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Abstract: Transport in water is the most common method for achieving high survival rates when
transporting cultured fish in China; yet, transport success relies on proper water quality and
conditions. This research was designed to explore the effects of ascorbic acid and β-1,3-glucan on
survival, physiological responses, and flesh quality of farmed tiger grouper (Epinephelus fuscoguttatus)
during simulated transport. The transport water temperature for live tiger grouper was 15 ◦C, which
had the highest survival rate, the lowest stress response, and metabolic rate, and this will reduce the
susceptibility to diseases. It is stated that β-1,3-glucan influences the changes of cortisol content, heat
shock protein 70, IL-1β, and IgM transcription levels during simulated transport. Rather than using
ascorbic acid alone (the A-group), β-1,3-glucan (3.2 mg/L) in the presence of ascorbic acid (25 mg/L)
can effectively reduce the increase of transport-induced serum cortisol content, heat shock protein
70, and IL-1β, but stimulated IgM. 25 mg/L ascorbic acid and 3.2 mg/L β-1,3-glucan had no obvious
effect on the nutritional indexes and flavor of live tiger grouper; however, these can effectively reduce
the stress response, improve the innate immune activity, and ensure a higher survival rate.

Keywords: Epinephelus fuscoguttatus; simulated transport in water; environment stress; β-1,3-glucan;
physiological responses

1. Introduction

Aquaculture is a rapidly growing industry in the world, providing one of the most sustainable
forms of edible protein and nutrient production [1]. According to a report by FAO in 2014, the global
aquaculture production has doubled in the past decade and it now accounts for about 50% of fishery
products. China produced 41.1 million tons of farmed food fish in 2012, contributing to approximately
61.7% of total world production [2]. High demand for fish is due to an increased consumer awareness
of healthy food [3]. These increases have occurred in some commercially important species, such as
grouper, seabass, rainbow trout, tilapia, large yellow croaker, and catfish. Live fish species are sold at a
higher price than frozen ones. Therefore, research regarding the handling and transport of live fish to
improve the viability of commercial fish is essential.
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Currently, groupers are cultured on an industrial scale in Asian countries, because of their fast
growth, efficient feed conversion, and good flesh quality [4,5]. Tiger grouper (Epinephelus fuscoguttatus)
is known for its high protein, low fat, tender meat quality, and good taste, making it one of the most
cultured grouper species in China, Japan, and Singapore [6,7].

Fish transport in China is not efficient in terms of technology and cost. It is required to develop the
transport technology to produce a higher viability of commercial fish at a rational price. Transport is a
strong stressor [8]. The stress intensity depends on transport conditions, such as package density and
transport-water quality [9,10]. Environmental stressors could lead to a reduced immune system function,
resulting in sickness and death [11–14]. Besides, fish were continuously stressed during fish transport,
which resulted in quality deterioration [15,16]. Conversely, anesthesia could reduce the metabolic rate,
oxygen demand, and response to stress [17,18], which enables fish to be more efficiently transferred in
higher densities. Anesthesia has been used to handle and transport live fish for years to reduce stress on
fish [19–21]. However, it is forbidden to use in the fish transport in China because of safety issues.

Low temperature dormancy, while using anti-stress and immunopotentiator agents, are common
practices to relieve stress on fish transport [22,23]. Low temperature dormancy can reduce mechanical
damage, energy consumption, and stress response during fish transport [24,25]. However, an
unsuitable low temperature could lead to a low survival rate [26,27]. Anti-stress agents include
bioactive polysaccharides, vitamins, amino acids, mineral elements, and electrolytes [28,29]. Ascorbic
acid is not only a good anti-stress agent, but it is also an effective immunostimulant [30]. Cheng et al. [31]
reported that ascorbic acid could protect against DNA damage, apoptosis, and proteolysis of pufferfish
under low temperature stress. The use of immunostimulants from various sources, such as fungi,
algae, and bacterial products, is a common practice in aquaculture to strengthen the immune system
of the cultured fish [32]. β-1,3-glucan is a polysaccharide that is commonly used as feed additive in
aquaculture. Feeding with β-1,3-glucan might enhance innate immune responses, which can reduce the
inhibition of the immune system that is caused by glucocorticoids and steroidal corticosteroids that are
secreted by fish under stress [33,34]. Lin et al. [35] showed that β-1,3-glucan, chitosan, and raffinose
could enhance the immune responses of koi. Anti-stress agents and immunostimulants can improve the
antioxidant capacity and immunity of fish during transport, thereby improving the survival rate [36,37].
Therefore, the objective of this study was to investigate the effects of ascorbic acid and β-1,3-glucan on
survival, physiological responses, and flesh quality of cultured tiger grouper during fish transport.

2. Materials and Methods

2.1. Preparation of Tiger Grouper

The live cultured tiger grouper (500 ± 50 g) were purchased from a local market in Luchao Port
town (Shanghai, China), and were then transported to the laboratory while using a truck that was
equipped with an insulated tank. The fish were kept in a prepared polyethylene tank (2.4 × 1.7 × 0.6 m)
for two days before the experiment, to allow them to adapt to the experimental environment, where
the average water temperature was 27 ◦C, water tank salinity was 26%�, the mean pH was 7.0, and the
average dissolved oxygen was 6.0 mg·L−1.

