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Introduction: We report, herein, in vitro, and in vivo toxicity evaluation of silver nano-
particles stabilized with gum arabic protein (AgNP-GP) in Daphnia similis, Danio rerio 
embryos and in Sprague Dawley rats.
Purpose: The objective of this investigation was to evaluate in vitro and in vivo toxicity of 
silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to 
the recognition that toxicity evaluations beyond a single species reflect the environmental 
realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt 
using the tri-alanine-phosphine peptide (commonly referred to as “Katti Peptide”) and 
stabilized using gum arabic protein.
Methods: In vitro cytotoxicity tests were performed according to ISO 10993–5 protocols to 
assess cytotoxicity index (IC50) values. Acute ecotoxicity (EC50) studies were performed using 
Daphnia similis, according to the ABNT NBR 15088 protocols. In vivo toxicity also included 
evaluation of acute embryotoxicity using Danio rerio (zebrafish) embryos following the OECD 
No. 236 guidelines. We also used Sprague Dawley rats to assess the toxicity of AgNP-GP in 
doses from 2.5 to 10.0 mg kg−1 body weight.
Results: AgNP-GP nanoparticles were characterized through UV (405 nm), core size (20±5 nm 
through TEM), hydrodynamic size (70–80 nm), Zeta (ζ) potential (- 26 mV) using DLS and 
Powder X ray diffraction (PXRD) and EDS. PXRD showed pattern consistent with the Ag (1 1 1) 
peak. EC50 in Daphnia similis was 4.40 (3.59–5.40) μg L−1. In the zebrafish species, LC50 was 
177 μg L−1. Oral administration of AgNP-GP in Sprague Dawley rats for a period of 28 days 
revealed no adverse effects in doses of up to 10.0 mg kg−1 b.w. in both male and female animals.
Conclusion: The non-toxicity of AgNP-GP in rats offers a myriad of applications of AgNP- 
GP in health and hygiene for use as antibiotics, antimicrobial and antifungal agents.
Keywords: nanoparticles, zebrafish, cytotoxicity, ecotoxicity, Daphnia similis, Sprague 
Dawley

Introduction
Nanotechnology provides a myriad of opportunities for the development of materi-
als from one to 100 on the nanometers scale.1–13 Among the wide spectrum of 
nanomaterials in current use, silver nanoparticles (AgNPs), have gained consider-
able prominence attributed by their excellent physiochemical properties such as 
antimicrobial activity, good conductivity, and high catalytic activities.14–19 The use 
of AgNPs in healthcare have found applications in treating infections, preventing 
bacterial and fungal colonization on denture surfaces, decontamination of catheters 
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and dental materials.20–25 Due to the rapidly evolving 
applications of AgNPs, it is imperative to understand the 
species-specific toxicity of AgNPs so that specific applica-
tions of functionalized AgNPs can be targeted with mini-
mal/no negative impacts on our environment.26–28

The in vivo ecotoxicological tests of silver nanoparticles 
using representative organisms of the water column or sedi-
ments are important steps in the overall environmental toxi-
city evaluation of nanomaterials.29 Information on toxicity of 
new water purification agents are vital because we want to 
minimize negative impact on important aquatic organisms 
which are inherently important for our environment. In addi-
tion, such investigations allow estimation of permissible 
limits of various chemical/nanomaterial substances to protect 
aquatic life.29–31 Daphnia similis, fed by filtration of organic 
particulate material, is a planktonic microcrustacean which 
acts as a primary consumer in the aquatic food chain. They 
are also considered important indicators of water quality and, 
are therefore, used in studies to assess toxicity by evaluating 
their reproduction rates and morphological alterations.30–42

Danio rerio, also known as zebrafish, is a tropical fish 
species. They act as secondary consumers in the aquatic 
food chain.32–34,42 Zebrafish presents attractive features in 
toxicity evaluations of nanoparticles and experimental drugs 
because of its robust and social nature, rapid growth rates, 
high reproducibility, transparent embryos, and an established 
genome.26,43 The rapid expansion of nanotechnology, with 
applications in electronics, health, hygiene and allied fields, 
has heightened the need to understand toxicological effects 
of various nanoparticulate-embedded finished products.44 In 
addition to toxicological investigations in Daphnia similis 
and zebrafish, evaluation of toxicological effects, if any, of 
silver nanoparticles in Sprague Dawley rats will provide 
important insights on multi-species toxicology behavior of 
nanomaterials. Detailed investigations including biochem-
ical, hematological, and histopathological examinations 
according to the OECD guidelines, are therefore, imperative 
in gaining information on acute and sub-chronic toxicities 
post administration of silver nanoparticles.

In our detailed toxicity studies of AgNP-GP, we have, 
therefore, chosen the following organisms and animals: 1) 
Daphnia similis for the acute ecotoxicity tests; 2) Danio 
rerio for the evaluation of acute embryotoxicity tests; and 
3) Sprague Dawley rats for toxicity behavioral investiga-
tions. Such investigations would provide insights on sys-
temic toxicity and thus help in defining toxicity limits for 
various drug-related applications.43,45,46 Multispecies toxi-
city testing recognizes the importance of community 

conditioning where ecological structures are historical, non- 
equilibrial, and by default highly complex. Given the com-
plex nature of ecological structures, our investigations, using 
multispecies for toxicity tests of AgNP-GP, unequivocally 
provides the fundamental understanding in terms of design 
criteria for multispecies toxicity tests, data analysis, inter-
pretation, and the overall toxicity evaluation. In particular, 
zebrafish have become excellent animal models for evalua-
tions of in vivo toxicity of experimental drugs and nanopar-
ticles because they: 1) exhibit significant homology (genetic 
and organ system) with the human genome; 2) possess 
immense fecundity; 3) ability for external fertilization repro-
duction; 4) ease of genetic modification; and 5) show trans-
parency through early adulthood development, thus 
providing opportunities for sophisticated utilization for time- 
lapse imaging modalities to monitor biological and disease 
processes, in addition to signaling pathways.47–49 Therefore, 
our multispecies in vivo toxicity investigations, as outlined 
in this paper, provide important insights on species-specific 
toxicity of AgNPs and thus opens up extensive applications 
of AgNPs utilization as building blocks for next generation 
antibiotic, antimicrobial and antifungal agents’ development.

