OCT+OCT-A+CFP) Overall accuracy
99.8%

Sensitivity (%) 100 99.3 100
Specificity (%) 100 100 99.2
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investigate whether combing imaging modalities improved
the ability of the CNN to accurately identify the 3 distinct
clinical groups under test. A secondary aim was to evaluate
the attention maps of each design to investigate which
components of the image(s), the CNN “paid attention” to.

To date, a number of single image modality CNNs
designed to identify AMD have been published, with dif-
fering rates of success [30–36]. Furthermore, the majority of
these studies have been based on single transverse OCT
image (cross section) taken through the fovea [23, 37–40].
Although such an approach, training a CNN on a single
OCT image, can achieve impressive results, this approach is
flawed as a single transverse image will only sample a very
limited part of the macula and relies on the pathology being
present within the scan analysed.

+e use of en-face OCT images may overcome the
segmentation error and sampling bias associated with the
use of transverse OCT scans. +is technique has previously
been utilised by Zhao et al. [33], to automatically detect the
presence of drusen, including pseudodrusen. CFPs have also
been used as a single imaging modality in the identification
of AMD using an appropriately trained CNN
[30, 32, 34–36, 41]. Good levels of accuracy have been
obtained [30, 34], but again often only after image resizing
and significant image preprocessing [36].

To the best of our knowledge, this is the first study to
develop a CNN that utilises both en-face OCT and OCT-A
and then combines them with CFP to develop a truly
“multimodal” CNN, one that truly samples the entirety of the
macular under test. To avoid sampling bias, the en-face OCT
and OCT-A data slabs of the entire macula were used. We
found that the multimodal CNN was superior to the single
modality CNNs; moreover, incorporating additional mo-
dalities led to an incremental improved accuracy of the CNN.

To the best of our knowledge, only two other groups have
utilised a similar multimodal approach [25, 42]. Yoo et al.
[25] used paired fundus and OCT images, employing a
VGG19 model pretrained on ImageNet to extract visual
features from both images. More impressive is the approach
taken by Wang et al. [42], who used a training method they
termed “loose pairing” whereby pairings were constructed
based on labels instead of eyes. In this method, a fundus
image is allowed to be paired with an OCT image if their
labels are identical, an approach which yielded an overall
accuracy of 97%. +e progressive improvement in the
performance of the incrementally complex CNNs thatWang
et al. [42] and ourselves describe strongly suggest that, like
clinicians, the accuracy of a CNN to detect pathology and
“normal” ageing is enhanced if complimentary imaging
modalities are employed.

AMD OLD Young

Figure 4: Same images as Figure 2 were used to generate these attention maps. Normalized images [0-1] are pseudocoloured based on the
level of “attention” the CNN gave to the region in the image modality (low represented by blue, to high represented by red).
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+e outcome of our single modality CNNs (Table 1)
suggest that OCT and OCT-A modalities are inherently
sensitive to different aspects of the retinal health. It appears
that OCT is more sensitive to ageing of the retina, while CFP
and OCT-A are better suited to detect the pathological
changes attributable to AMD. +e black box nature of the
neural networks makes any interpretation of the results
problematic [43]. We therefore produced attention maps to
aid our understanding of the CNN activity. +e en-faceOCT
images in each cohort revealed that the highest attention was
directed to the background homogeneity with a lesser
emphasis on the fovea. OCT-A in contrast appears to be
more sensitive to disease. Review of the attention maps
reveals that within the OCT-A images, the regions of higher
attention are the retinal vessels and the tissues immediately
adjacent to them. Again the fovea appears to contribute very
little to the OCT-A CNN classifier.

In conclusion, although trained on a small number of
images, this study demonstrates that, compared with CNNs
trained on a single image modality, superior diagnostic
accuracy can be achieved when deep learning is combined
with multimodal image analysis. We should also emphasise
that this is only a “proof of concept” study, and larger studies
to test its validity are needed. It should also be noted that the
attention maps produced here are from our small cohort and
may not prove to be generalisable after further studies. +is
approach is more similar to the multimodal image inter-
pretation used by retinal specialists within the clinical en-
vironment, and our results suggest that this approach
warrants further investigation. +e limitations of this study
include the small sample size of images, with the CNN
trained using images from a single academic center. +ese
clearly limit the generalisability of the CNNs we have
trained, but arguably do not detract from the conclusion that
a multimodal CNN is superior to a single modality CNN.
Further research would include the utilisation of images
from other OCTmanufacturers, and validation of this CNN
on a dataset from another academic or clinical institution.
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velopment and validation of a computer-aided diagnostic tool
to screen for age-related macular degeneration by optical
coherence tomography,” British Journal of Ophthalmology,
vol. 96, no. 4, pp. 503–507, 2012.

[39] W. Sun, X. Liu, and Z. Yang, “Automated detection of age-
related macular degeneration in OCT images using multiple
instance learning,” in Proceedings of the 9th International
Conference on Digital Image Processing (ICDIP 2017), Hong
Kong, China, May 2017.

[40] Y. Wang, Y. Zhang, Z. Yao, R. Zhao, and F. Zhou, “Machine
learning based detection of age-related macular degeneration
(AMD) and diabetic macular edema (DME) from optical
coherence tomography (OCT) images,” Biomedical Optics
Express, vol. 7, no. 12, pp. 4928–4940, 2016.

[41] Y. Zheng, B. Vanderbeek, E. Daniel et al., “An automated
drusen detection system for classifying age-related macular
degeneration with color fundus photographs,” in Proceedings
of the 2013 IEEE 10th International Symposium on Biomedical
Imaging, pp. 1448–1451, IEEE, San Francisco, CA, USA, April
2013.

[42] W. Wang, Z. Xu, W. Yu et al., “Two-stream CNN with loose
pair training for multi-modal AMD categorization,” 2019,
https://arxiv.org/abs/1907.12023.

[43] D. Castelvecchi, “Can we open the black box of AI?,” Nature,
vol. 538, no. 7623, pp. 20–23, 2016.

Journal of Ophthalmology 7

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1907.12023