2.2. Experimental Design

2.2.1. Experiment 1: Transport Temperature Determination

After the tiger grouper had acclimated for two days, the water temperature was adjusted at a rate
of 2 ◦C/h from room temperature to 10, 13, 15, 18, 21, 24, 27, and 30 ◦C, respectively [38]. Subsequently,
each fish was packed in a plastic bag with an equal weight of water, and filled with oxygen. Transport
of fish was simulated in a vibration conveyor under 70 rpm (LX-100VTR, Shanghai Luxuan Instrument
Equipment Factory, Shanghai, China). The survival rate was recorded, and fish were sampled at 0, 3,
10, 17, 24, 48, and 72 h after transport. Three fish were sampled in each group at each time. Survival
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time of each fish was also recorded, and mean values of these parameters were calculated to determine
the transport temperature for the subsequent experiments. Each transport group had 20 fish and the
total number of fish was 150.

2.2.2. Experiment 2: Anti-Stress Agent Exposure

β-1,3-glucan (2.4, 3.2, and 4.0 mg/L, respectively, Aladdin Biochemical Technology Co., Ltd.,
Shanghai, China), and 25 mg/L ascorbic acid (Aladdin Biochemical Technology Co., Ltd., Shanghai,
China) were prepared. Afterwards, each fish was packed in a plastic bag with an equal weight of
prepared water (fish-to-water ratio was 1:1). Moreover, oxygen was added to transport bags, and
the content of oxygen reaches more than 80%. Table 1 shows the experimental treated samples. The
transport of fish was simulated in a vibration conveyor under 70 rpm at 15 ◦C for 24 h. Three fish
samples were randomly selected in each group at each time for analysis on 0 and 24 h during simulated
transport and 48 h after recovery, respectively. The blood and liver of tiger grouper samples were used
to determine the physiological and biochemical indicators, such as stress response, and muscle tissue
was used to measure nutritional characteristics, taste, and flavor.

Table 1. Experimental design for exposure to anti-stress agents of live tiger grouper during simulated
transport in water.

Samples Anti-Stress Agent Addition

CK Control
A 25 mg/L ascorbic acid

A-G1 25 mg/L ascorbic acid + 2.4 mg/L β-1,3-glucan
A-G2 25 mg/L ascorbic acid + 3.2 mg/L β-1,3-glucan
A-G3 25 mg/L ascorbic acid + 4.0 mg/L β-1,3-glucan

2.3. Serum Cortisol Assessment

Serum cortisol was measured by cortisol ELISA kits (Jiancheng Biological Engineering Institute,
Nanjing, China), while following the manufacturer’s instructions.

2.4. Analysis of Enzymatic Activity

2.4.1. Metabolic and Antioxidant Enzyme Activities

Acid phosphatase (ACP-A060-2-2), alkaline phosphatase (AKP-A059-2-2), and glutathione
reductase (GR-A062-1-1) of serum were analyzed by corresponding kits (Jiancheng Biological
Engineering Institute, Nanjing, China), following the manufacturer’s instructions.

2.4.2. Immunological Enzyme Activity

Lysozyme (LZM-A050-1-1) was analyzed by using commercial analysis kits (Jiancheng Biological
Engineering Institute, Nanjing, China), following the manufacturer’s instructions.

2.5. Real-Time PCR

Relative expression levels of HSP70, IgM, and IL-1β were determined by RT-PCR, as described by
Lee et al. [39]. The total RNA from liver tissues was extracted with RNA rapid extraction kit (TaKaRa
Biological Engineering Co., LTD., Dalian, China), quantified, and spectrophotometrically assessed for
purity. RNA was then treated with DNase I (TaKaRa Biological Engineering Co., LTD., Dalian, China)
to remove gDNA contamination, and complementary DNA (cDNA) was synthesized with M-MuLV
reverse transcriptase. RT-PCR analyzed the expression levels of the selected immune-related genes.
This was done in a 10 µm total volume while using SYBR Green I chimeric fluorescence, and with
500 nmol primers. PCR cycling conditions for all genes were, as follows: 94 ◦C for 10 min., 45 cycles
at 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s, followed by 10 min. at 72 ◦C. Relative expression
levels of the target genes transcript (HSP70, IgM, and IL-1β), with GAPDH as an internal control,
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were calculated using a CFX manager software version 2.0 (Bio-Rad). Table 2 shows the primers used.
The threshold cycle (Ct) values were obtained from each sample after finishing the program.

Table 2. Sequences of primers for Real-time PCR.

Target Gene Primer Sequence (5′-3′)

HSP70
F: GACAAGAAGGTTGGGTCTGAAAGG

R: GGTTGACCATGCGGTTGTCGAAATCT

IgM F: GCCTCAGCGTCCTTCAGTTT
R: TGGCGTCCCAGTCCTGTTTGC

IL-1β F: AGGATGCCTGAGGGACTG
R: GGTAATCGTCTCCAGATGTAA

2.6. Biochemical Analysis

2.6.1. Chemical Composition of Muscle

Ash, fat, moisture content, and total protein were measured according to Ayanda et al. [40].