Materials, Methods and 
Instrumentation
The AgNP-GP was produced using a slightly modified pro-
cedure as reported by us in the patent No. US 9,005,663 B250 

and as supplied by Dhanvantari Nano Ayushadi (DNA) 
Private Limited, Chennai, India. Silver nitrate and gum ara-
bic used in the production of silver nanoparticles were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Trimeric 
phosphine L-alanine amino acid conjugate (referred to as or 
Katti Peptide (KPA)) was used as a reductant for the synth-
esis of silver nanoparticles from silver nitrate (AgNO3) as 
shown in Figure 1.51–54 We have procured natural rubber 
latex (NRL) extracted from Hevea brasiliensis.

The molecular absorption spectra of the AgNP-GP was 
measured on a Spectramax i3 (Molecular Devices, USA) 
spectrophotometer in the wavelength range between 230 
and 900 nm using an optical path quartz cuvette of 10 mm. 
This research was carried out at the Polymeric and 
Nanotechnical Biomaterials Laboratory of the Nuclear 
and Energy Research Institute (IPEN), São Paulo, Brasil, 
as well as at the Institute of Green Nanotechnology, 
University of Missouri, Columbia, MO, USA.

Size of AgNP-GP was measured by transmission elec-
tron microscopy (TEM). Sample Preparation: AgNP-GP 
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sample was applied to glow-discharge (15 mA, negative 
charge for 25 seconds) using a 400-mesh copper grid 
covered by a thin layer of continuous carbon film (Ted 
Pella, Inc., USA). A negative charge of 15 mA was applied 
for 25 seconds using the Glow-discharge equipment 
(PELCO easiGlowTM). After loading, 3 μL of the sample 
was deposited. After 1 minute, filter paper was used to 
remove excess sample and the grid was washed 3 times 
with reverse osmosis water. Dynamic light scattering 
(DLS): Zetasizer measurements, using a Nano Series 
from Malvern Instruments at the Institute of Chemistry 
of the University of São Paulo, were performed to deter-
mine the hydrodynamic size (core size of AgNP + GP 
capping) and zeta potential of the AgNP-GP. In the DLS, 
the light scattering intensity is proportional to the particle 
size. The zeta potential refers to the surface charge of the 
nanoparticles; values far from zero guarantees stability of 
the colloidal suspension due to the electrostatic repulsion 
that occurs between the nanoparticles (Table 1).

A red-orange aqueous dispersion of stabilized nanopar-
ticles in water was spread out on disposable glass slides and 
allowed to evaporate overnight under ambient conditions, 
yielding a transparent red-orange film. The film was scraped 
off the slide with a steel razor blade and pressed between 
two sheets of weighing paper by hand to form a pellet which 
was mounted on a polyimide single crystal sample loop. 
X-ray diffraction data was measured on a Bruker X8 
Prospector (Bruker AXS, Madison, WI, USA) single crystal 
diffractometer using Cu-Kα radiation from a microfocus 
source with multilayer optics (λ = 1.54060 Å, power = 45 
kV, 0.60 mA). A series of 15 4-minute long photographs 
were taken while rotating the sample 360° about the phi 
axis, giving a total irradiation time of 1 hour. X-ray 

intensities were recorded across the 2θ of 28.5° to 60.5° 
using an Apex II CCD area detector situated at a crystal-to- 
detector distance of 10.0 cm and with the detector remain-
ing stationary throughout the measurement. Photographic 
data were reduced by radially integrating a 33°-wide sector 
of the photograph in shells of 0.02° in 2θ using the Bruker 
Apex3 software suite Apex3, AXScale, and SAINT, version 
2017.3-0, Bruker AXS, Inc., Madison, WI, 2018.55

The high-resolution transmission electron microscopy 
(TEM, Thermo Fisher Tecnai F30 G2 Twin) was operated 
at 300 kV on a Gatan ultra-scan CCD camera. Energy 
dispersive X-ray (EDS) mapping was collected in scan-
ning TEM high angle annual dark field imaging mode 
using a Bruker 30 mm2 active area Silicon Drift Detector 
with super light element window to confirm the elemental 
distribution.

Synthesis and Characterization of Gum 
Arabic Stabilized Silver Nanoparticles
A 2 mg sample of gum arabic was added to 6 mL of 
deionized water in a 20 mL vial and stirred on 
a preheated hot plate. When the temperature of the solu-
tion reached 100°C, 100 µL of 0.1 M silver nitrate solution 
was added followed by 20 µL of 0.1 M trimeric phosphine 
L-alanine amino acid conjugate (“Katti Peptide”: KPA) 
solution as a reducing agent. Immediately after the addi-
tion of the KPA solution, the color of the reaction mixture 
turned from colorless to dark brown, indicating the forma-
tion of silver nanoparticles. Then the reaction mixture was 
stirred at reduced temperature for 10 minutes before heat-
ing was turned off. Stirring was continued at room tem-
perature for another 90 minutes. Then the nanoparticles 

Figure 1 Synthesis of AgNP-GP through L-Alanine Katti Peptide and stabilized with gum arabic protein. 
Abbreviation: AgNP-GP, silver nanoparticles.
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were characterized by UV-Visible spectrophotometry, 
electron microscopy, powder X-ray powder diffraction 
analysis (PXRD) and zetasizer and zeta potential measure-
ments. Atomic absorption spectroscopy (AAS) was used to 
measure Ag concentration in AgNP-GP.

Cytotoxicity Index (IC50)
The determination of AgNP-GP IC50 (cytotoxicity index is 
the concentration of the solution that causes injury or mor-
tality to 50% of the exposed cells in the assay), was carried 
out according to the ISO 10993–5. We used the well-known 
neutral red uptake methods to carry out this assay. AgNP-GP 
solutions in specific dilutions (6.2, 12.5, 25, 50 and 100%) 
were incubated with NCTC clone 929 (CCIAL 020) of 
mouse connective tissue cells which were adhered to the 96 
wells of the cell culture microplate purchased from Nucleus 
of Cell Culture of Adolfo Lutz Institute. These studies were 
done in triplicate to obtain the standard deviation. The neutral 
red uptake method was used to determine the cytotoxicity 
index of AgNP-GP to measure concentration of the test 
sample solution that causes mortality in 50% of the exposed 
cells (IC50). The methodology, as followed, meets ISO 
10993–5 standards. The NCTC clone 929 (CCIAL 020) 
derived from mouse connective tissue cells were grown and 
maintained in Minimum Eagle’s Medium (MEM) using non- 
essential amino acids and sodium pyruvate (MEM-use), sup-
plemented with 10% fetal bovine serum. Then, 96-well cell 
culture microplates were prepared containing 7 x 104 cells 
per well (supplied by the Nucleus of Cell Culture of Adolfo 
Lutz Institute) and were treated with 9.19 mg L−1 AgNP-GP 
in dilutions of 6.2, 12.5, 25, 50 and 100%; this assay was 
performed in triplicate tests.

Aluminium oxide (Al2O3) in culture medium (0.1 g mL−1), 
served as a negative control while natural rubber latex (NRL) 
extract in culture medium (0.01 g mL−1) served as a positive 
control. The culture medium was used for the cellular control. 

Neutral red incorporations, in both living and intact cells, were 
used as indicators of cell viability. The optical density mea-
surements of final test solutions (on a spectrophotometer 
ELISA reader-SUNRISE from TECAN) were performed at 
540 nm using 600 nm as a reference filter. We used standard 
software, installed in the spectrophotometer, to calculate sta-
tistically significant percentages of cell viability while Origin 
8.0 software was used for obtaining the IC50 values

Measurements of Acute Ecotoxicity Using 
Daphnia similis
The acute ecotoxicity tests were performed based on the 
ABNT NBR 15088 (2011) standard, to determine the effec-
tive concentration (EC50) of AgNP-GP that causes immobi-
lity to 50% of the exposed organisms. The organisms were 
grown and maintained in the Ecotoxicology Laboratory of 
Nuclear and Energy Research Institute (IPEN), according to 
the ABNT NBR 15088 (2011) standard. Organisms were fed 
an algal suspension of Pseudokirchneriella subcapitata (105 

cells mL−1) and a mixture of yeast and fish chow, and main-
tained in Murashige and Skoog (MS) medium under con-
trolled conditions: temperature (20 ± 2ºC) and light-dark 
cycles (12:12 hours).56

Neonates from 6 to 24 hours were exposed to various 
concentrations (1; 2; 4; 8 and 16 μg L−1) of AgNP-GP for 
48 hours, 20 organisms distributed in 4 tubes per concen-
tration. A stock solution of 100 μg L−1 AgNP-GP was 
used. Murashige and Skoog medium (MS medium) was 
used as the control. For gum arabic protein (GP) control, 
0.4 g of the sample was used in 200 mL of MS medium.57 

An immobile organism is understood as one that is unable 
to swim in the water column after a slight agitation of the 
container. Immobility of each organism was used as 
a well-accepted standard for the determination of acute 
toxicity according to ABNT NBR 10588 protocol. At the 
end of each assay, Trimmed Spearman-Karber software 
was used to determine the EC50 based on the number of 
immobile organisms as a function of concentration.58

Acute Embryotoxicity Assay with Danio 
rerio (Zebrafish)
Determination of the lethal concentration (LC50) of AgNP- 
GP that causes mortality to 50% of the exposed organisms 
were carried out using assay methods based on the OECD 
236 (Guideline on Fish Embryo Toxicity Test – FET, 
2013) guidelines.59 Based on preliminary experiments, it 
was detected that the highest concentration of AgNP-GP 

Table 1 Physicochemical Characteristics of AgNP-GP

Dynamic Light Scattering (DLS) and Zeta Potential

Sample UV  
λmax 

(nm)

Hydrodynamic 
Size ø (nm)

TEM 
(Core 
Size)

PDI ζ- 
Potential 
(mV)

AgNP- 
GP

405 70–80 20±5 0.37 −26

Abbreviations: AgNP-GP, silver nanoparticles stabilized with gum arabic protein; 
PDI, polydispersity index; TEM, transmission electron microscopy; UV, ultraviolet 
spectroscopy; ζ, zeta.

Maziero et al                                                                                                                                                         Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 7362

http://www.dovepress.com
http://www.dovepress.com


that caused 100% mortality of organisms was 1250 μg L−1. 
Based on these results, systematic experiments for LC50 

evaluation on zebrafish embryos were performed. The use 
of zebrafish embryos in the present study was authorized 
by the Ethics Committee on the Use of Animals (CEUA/ 
IPEN) opinion nº 174/16/CEUA-IPEN/SP under the coor-
dination of the Biotechnology Center (CB), of the Energy 
and Nuclear Research Institute (IPEN/CNEN-SP).