2.6.2. Serum Biochemical Testing

Creatine kinase (CK), uric acid (UA), total protein (TP), albumin (ALB), urea, and creatinine were
assessed according to Jia et al. [41].

2.7. Nucleotides

The nucleotide extracts were prepared based on the method of Fang et al. [42]. ATP-related
compounds, including inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx), were
analyzed while using HPLC (Waters 2695, Milford, MA, USA), equipped with a VP-CDS C18 column
(150 × 46 mm). 0.05 M phosphate buffer solution (pH 6.7) was used as the mobile phase. The flow rate
was 1 mL/min., and the injection volume was 10 µL. The peak was detected at 254 nm.

The taste activity value (TAV) was calculated as the following equation:

TVA =
C
T

in which C corresponds to the absolute concentration of taste substances, mg/100 g, and T reflects the
taste threshold, mg/100 g, (IMP: 25 mg/100 g, AMP: 50 mg/100 g).

2.8. Free Amino Acids (FAAs) Assessment

5 g mashed tiger grouper muscle tissue sample and 15 mL of 15% cold trichloroacetic acid were
mixed and homogenized at 10,000 rpm, for 5 min. After standing at 4 ◦C for 2 h, the homogenate was
centrifuged at 5980× g for 15 min, at 4 ◦C. Next, 5 mL supernatant was immediately neutralized to
pH 2.00 and then diluted to 10 mL with ultrapure water [43]. The mixture was then filtered through a
0.22 µm, and an amino acid analyzer determined the contents of FAAs (Hitachi L-8800, Tokyo, Japan).

2.9. Statistical Analysis

All of the assumptions were met prior to data analysis. Data were expressed as the mean ± SD
and the one-way analysis of variance (ANOVA) procedure followed by Duncan’s multiple range tests
was adopted to determine the significant difference (p < 0.05) between treatments.

3. Results and Discussion

3.1. Pre-Experiment: Selection of Tiger Grouper Transport Temperature and Ascorbic Acid Addition

Tiger groupers were transported at 10, 13, 15, 18, 21, 24, 27, and 30 ◦C. Survival rates that were
recorded during simulated transport are presented in Table 3. Survival time of tiger grouper at 10 ◦C
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was less than 3 h. However, temperatures at 15, 18, 21, 24, and 27 ◦C could extend the survival time, and
the survival rates were higher than 75%. Therefore, those transport temperatures were recommended
for further experiments.

Table 3. Survival rate of tiger grouper at different temperatures and survival time (%).

Temperature/◦C
Keeping Alive Time/h

0 3 10 17 24 48 72

10 100 - - - - - -
13 100 100 100 100 85 65 -
15 100 100 100 100 100 100 95
18 100 100 100 100 100 100 90
21 100 100 100 100 100 95 85
24 100 100 100 100 100 85 80
27 100 100 100 100 100 85 75
30 100 100 100 100 90 50 -

3.2. Effect of Temperature on Stress Responses of Tiger Grouper during Simulated Transport

HSP is a protein that will respond to external stressful conditions [44]. It protects cells from
extreme physiological, pathological, and environmental conditions, and plays a role in protein
misfolding correction, preserving immature polypeptides from aggregation under stress [45,46].
Cortisol is the main glucocorticoid hormone in teleosts that are involved in the regulation of metabolic
adjustments. Under stress conditions, the increase of plasma cortisol promotes protein, glucose,
and lipids mobilization in the skeletal muscle, which provide energy to overcome the stress [47].
The transcriptional level of HSP70 in the liver of all tiger grouper samples, at different transport
temperatures, increased to the maximum value at 10 h, and then decreased, as shown in Figure 1a.
Besides, higher transport temperatures seem to correlate with a higher level of HSP70 during simulated
transport. After 17 h transport, the HSP70 values gradually recovered, but did not return to the initial
values, except at 15 ◦C. Cortisol showed a similar trend as HSP70, with significantly higher values
at 27 ◦C than at other temperatures. At the end of transport, the cortisol concentration at 15, 18, and
21 ◦C recovered to the initial levels. HSP70 and cortisol increased with the transport temperature
increase, which could illustrate that the tiger grouper had transport stress responses during simulated
transport. A higher transport temperature could lead to unrecoverable stress response, resulting in
death. Additionally, stress response was not significant, and fish could maintain the body balance
through self-regulation [48].
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Figure 1. Effects of temperature on HSP70 (a) and serum cortisol (b) of tiger grouper during simulated
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Biology 2020, 9, 37 6 of 18

3.3. Effect of Temperature on Antioxidant Enzyme of Tiger Grouper during Simulated Transport

Fish exposition to anoxia and hypoxia may result in oxidative changes, because oxygen consumption
determines the levels of ROS generated, and also the antioxidant status [49]. Some clues could be
given by an increase in activities of antioxidant enzymes under anoxic conditions [50]. Oxidative
reactions are essential in normal metabolism of aerobic organisms, but ROS are produced during the
oxidative metabolism, generating free radicals [51]. In a situation of oxidative stress, fish might show a
typical reaction for ROS, involving lipoperoxidation (LPO), which can be quantified by an increase in
TBARS levels. On the other hand, the deleterious effect of ROS can be balanced by the production of
antioxidant defenses [52], such as CAT.