These studies were carried out at the Laboratory of 
Ecotoxicology located at the Environmental Company of 
the State of São Paulo (CETESB). Adult males and females 
were maintained separately under controlled temperature (25 
± 2ºC), light and dark cycle. They were fed twice daily with 
fish feed and Artemia spp. We used breeders between 6 and 
24 months of age,56 which were housed in small aquaria, 
maintaining a ratio of two males to one female. Immediately 
after spawning, we collected the eggs from the aquaria to 
transport them to the Ecotoxicology Laboratory at IPEN. We 
used the standard (≥80%) as the validation criteria for ferti-
lization rate and the organisms were utilized with develop-
ment stage of up to 4 hours post fertilization (hpf). The 
authenticity of our data was established by using zinc chlor-
ide (ZnCl2) for testing organism sensitivity.

We seeded one egg per well with 2 mL of test solution in 
a 24-well plate. MS media was diluted with distilled water. 
We prepared the GP control, using 0.4 g of GP per 200 mL of 
MS media solution. Zinc chloride (ZnCl2) (100 mg L−1 

concentration) was used as a reference substance for positive 
control. The assay plates were incubated at 26°C for 96 hours 
and an inverted microscope was used to observe the organ-
isms every 24 hours. Monitoring of the embryonic phase was 
performed through observations of parameters including coa-
gulation of fertilized eggs, heartbeats, pigmentation of the 
eyes and the overall body. We also looked for changes in the 
formation of somite, tail detachment, hatching, and the over-
all lethality. The AgNP-GP concentrations used in our 
experiments were as follows: 78; 156; 313; 625 and 1250 
μg L−1. Post exposure periods, the final LC50 was calculated 
based on the number of dead organisms as a function of 
AgNP-GP concentrations. The LC50 calculation was per-
formed using the Trimmed Spearman-Karber software.58

Determination of the No Observed 
Adverse Effect Level (NOAEL) Assay
The NOAEL was determined by repeated dose (28 days) 
toxicity assay by oral route in Sprague Dawley rats. This 
assay was conducted at the Centre for Toxicology and 

Development Research, a unit of Sri Ramachandra Institute 
of Higher Education and Research (India), an internationally 
renowned GLP certified facility (GLP/C-105/2017). This 
investigation was inspected, audited and approved by the 
ethics committee in accordance with the study plan, and 
standard operating procedures. Schedule “Y” requirements 
and guidelines were followed for permission to import and/or 
manufacture new drugs for sale or to undertake clinical trials. 
All approvals were based on Drugs and Cosmetic (Second 
Amendment) Rules, Ministry of Health and Family Welfare, 
Government of India, 2005 and OECD Series on Principles 
of Good Laboratory Practice and Compliance Monitoring, 
Number 1, ENV/MC/CHEM (98) 17. The animal protocol 
was fully approved by the institutional ethics committee 
board. 24 male and 24 female Sprague Dawley rats were 
used for the study. Study design consisting of four groups 
[Vehicle control (G1), Low dose (G2), Mid dose (G3), High 
dose (G4)], each had six animals in each sex per group. 
Animals of G1 received water, G2 received test item dose 
5 mg kg−1 body weight, G3 received test item dose 7.5 mg 
kg−1 body weight and G4 received test item undiluted dose of 
volume 10 mg kg−1 body weight. The doses of respective 
groups were administered orally once a day for 28 days and 
the following parameters were investigated:

Mortality and Morbidity
Animals from all groups were observed for mortality and 
morbidity twice daily from acclimatization and up to 
the day of necropsy.

Clinical Signs of Toxicity
General clinical observations of animals of all groups were 
performed once daily after the last dosing performed 
from day 1 till the day of necropsy. Detailed clinical 
examination was performed prior to first dosing and there-
after before the day of necropsy.

Body Weights and Body Weight Changes
Individual body weights of all animals from all groups were 
recorded on day 0 of acclimatization, once before first dosing 
(day 0), thereafter once weekly and a day prior to necropsy. 
The body weight changes were calculated and reported.

Feed Consumption
Feed consumption of animals was recorded daily from 
the day of dosing (day 0), till the day of necropsy, except 
on the day of overnight fasting. The average feed con-
sumption was calculated and reported.
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Urine
Specific gravity, microalbumin, bilirubin, urobilinogen, 
ketone protein, glucose, epithelial cells, cast crystals, 
occult blood and microscopic examination of urine sedi-
ments, were measured.

Haematology
Measurements included: total leucocytes count, differen-
tial leucocyte counts (eg, neutrophil; lymphocytes; mono-
cytes; eosinophil and basophil). Measurements also 
included: total erythrocyte count, hemoglobins, hematocrit 
for measuring the proportion of red blood cells in the 
blood. Hematology measurements also included platelet 
count and terminal bone marrow examinations.

Biochemical Parameters
Measurements included: cholesterol; triglycerides; blood urea; 
nitrogen (calculated from urea) and creatinine. Total protein 
estimations included: albumin; globulin (calculated value 
from total protein and albumin). Estimations also included: 
aspartate; transaminase; alanine; alkaline phosphatase; total 
bilirubin; phosphorus; potassium; sodium and total calcium.

Organ Weights and Gross Pathology
All surviving animals were necropsied on day 28, using 
CO2 euthanasia and were subjected to detailed gross 
necropsy which included gross examination of external 
orifices, the cranial, thoracic, abdominal cavities and 
their contents and organs as listed below. On completion 
of the gross pathology examination, the tissues and organs 
noted below were collected and weighed from all animals. 
Collected organs (excluding eyes and testes) were pre-
served in 10% Neutral Buffered Formalin (NBF) solution. 
Eyes and testes were preserved in Davidson and Modified 
Davidson’s fixative.

Histopathology
Parameters for histopathology included: skin (with mam-
mary gland for females); lymph node; mesenteric salivary 
glands; eyes; brain (cerebrum, cerebellum, and mid brain 
medulla pons); pituitary trachea; esophagus; thyroid; para-
thyroid; thymus; heart; lungs (perfused with 10% NBF 
before fixation); stomach, small and large intestines (with 
Peyer’s patches, perfused with 10% NBF before fixation); 
pancreas, liver, adrenals, kidneys, urinary bladder (perfused 
with 10% NBF before fixation) gonads: male-epididymis, 
male sex glands as whole and testes gonads: female-ovaries, 
uterus with cervix, and skeletal muscle spinal cord (at three 
levels: cervical, mid-thoracic und lumbar).

Statistical Analysis
We have used the following well-established standards to 
achieve statistical significance of our experimental data: 
Wherever possible/applicable, we have performed triplicate 
sets of experiments. Cytotoxicity assay: Origin 8.0 software 
was used to obtain the percentage of cell viability and the 
IC50. Acute ecotoxicity test: To determine the EC50, the 
Trimmed Spearman-Karber software was used to calculate 
the immobile organisms. Acute embryotoxicity assay: To 
determine the LC50, the Trimmed Spearman-Karber soft-
ware was used to calculate the lethality of organisms; and 
the rates of morphological changes observed in the organ-
isms during the tests were evaluated by Student’s t-test, with 
a significance level of p <0.05.

Results
Synthesis and Characterization of Gum 
Arabic Protein Stabilized Silver 
Nanoparticles (AgNP-GP) Using 
L-Alanine Katti Peptide (KPA)
L-Alanine Katti Peptide (KPA) is an effective nanoparticle 
formation agent and reduces gold and silver salts to form 
the corresponding nanoparticles in consistent size and 
great stability.4,50,53,54,60–79 The production of silver nano-
particles using KPA which proceeds in an aqueous envir-
onment, as shown in Figure 1, does not require any harsh 
chemicals or generate any harmful by-products and is 
therefore an environmentally-benign green nanotechnol-
ogy process. The Katti Peptide (KPA) is a very effective 
reducing agent for the synthesis of silver nanoparticles 
(Figure 1).34 Both the amino acid and phosphine portions 
in KPA serve as reducing agents to transform silver (I) 
nitrate into metallic silver nanoparticles in aqueous phase. 
Consequently, the Katti Peptide undergoes oxidation while 
gum arabic, consisting of glycoproteins and polysacchar-
ides, stabilizes the silver nanoparticles. Nuclear magnetic 
resonance (NMR) investigation of the nanoparticle synth-
esis clearly shows quantitative utilization of the trimeric 
phosphine amino acid conjugate (KPA).31 P NMR inves-
tigations have shown complete dissociation of KPA, in 
a redox process in its reaction with silver (I) nitrate, into 
phosphoric acid as the only biocompatible byproduct 
(Figure 1). The silver content in AgNP-GP was found to 
be 170 ppm as established through atomic absorption 
spectroscopy (AAS).
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The UV-Visible absorption spectrum showed the 
respective peak at 405 nm (Figure 2), thus confirming 
the formation of AgNPs. Additional characterization of 
AgNP-GP has been carried out using transmission electron 
microscopy (TEM). The TEM images of AgNP-GP, as 
shown in Figure 3, confirm particulate sizes in the range 
20 ± 5 nm. Powder X ray diffraction (PXRD) showed 
peaks consistent with the Ag (1 1 1) pattern for Ag metal 
(Figure 4A).55 We have further confirmed the formation of 
silver nanoparticles through X-ray energy dispersive spec-
troscopic (EDS) analysis of AgNP-GP (Figure 4B). The 
insert image, as shown in Figure 4B corresponds to the Ag 
elemental mapping confirming that AgNP-GP particles are 
made up of Ag in combination of the HRTEM image of 
the particle where the EDS map was done. Full details of 
the physicochemical parameters which include core and 
hydrodynamic sizes of AgNP-GP are outlined in Table 1.

Cytotoxicity Assay
The cell viability results in relation to the AgNP-GP con-
centrations were plotted and are depicted in Figure 5. The 
intersection between the cell viability curve and the 50% 
viability line in these graphs gave the IC50 values. The 
IC50 value obtained was 2.57 mg L−1 since dilutions were 
made from the initial concentrations of 9.19 mg L−1.

Acute Ecotoxicity Assay Using Daphnia 
similis
The results of AgNP-GP acute ecotoxicity on Daphnia 
similis, as shown in Figure 6, indicated that there was an 
increase in immobility of the organisms with increasing 
AgNP-GP concentrations. It may be noted that the MS 
Medium and GP controls showed no immobility. Full 
details of EC50 values, as shown in Table 2, indicated that 
the mean EC50 of AgNP-GP was 4.40 (3.59–5.40) μg L−1 as 
confirmed through triplicate sets of measurements.

Acute Embryotoxicity Assays Using Danio 
rerio
In the positive control, the exposed embryos showed 100% 
of coagulation. The MS Medium and GP controls showed no 
mortality. The results of acute embryotoxicity of AgNP-GP 
in Danio rerio, as depicted in Figure 7, provide conclusive 
evidence on the sensitivity and lethality of the organism 
toward increasing concentrations of AgNP-GP. The results 
of embryotoxicity assays are shown in Table 3. The mean 

value of AgNP-GP LC50 was found to be 177 μg L−1 as 
established through triplicate measurements.