GR is an important indicator for evaluating the degree of oxidative stress [53]. Figure 2 showed
that the GR levels increased first, and then decreased following transport time, reaching a peak level at
10 h, which was similar to cortisol and HSP70. It indicated that all tiger groupers were under different
degrees of oxidative stress during early simulated transport. GR activity of tiger grouper transported
at 27 ◦C was significantly higher than those at low temperatures, and the initial levels could not be
recovered at the end of transport. In the 27 ◦C transport group, all of the tiger grouper suffered severe
oxidation reaction, which caused irreversible damage and further affected the survival. However, GR
activity recovered to the initial levels that were transported at 18 and 21 ◦C. Yan et al. [54] showed that
fugu also had an oxidative stress reaction, due to the stressor of temperature. It led to HSP70 and GR
activity increase. Therefore, a low temperature is suitable for tiger grouper transport, because of the
decreased stress response and increased survival.Biology 2020, 9, x FOR PEER REVIEW 7 of 20 
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Figure 2. Effect of temperature on glutathione reductase (GR) of tiger grouper during simulated
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the results of Duncan’s test at different transport time. The same letters mean no significant difference
(p > 0.05), while different letters mean significant difference (p < 0.05). Different letters without
* = p-value < 0.05, different letters with ** = p-value < 0.01.

3.4. Effect of Temperature on Metabolic and Immune Enzyme Activity of Tiger Grouper during
Simulated Transport

Changes in the transport temperature not only induced a stress response in tiger grouper, but
also lead to immune suppression. The main evaluation indexes of humoral immunity in fish include
LZM [55,56]. AKP and ACP play important roles in phosphate hydrolysis in metabolic process and are
key compounds in lysosomal digestion of invading organisms in the immune system [57]. AKP values
significantly increased and reached a peak level at 10 h, and then decreased, as shown in Figure 3a.
The final AKP values did not recover to the initial values at 24 ◦C, which meant that high temperature
simulated transport could affect fish metabolism. However, the final AKP values could recover to the
initial values at 15, 18, and 21 ◦C. ACP activities had similar trends to AKP; however, it reached a peak at



Biology 2020, 9, 37 7 of 18

3 h (Figure 3b). The results suggested that the low temperature induced immune suppression response
at the early stage of transport. As the first barrier of immunity, fish skin contains a large number
of innate immune factors, as LZM in skin mucus, which mediates the protection against exogenous
pathogen infection [58]. When the body is attacked by pathogens, LZM is secreted in the blood and
mucus to eliminate these by activating blood cells and complement, and phagocytes in the liver and
pancreas [59]. LZM values in the skin mucus of all tiger grouper firstly increased, and then decreased
during simulated transport, as shown in Figure 3c. The highest value of LZM activity reached at 3 h,
and then LZM activity plummeted to lower levels than the initial ones, indicating that the response
of the innate immune system to temperature was at least partially suppressed. LZM activity of tiger
grouper transported at 15 and 18 ◦C for 24 h could recover to the initial values, which indicate that fish
damage can be decreased to the minimum at these temperatures.Biology 2020, 9, x FOR PEER REVIEW 8 of 20 
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and lysozyme (LZM) (c) of tiger grouper during simulated transport. Among different temperature
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transport time. The same letters mean no significant difference (p > 0.05), while different letters mean
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3.5. Effect of Temperature on the Relative Expression of Immune Indexes of Tiger Grouper during
Simulated Transport

IgM and IL-1β are two important immune factors in fish immunity. IL-1β is one of the most
important pro-inflammatory cytokines, which has a variety of immune response functions in viral
infection, including the activation of innate immunity and regulation of adaptive immune response [60].
When affected by temperature stress, it can produce an acute-phase protein to activate innate immune
regulation function [61]. IgM is one of the most important anti-pathogen antibodies, and the main
immunoglobulin mediating humoral adaptive immunity of fish [62]. The expression levels of IgM and
IL-1β significantly increased and came to a peak level at 3h and 10h, and then decreased, as shown
in Figure 4. It was found that the expression of IgM in rainbow trout and Nile tilapia increased in a
high-temperature environment, as compared to a low-temperature environment [63]. IgM expression
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in serum of tiger grouper transported at 27 ◦C was significantly higher than at other temperatures.
The expression level at the end of transport was lower than the initial levels, which indicated that
temperature stress made tiger grouper reach the threshold of innate immune ability, and unable to
maintain the normal immune level through self-regulation. However, the tiger grouper transported
at 15 ◦C could activate the innate immune system to maintain the immune balance and ensure the
survival rate. This might be due to the dormancy induced in fish by this low-temperature.Biology 2020, 9, x FOR PEER REVIEW 9 of 20 
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3.6. Effect of Ascorbic Acid and β-1,3-Glucan Addition on Stress Responses of Tiger Grouper during
Simulated Transport

HSP70 and serum cortisol are indicators of transport stress response. The expression of HSP70
and the content of serum cortisol increased, and the treated samples were lower than that of CK, as
recorded in Figure 5. The content of HSP70 and cortisol in A-G2 could recover to the initial level, which
confirms the conclusion of Henrique et al. [64] that ascorbic acid addition can adjust the level of HSP70
and cortisol and, thus, regulate stress responses during fish transport. Therefore, ascorbic acid and
β-1,3-glucan can be used to decrease transport stress responses for tiger grouper.
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Figure 5. Effect of ascorbic acid and β-1,3-glucan addition on HSP70 (a) and serum cortisol (b) of
tiger grouper during simulated transport. Among different treatments transport groups, different
small letters indicate the results of Duncan’s test at different transport time. The same letters mean no
significant difference (p > 0.05), while different letters mean significant difference (p < 0.05). Different
letters without * = p-value < 0.05, different letters with ** = p-value < 0.01.
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3.7. Effect of Ascorbic Acid and β-1,3-Glucan Addition on Relative Expression of Non-Specific Immune Indexes
of Tiger Grouper during Simulated Transport

Simulated transport usually induces stress responses that could lead to increase susceptibility
to diseases. Immunostimulants can reduce the outbreak of diseases by facilitating the function of
phagocytic cells, improving resistance to bacterial challenges [65]. The expression levels of IL-1β
significantly increased, and then decreased, as shown in Figure 6a. IL-1β expression of CK was
significantly higher than that of other simulated transport groups. From Figure 6b, the expression of
IgM had a similar trend as that of IL-1β, and the expression of IgM in the A-G2 group was significantly
higher than that of the other groups, which indicated that ascorbic acid and β-1,3-glucan addition
could stimulate non-specific immune factors. Moreover, A-G2 had the highest relative expression of
IgM, thus signifying that this concentration of β-1,3-glucan was most effective in this study, and it is
considered suitable for transport.
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3.8. Effect of Ascorbic Acid and β-1,3-Glucan Addition on Serum Biochemical Parameters of Tiger Grouper
during Simulated Transport

Creatine kinase activity can act as an indicator of live fish metabolism. Increased creatine kinase
suggests that muscle and kidney of fish have been damaged [66]. Creatine kinase activity of serum
increased in all samples during simulated transport, and then returned to the initial level after recovery,
as shown in Table 4. However, there was no significant difference in creatine kinase activity of A-G2
throughout the simulated transport, which indicated that ascorbic acid and β-1,3-glucan addition can
effectively reduce the damage to kidneys.

Total protein (TP) and albumin (ALB) reflect the liver function. Albumin is synthesized by the
liver, and plays a role as a carrier in the blood [67]. TP and ALB in the serum can accurately reflect
the absorption and metabolism of the protein. The contents of TP and ALB in serum of CK were
significantly higher than in other groups during simulated transport, as shown in Table 5. It suggests
that the addition of ascorbic acid and β-1,3-glucan can improve the function of tiger grouper liver.
The contents of TB and ALB in treated groups showed no significant difference throughout simulated
transport. Moreover, TB and ALB of tiger grouper gradually returned to the initial level after transport
and recovery.
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Table 4. Effect of ascorbic acid and β-1,3-glucan addition on serum biochemical and physiological of tiger grouper during simulated transport.

Transport Samples Creatine Kinase Albumin Total Protein Uric Acid Urea Creatinine

Before transport

CK 848.50 ± 0.25a 11.00 ± 0.00a 41.50 ± 0.00a 13.00 ± 0.57b 2.50 ± 0.12a 17.00 ± 0.00a
A 765.00 ± 0.13b 7.00 ± 0.23c 33.50 ± 0.71b 13.50 ± 0.23b 2.15 ± 0.16a 18.00 ± 0.31a

A-G1 227.00 ± 0.66c 9.00 ± 0.16b 32.00 ± 0.36b 20.00 ± 0.06a 2.35 ± 0.11a 13.00 ± 0.06c
A-G2 235.00 ± 0.57c 7.50 ± 0.03c 31.00 ± 0.00b 21.00 ± 0.71a 2.05 ± 0.08a 13.00 ± 0.06c
A-G3 221.00 ± 0.08c 10.50 ± 0.00b 32.00 ± 0.08b 19.00 ± 0.35a 2.10 ± 0.06a 15.50 ± 0.24b

After transport

CK 1986.00 ± 0.58a 26.00 ± 0.21a 35.00 ± 0.32b 14.00 ± 0.03c 2.25 ± 0.00a 18.50 ± 0.17a
A 1181.50 ± 0.97b 23.50 ± 0.00b 31.00 ± 0.06c 17.00 ± 0.21b 2.05 ± 0.28a 19.50 ± 0.00a

A-G1 689.50 ± 0.69d 12.00 ± 0.36c 39.50 ± 0.00a 21.50 ± 0.19a 2.15 ± 0.14a 14.00 ± 0.00c
A-G2 391.50 ± 0.73e 8.00 ± 0.42d 33.00 ± 0.57c 21.87 ± 0.09a 1.94 ± 0.03a 13.50 ± 0.25c
A-G3 888.00 ± 0.29c 12.50 ± 0.00c 32.50 ± 0.69c 22.05 ± 0.15a 2.05 ± 0.00a 17.00 ± 0.14b

Recovery

CK 273.00 ± 0.93c 10.00 ± 0.32b 38.50 ± 0.53c 16.00 ± 0.32b 2.35 ± 0.00a 11.50 ± 0.27d
A 769.00 ± 0.85a 6.50 ± 0.31c 46.00 ± 0.33a 16.50 ± 0.31b 2.40 ± 0.21a 20.00 ± 0.32a