Effects of exposing Danio rerio to various concentra-
tions of AgNP-GP over a period of 96 hours are summar-
ized in Figure 8. These images revealed that Danio rerio 
undergo noticeable morphological changes including 
reduction in head size, reduced body size, significant 
changes in spinal curvature, as well as changes in cardiac 
and/or yolk edema. Full description of these and related 
anatomical changes upon exposure to AgNP-GP are 
described in Figure 9.

Determination of the No Observed 
Adverse Effect Level (NOAEL) Mortality, 
Morbidity, and Clinical Signs of Toxicity
Our results of detailed toxicity investigations using Sprague 
Dawley rats have inferred that AgNP-GP did not cause any 
mortality or clinical signs of toxicity in any of the test 
animals treated with silver nanoparticles even at the max-
imum dosage of 10.0 mg kg−1 body weight. The AgNP-GP 
treated animal groups did not reveal any test item-related 
effects throughout the experimental period when compared 
to the control groups of the animals. These data reveal that 
the doses of up to 10.0 mg kg−1 body weight were well 
tolerated by the animals as shown in Table 4. We have also 
analyzed effects on feed consumption. The test item did not 
have any noticeable effects on feed consumption of ani-
mals, in both male and female groups of AgNP-GP treated 
animals in comparison with control groups. Urine analysis 
revealed that the test item did not induce any changes in 
urine parameters in any of the AgNP-GP-treated animals 
except in the urine volume. We observed an increase in the 
urine volume in male animals at 7.5 mg kg−1 body weight 
(G3) and at the high dose of 10.0 mg kg−1 body weight (G4) 
when compared to the control groups (G1). Table 4 outlines 
the clinical signs of toxicity, mortality and morbidity 
from day 0 to 28.

Blood parameters and hematology
Significant increases in reticulocyte counts was observed 
in the male (G2) groups administered with 5.0 mg kg−1 

body weight as compared with the control group (G1). 
Female animals administered with 7.5 mg kg−1 body 
weight of AgNP-GP also showed increases in reticulocyte 
counts of mid (G3) as compared with the control group 
(G1). Significant increases in reticulocyte counts were 
particularly pronounced in the female groups at the highest 
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dose of 10.0 mg kg−1 body weight (G4) as compared with 
the control group. We also observed a significant decrease 
in the levels of lymphocytes in males of the mid dose 
group (G3) as compared to the control group. Glucose 
level measurements indicated a significant increase in the 
male group of animals administered with 7.5 mg kg−1 

body weight (G3) as well as 10.0 mg kg−1 body weight 
(G4) as compared to the control group. However, in 
female animals, significant increases in glucose levels, as 
compared with the control group, were observed through-
out the 5.0 mg kg−1 - 10.0 mg kg−1 body weight dosing 
regimen.

Measurements of urea levels indicated that AgNP-GP 
caused a decrease in urea levels in males at the highest 
dose of 10.0 mg kg−1 body weight (G4) as compared to the 

control group. Measurements of total calcium levels indi-
cated an increase in total calcium levels in males within 
the G3 and G4 groups as compared with the control 
groups. We also observed a noticeable increase in the 
potassium levels in female animals administered with 
10.0 mg kg−1 AgNP-GP of body weight (G4). It is impor-
tant to recognize that administration of AgNP-GP through-
out the 5.0 –10.0 mg kg−1 body weight dosing regimen 
caused no coagulation in any of the test-item treated 
groups as compared to the control group. Evaluation of 
absolute and relative organ weights during the course of 
the 28-day investigation revealed no statistically signifi-
cant body/organ weight changes in all the treated male and 
female groups (G2-G4).

Gross Pathology
Gross pathological evaluations throughout the course of 
the 28-day investigation revealed no statistically signifi-
cant AgNP-GP test item-related findings in all the treated 
male and female groups (G2-G4). Histopathological 
microscopic examinations throughout the course of the 28- 
day investigation revealed no statistically significant 
AgNP-GP test item-related findings in any of the treated 
animal groups (G2-G4) when compared with the animals 
of the control group. Detailed toxicological findings from 
the treatment of AgNP-GP at the 5.0–10.0 mg kg−1 body 
weight dosing regimen are summarized in Table 5. Based 
on the above results, under the in vivo toxicology testing 
conditions, AgNP-GP was found to be well tolerated 
within the 10.0 mg kg−1 body weight dosing range when 
administered orally for a period of 28 days in Sprague 
Dawley rats. Therefore, the NOAEL of AgNP-GP is 

Figure 2 Ultraviolet–visible spectra of AgNP-GP with surface plasmon resonance 
at 405 nm. 
Abbreviation: AgNP-GP, silver nanoparticles.

Figure 3 Transmission electron microscopic images of silver nanoparticles: (A) magnification at 29,000x (100 nm scale); (B) magnification at 280,000x (20 nm scale); (C) 
magnification at 700,000x (10 nm scale).

Maziero et al                                                                                                                                                         Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 7366

http://www.dovepress.com
http://www.dovepress.com


10.0 mg kg−1 body weight in both male and female 
Sprague Dawley rats.