A-G1 267.50 ± 0.23c 13.00 ± 0.13a 43.50 ± 0.00b 17.00 ± 0.13b 2.30 ± 0.18a 18.00 ± 0.00b
A-G2 225.00 ± 0.87d 6.50 ± 0.19c 32.50 ± 0.00d 16.50 ± 0.19b 2.30 ± 0.05a 14.00 ± 0.00c
A-G3 390.50 ± 0.25b 11.00 ± 0.22b 34.50 ± 0.22d 22.00 ± 0.22a 2.25 ± 0.17a 18.50 ± 0.19b

Note: Among different treatments transport groups, different small letters indicate the results of Duncan’s test at different transport time. The same letters mean no significant difference
(p > 0.05), while different letters mean significant difference (p < 0.05).
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Table 5. Effect of ascorbic acid and β-1,3-glucan addition on the free amino acids of tiger grouper during simulated transport (mg/100 g).

Transport Samples
Free Amino Acids

Asp * Thr # Ser # Glu * Gly # Ala # Val Met Ile

Before
transport

CK 1.84 ± 0.25a 7.12 ± 0.25c 3.98 ± 0.17b 4.06 ± 0.22b 49.40 ± 0.49d 38.22 ± 0.71a 5.45 ± 0.31a 2.96 ± 0.26a 4.73 ± 0.34a
A 1.76 ± 0.01a 11.44 ± 0.06b 4.87 ± 0.25a 4.89 ± 0.71a 86.09 ± 0.91a 34.33 ± 0.59b 4.30 ± 0.51b 2.07 ± 0.21a 3.01 ± 0.22b

A-G1 1.65 ± 0.26a 10.93 ± 0.18b 3.77 ± 0.17b 5.03 ± 0.14a 75.24 ± 0.69b 31.29 ± 0.06c 5.98 ± 0.08a 2.56 ± 0.18a 3.97 ± 0.62a
A-G2 1.79 ± 0.32a 12.14 ± 0.21a 4.05 ± 0.38b 4.42 ± 0.61b 71.25 ± 0.53b 39.78 ± 0.71a 5.09 ± 0.22a 2.13 ± 0.11a 4.17 ± 0.04a
A-G3 1.84 ± 0.41a 11.03 ± 0.01b 4.97 ± 0.51a 4.79 ± 0.25a 66.42 ± 0.66c 33.86 ± 0.81b 4.97 ± 0.05a 2.44 ± 0.01a 3.57 ± 0.28b

After
transport

CK 1.98 ± 0.03c 5.87 ± 0.45c 5.10 ± 0.05c 8.57 ± 0.07a 63.01 ± 0.21c 42.56 ± 0.66b 6.91 ± 0.06a 3.32 ± 0.28a 5.89 ± 0.41a
A 3.37 ± 0.19a 9.85 ± 0.06b 7.62 ± 0.28a 6.33 ± 0.21b 124.35 ± 0.37a 38.03 ± 0.08d 5.13 ± 0.10b 2.62 ± 0.01b 2.50 ± 0.16c

A-G1 2.38 ± 0.11b 10.01 ± 0.32b 7.99 ± 0.33a 5.53 ± 0.03c 75.44 ± 0.41b 40.24 ± 0.19c 6.02 ± 0.21a 2.78 ± 0.06b 3.11 ± 0.11b
A-G2 1.93 ± 0.01c 10.93 ± 0.22a 6.46 ± 0.05b 5.09 ± 0.10c 78.03 ± 0.39b 46.51 ± 0.73a 5.67 ± 0.03b 2.61 ± 0.01b 3.55 ± 0.06b
A-G3 1.70 ± 0.22c 10.90 ± 0.06a 5.48 ± 0.10c 5.14 ± 0.19c 74.29 ± 0.11b 41.22 ± 0.37c 5.13 ± 0.18b 2.48 ± 0.12b 3.71 ± 0.28b

Recovery

CK 1.82 ± 0.08a 7.89 ± 0.18c 4.77 ± 0.27a 6.59 ± 0.47a 58.98 ± 0.91c 40.03 ± 0.57b 6.84 ± 0.25a 2.38 ± 0.18a 4.84 ± 0.10a
A 1.98 ± 0.10a 11.19 ± 0.27a 5.18 ± 0.27a 5.94 ± 0.31b 96.71 ± 0.43a 35.28 ± 0.09d 4.97 ± 0.33b 2.46 ± 0.02a 2.92 ± 0.16c

A-G1 1.73 ± 0.02a 10.52 ± 0.04b 4.85 ± 0.03a 4.96 ± 0.80c 74.04 ± 0.09b 37.90 ± 0.18c 4.99 ± 0.09b 2.10 ± 0.11a 4.06 ± 0.71a
A-G2 1.58 ± 0.16a 11.88 ± 0.11a 5.16 ± 0.18a 4.83 ± 0.33c 77.13 ± 0.36b 41.64 ± 0.78a 4.96 ± 0.18b 1.92 ± 0.02a 3.49 ± 0.39b
A-G3 1.69 ± 0.22a 11.85 ± 0.65a 4.86 ± 0.20a 4.31 ± 0.57c 73.04 ± 0.74b 37.49 ± 0.07c 4.67 ± 0.21b 2.23 ± 0.18a 3.39 ± 0.27b

Leu Tyr Phe Lys His Arg Pro# Total

Before
transport

CK 7.52 ± 0.37a 3.22 ± 0.02a 2.88 ± 0.02a 28.54 ± 0.54a 3.86 ± 0.25a 7.86 ± 0.71a 6.27 ± 0.68a 177.91
A 7.73 ± 0.41a 1.45 ± 0.01c 1.57 ± 0.11c 21.89 ± 0.48c 3.55 ± 0.34b 5.38 ± 0.42c 5.49 ± 0.71b 199.82

A-G1 7.88 ± 0.68a 1.73 ± 0.22b 2.05 ± 0.18b 25.33 ± 0.71b 3.18 ± 0.33b 6.93 ± 0.74bc 5.93 ± 0.01a 193.45
A-G2 7.03 ± 0.31a 1.98 ± 0.17b 2.47 ± 0.17a 26.09 ± 0.31b 4.09 ± 0.06a 6.41 ± 0.11b 6.09 ± 0.39a 198.98
A-G3 7.97 ± 0.45a 2.06 ± 0.28b 1.99 ± 0.01c 23.45 ± 0.78c 3.74 ± 0.28a 7.07 ± 0.02b 5.77 ± 0.81ab 185.94

Aftertransport

CK 7.83 ± 0.31a 3.76 ± 0.28a 3.46 ± 0.15a 31.35 ± 0.59a 4.30 ± 0.45a 10.74 ± 0.33a 8.18 ± 0.39a 212.83
A 7.76 ± 0.28a 1.34 ± 0.01c 2.28 ± 0.25b 24.39 ± 0.63c 3.63 ± 0.19b 4.99 ± 0.41d 6.07 ± 0.08c 250.26

A-G1 8.74 ± 0.41b 1.43 ± 0.12c 2.46 ± 0.06b 29.39 ± 0.71b 4.12 ± 0.06a 6.63 ± 0.71c 7.74 ± 0.73b 214.01
A-G2 7.01 ± 0.37a 1.55 ± 0.08c 2.49 ± 0.03b 27.83 ± 0.39b 4.23 ± 0.28a 6.69 ± 0.07c 6.41 ± 0.36c 216.99
A-G3 7.76 ± 0.63a 2.38 ± 0.19b 2.48 ± 0.11b 24.87 ± 0.23c 3.93 ± 0.09a 7.98 ± 0.20b 5.71 ± 0.51d 205.16

Recovery

CK 6.82 ± 0.10b 2.95 ± 0.01a 1.79 ± 0.02b 22.19 ± 0.33c 3.60 ± 0.17a 6.59 ± 0.38a 5.19 ± 0.62c 183.27
A 6.98 ± 0.12b 1.52 ± 0.02b 1.98 ± 0.10ab 22.75 ± 0.62c 3.42 ± 0.31a 5.21 ± 0.67b 5.94 ± 0.17b 214.43

A-G1 7.65 ± 0.41a 1.67 ± 0.13b 2.30 ± 0.21a 26.91 ± 0.15a 2.75 ± 0.07b 6.87 ± 0.37a 6.79 ± 0.57a 200.09
A-G2 7.83 ± 0.57a 1.86 ± 0.03b 2.19 ± 0.09a 24.50 ± 0.31b 2.98 ± 0.35b 6.61 ± 0.65a 5.81 ± 0.08b 204.37
A-G3 7.23 ± 0.69a 1.44 ± 0.02b 2.26 ± 0.11a 19.59 ± 0.09d 3.64 ± 0.41a 6.55 ± 0.52a 4.94 ± 0.72c 189.18

Note: Among different treatments transport groups, different small letters indicate the results of Duncan’s test at different transport time. The same letters mean no significant difference
(p > 0.05), while different letters mean significant difference (p < 0.05). * represents umami amino acids; # represents sweet taste amino acids.
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Urea, creatinine, and uric acid (UA) reflect the renal function. Urea is the product of metabolism
of nitrogen compounds, and also an important component in maintaining blood osmotic pressure [68].
At the end of transport, urea, creatinine and UA levels of treated samples decreased (Table 4), and these
could not return to the initial level after recovery, which indicates damage that may have contributed
to the fish majority during long-term transport.