Discussion
The KPA-trimeric alanine phosphine conjugate (commonly 
referred to as Katti Peptide) serves as an excellent reducing 
agent to transform silver nitrate to well-defined silver nano-
particles stabilized with the gum arabic protein (AgNP-GP; 
Figure 1).50,53,54,74 Extensive research from our laboratories 
has provided detailed scientific rationale on the realistic 

potential of KPA “Katti Peptide” for the production of 
gold and silver nanoparticles.4,50,51,60–73,75–80 The UV- 
Visible spectrophotometry results for the AgNP-GP sample 
showed the maximum absorption wavelength centered at 
405 nm, indicating the presence of AgNPs (Figure 2).22,81– 

83 Particle size measurements obtained by TEM showed an 
average value of 20 ± 5 nm (Figure 3). Zeta potential 
measurements indicated −26 mV suggesting excellent 
in vitro stability due to electrostatic repulsions between 
the silver nanoparticles, thus preventing collision and 

Figure 4 Powder X ray diffraction (PXRD) and Energy-dispersive X-ray spectroscopy (EDS) analysis of AgNP-GP; (A) PXRD patterns of evaporated AgNP-GP residue. 
Figure shows the main PXRD peak for Ag metal and the other two peaks are for NaCl which is present as a contaminant on the surfaces of the glass slides and likely entered 
the sample during evaporation. All peaks are shifted by +0.7–0.8° from their literature values, which indicates a sample displacement error of +0.2 cm. The NaCl peaks serve 
as an internal standard and clearly demonstrate the significant particle size broadening of the Ag peak; (B) EDS spectra of AgNP-GP. The insert image shown corresponds to 
the Ag elemental mapping confirming that AgNP-GP particles are made up of Ag in combination of the HRTEM image of the particle where the EDS map was done. 
Abbreviations: AgNP-GP, silver nanoparticles; EDS, energy dispersive spectroscopy; HRTEM, high resolution transmission electron microscopy; PXRD, powder X ray 
diffraction.
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aggregation of the nanoparticles. Hydrodynamic size mea-
surements showed a size of 70–80 nm, suggesting effective 
encapsulation of gum arabic protein around silver nanopar-
ticles. The silver concentration in AgNP-GP, from batch to 
batch preparations, showed consistently silver content of 
170–172 ppm as measured through Atomic Absorption 
Spectroscopy. Full physicochemical parameters of AgNP- 
GP are summarized in Table 1.

Additional characterization of AgNP-GP was per-
formed by recording the Powder X ray diffraction 
(PXRD) pattern. As shown in Figure 4A, PXRD showed 

three peaks across the region of 28.5° to 60.5°, one of 
which can be assigned to the Ag (1 1 1) peak, the main 
PXRD peak for Ag metal, and the other two of which 
match the two strongest peaks for NaCl, which is present 
as a contaminant on the surfaces of the glass slides and 
likely entered the sample during evaporation. All peaks are 
shifted by +0.7–0.8° from their literature values, which 
indicates a sample displacement error of +0.2 cm. The 
NaCl peaks serve as an internal standard and clearly 
demonstrate the significant particle size broadening of 
the Ag peak.84

X-ray energy dispersive spectroscopic (EDS) evalua-
tion further confirmed the formation of AgNP-GP. The 
sharp peak as seen in the silver region, in Figure 4B at 3  
keV unequivocally confirms the presence of silver nano-
particles due to the surface plasmon resonance (SPR). The 
occurrence of other peaks was related with the elements 
from the gum arabic encapsulation as well as the glass 
underneath, which held the sample. Figure 4B also shows 
an insert image corresponding to the Ag elemental map-
ping confirming that AgNP-GP is made of Ag in combina-
tion of the HRTEM image of the particle where the EDS 
map was done.

On the in vivo toxicity behavior of AgNP-GP in Daphnia 
similis organism, our observations indicated immobility of 
Daphnia similis in the acute ecotoxicity assay at 2 μg L−1 

(10–15%) of AgNP-GP. Overall, the ecotoxicity increased 
with increased AgNP-GP concentrations as summarized in 
the results section and depicted in Figure 5. Our results 

Figure 5 Cell viability curves of AgNP-GP, positive control (natural rubber latex), 
and negative control (an extract of aluminum oxide) as evaluated through in vitro 
cytotoxicity assay using the neutral red uptake method. 
Abbreviations: AgNP-GP, silver nanoparticles; IC50, cytotoxicity index concentra-
tion that causes injury or mortality to 50% of the exposed cells in the assay.

Figure 6 Immobility curve of Daphnia similis neonates as a function of AgNP-GP concentrations after 48 hours of exposure. Mean standard deviation calculated from 
triplicates. 
Abbreviation: AgNP-GP, silver nanoparticles.

Maziero et al                                                                                                                                                         Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 7368

http://www.dovepress.com
http://www.dovepress.com


(IC50 = 2.57 mg L−1), as presented in this paper, corroborated 
well with the IC50 values reported in various publications. 
Leitch et al85 reported IC50 of 6.25 mg L−1 for spherical 
AgNP with 7–12 nm size using the same methodology.86 

Our observations, as depicted in Figures 5 and 6 are in line 
with prior literature precedence. The EC50 values of AgNPs 
(Table 2), synthesized by different methodologies, were in the 
same order of magnitude as those obtained in the present 
study, such as 4.70 μg L–1; 6.90 μg L–1; and 13.93 μg L–1.31,86

Daphnia magna is also an experimental model widely 
used in acute ecotoxicity assays, but studies have shown that 
its sensitivity is lower than that of Daphnia similis.30,35,36 

Newton et al37 obtained an EC50 value between 2.14 μg L−1 

and 3.48 μg L−1 for AgNPs with approximate sizes between 
7.5 and 17.9 nm, stabilized with GP, on Daphnia magna. In 
this study, the sensitivity of Daphnia magna was not signifi-
cantly lower than that of Daphnia similis, considering the 
obtained result (EC50 of 4.40 μg L−1 for AgNP of 25 nm). 
Volker et al38 reported acute ecotoxicity of EC50 value of 121 

Figure 7 Daphnia similis after the acute ecotoxicity test. (A) Control in Murashige and Skoog medium (MS); Images of organisms at various AgNP-GP exposure 
concentrations: (B) 1 μg L−1, (C) 2 μg L−1, (D) 4 μg L−1, (E) 8 μg L−1 and (F) 16 μg L−1. At 1 μg L−1 and 2 μg L−1 AgNP-GP concentrations, the organisms showed 
mobility. Exposure to AgNP-GP concentrations of 4 μg L−1 showed restricted mobility. At this concentration, dark coloration in the digestive tract, possibly due to AgNP-GP 
interaction, was observed. At 8 μg L−1 and 16 μg L−1 AgNP-GP concentrations, it can be inferred that the organisms became immobile and presented significant changes in 
their morphological structures (Magnification at 40x). 
Abbreviations: AgNP-GP, silver nanoparticles; MS medium, Murashige and Skoog medium.