3.9. Effect of Ascorbic Acid and β-1,3-Glucan Addition on Nutritional Indexes of Tiger Grouper during
Simulated Transport

Figure 7 shows the changes in ash, moisture content, crude fat, and crude protein of tiger grouper
during simulated transport. The contents of moisture and ash in all samples did not show obvious
changes. Protein decreased, possibly because of stress related to transport and temperature change.
Among all of the samples, the nutritional components of A-G2 showed no significant changes during
simulated transport, which indicates that ascorbic acid and the G2 β-1,3-glucan concentration could
effectively reduce the negative impact of transport and temperature changes on the nutritional indexes
of tiger group.
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3.10. Effect of Ascorbic Acid and β-1,3-Glucan Addition on Free Amino Acids of Tiger Grouper during
Simulated Transport

The total content of free amino acids of tiger grouper increased during simulated transport, and
recovered to the initial level, as shown in Table 5. Transport stress could promote protein degradation,
resulting in higher total free amino acids contents. It should be noted that there was no food for tiger
grouper during simulated transport; therefore, transport stress could accelerate protein degradation
and lead to nutrient content loss. However, the addition of ascorbic acid and β-1,3-glucan resulted in a
reduction of free amino acid and thus probably slowed down the rate of protein degradation during
simulated transport. This indicates moderation of the stress response. Free amino acids in the muscle
tissue are usually related with different tastes, such as umami, sweetness, bitterness, and sourness.
Umami amino acids include Asp and Glu, sweetness amino acids include Thr, Ser, Gly, Ala, and Pro [69].
Figure 8 shows the effect of ascorbic acid and β-1,3-glucan addition on umami and sweet taste amino
acids of tiger grouper during simulated transport. In all samples, the amount of umami and sweet
taste amino acids increased during simulated transport, due to transport stress response accelerated
protein degradation. There was no significant difference in taste amino acids of A-G2 during simulated
transport and recovery. The results indicate that ascorbic acid and the G2 β-1,3-glucan concentration
can effectively reduce the changes of free amino acids during simulated transport.Biology 2020, 9, x FOR PEER REVIEW 15 of 20 
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of tiger grouper during simulated transport. Among different treatments transport groups, different
small letters indicate the results of Duncan’s test at different transport time. The same letters mean no
significant difference (p > 0.05), while different letters mean significant difference (p < 0.05). Different
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Nucleotides in aquatic products are of great significance for flavors [70]. IMP and AMP are the
two main taste nucleotides in tiger grouper during simulated transport. IMP has a strong umami
taste [71]. Table 6 shows the changes in IMP and AMP of tiger grouper during simulated transport.
The results demonstrated that value of IMP was higher than 10. Therefore, IMP contributed most
to the sweet and meaty flavor of tiger grouper. However, the content of AMP was obviously lower
than IMP, and the TAV value of AMP was less than 1. IMP and AMP concentrations values were
decreased during simulated transport and were able to recover to the initial levels. Different from the
CK samples, the IMP and AMP concentrations in A-G2 samples were higher after recovery, and TAV
value of IMP in A-G2 was 16.14, proving ascorbic acid and β-1,3-glucan addition could relieve flavor
nucleotides degradation during simulated transport and recovery.
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Table 6. Effect of ascorbic acid and β-1,3-glucan addition on nucleotides of tiger grouper during
simulated transport in water.

Transport Samples IMP (mg/100 g) TAV AMP (mg/100 g) TAV

Before
transport

CK 269.18 ± 0.78d 10.77 13.24 ± 0.41ab 0.26
A 273.40 ± 0.66c 10.94 14.69 ± 0.59a 0.29

A-G1 271.94 ± 0.96cd 10.88 12.47 ± 0.65b 0.25
A-G2 278.66 ± 0.55b 11.15 13.93 ± 0.32ab 0.28
A-G3 284.39 ± 0.47a 11.38 13.54 ± 0.69ab 0.27

Aftertransport

CK 259.47 ± 0.84d 10.38 9.55 ± 0.57b 0.19
A 268.06 ± 0.28c 10.72 11.23 ± 0.62ab 0.22

A-G1 269.18 ± 0.71c 10.77 11.37 ± 0.71ab 0.23
A-G2 275.33 ± 0.49b 11.01 12.99 ± 0.45a 0.26
A-G3 280.91 ± 0.78a 11.24 10.81 ± 0.66b 0.22

Recovery

CK 273.57 ± 0.67e 10.94 14.43 ± 0.28a 0.29
A 280.69 ± 0.71d 11.23 10.98 ± 0.33c 0.22

A-G1 301.42 ± 0.54c 12.06 13.41 ± 0.19a 0.27
A-G2 403.49 ± 0.66a 16.14 12.79 ± 0.25b 0.26
A-G3 390.24 ± 0.91b 15.61 12.63 ± 0.36b 0.25

Note: Among different treatments transport groups, different small letters indicate the results of Duncan’s test at
different transport time. The same letters mean no significant difference (p > 0.05), while different letters mean
significant difference (p < 0.05).

4. Conclusions

The minimum tolerable temperature of tiger grouper transported by water is 15 ◦C, and could
induce dormancy, thus resulting in reducing life activities. The activities of metabolic enzymes, cortisol,
HSP70 transcription level, GR enzyme activity, IL-1β, and IgM transcription levels in tiger grouper
serum at 15 ◦C were significantly lower than in groups transported at other temperatures. Anti-stress
agents, including ascorbic acid and β-1,3-glucan was added in the transport water for tiger grouper,
during simulated transport and recovery. Cortisol content, HSP70 transcription level, and immune
index of tiger grouper serum in A-G2 were lower than in other groups. However, there was no
significant difference in nutritional content, taste amino acids, and nucleotides of muscle tissue in A-G2
before and after transport. The addition of ascorbic acid and β-1,3-glucan could effectively reduce the
stress response of tiger grouper and improve their immunity and survival. Besides, it did not lead to
loss of nutritional valued and flavor.
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