Table 2 EC50 Values, Confidence Intervals, the Mean and 
Standard Deviation for the Acute Ecotoxicity Assays of AgNP- 
GP

Assay EC50 (µg L−1) Confidence Limit (µg L−1)

1 4.92 4.03–6.01

2 4.14 3.38–5.07

3 4.14 3.36–5.11

Mean 4.40 3.59–5.40

Standard deviation 0.45 0.38–0.53

Notes: EC50, effective concentration of AgNP-GP that causes immobility to 50% of 
the exposed organisms.
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µg L−1 for AgNP, with approximately 15 nm size stabilized 
with Polyvinylpyrrolidone (PVP), on Daphnia magna organ-
ism. However, Lekamge et al39 evaluated toxic effects of 
three different AgNP (curcumin (C-AgNP), epigallocatechin 
gallate (E-AgNP), and tyrosine (T-AgNP)) against Daphnia 
carinata. Their results showed EC50 values of AgNPs at 
19.37 μg L−1, 21.37 μg L−1, and 49.74 μg L−1 for E-AgNP, 
C-AgNP, and T-AgNP, respectively. These results demon-
strated that the type of stabilizing agent used contributes to 
the degree of toxicity of AgNP. However, it is worth noting 
that other factors, such as reducing agent and nanoparticle 
size, may also influence the overall toxicity.

Our detailed toxicity investigations using the zebrafish 
animal model further indicated that the lethality for Danio 
rerio species with exposures to AgNP-GP was concentration 
dependent (Figure 7 and Table 3). Our results suggest 
45–68% lethality at a concentration of 156 μg L−1 of AgNP- 
GP which increased to 100% lethality when the concentra-
tion was increased to 1250 μg L−1. It may be important to 
consider that the AgNP-GP toxicity is caused by the Ag+ 

cations released from the surface of the nanoparticles. 
Previous studies have shown that acute toxicity to aquatic 
organisms is mainly attributed to the released Ag+.37,87–89 In 
aquatic organisms, the Ag toxicity mechanism involves iono- 
regulatory disorder or failure associated with competitive or 
non-competitive inhibition of sodium or potassium ions- 
dependent adenosine triphosphatase (Na+, K+ -ATPase) 
activity. Silver nanoparticles appear to result in the inhibition 
of Na+ absorption in the gills, which leads to a cascade of 
events that culminates in cardiac arrest and death.40,41

It is also important to note that the toxicity may be 
caused by AgNP itself, which is likely attributed to the 
generation of reactive oxygen species (ROS) resulting in 
oxidative stress. This mechanism of toxicity results in mul-
tiple modes of action such as mitochondrial damage, lipid 
peroxidation of the membrane and damage to DNA and 
lipids, which ultimately leads to cumulative effects of cel-
lular apoptosis.32,33,42 We have presented, for the first time, 
evidence on morphological changes and acute embryotoxi-
city in Danio rerio—all attributed to exposure of AgNP-GP 
samples at various concentrations and exposure times 
(Figures 8 and 9). In related investigations, previously 
Asharani et al42 reported the effects of AgNPs exposure 
on embryos of Danio rerio. However, their investigations 
report the use of AgNPs stabilized with potato starch and 
bovine serum albumin (BSA), with a size of approximately 
5 nm and 20 nm. Results after 72 hours of exposure of 5 nm 
and 20 nm AgNPs, revealed LC50, were 25 mg L−1 and 
50 mg L−1, respectively for embryos of Danio rerio. 
Reports by Xin et al34 with Danio rerio embryos, showed 
LC50 value of 4120 mg L−1 after 96 hours of exposure, for 

Figure 8 Lethality curve of zebrafish embryos as a function of AgNP-GP concentrations after 96 hours of exposure. Standard deviation calculated from triplicates (n=3). 
Abbreviation: AgNP-GP, silver nanoparticles.

Table 3 LC50 Values, Confidence Intervals, the Mean and 
Standard Deviation for Acute AgNP-GP Embryotoxicity Assays

Assay LC50 (µg L−1) Confidence Limit (µg L−1)

1 150 130–170

2 190 170–220

3 190 160–210

Mean 177 153–200

Standard deviation 23.09 20.82–26.46

Notes: LC50, lethal concentration of AgNP-GP that causes immobility to 50% of 
the exposed organisms.
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AgNPs (with no information regarding the stabilizing agent 
used), with a size of approximately 3–6 nm. Their studies 
also indicated LC50 of 5.909 mg L−1 for AgNPs with sizes 
in the range: 8–10 nm. These studies suggest that the smal-
ler the size of nanoparticles, the greater is their toxic effect. 
However, it is important to note that other factors, which 
include the type of the stabilizing agent and the reducing 
agents utilized in the synthetic routes, may also influence 
the toxicity of the AgNPs samples.

Overall, from our detailed cytotoxicity investigations, we 
can infer that aquatic organisms exhibit greater sensitivity to 
AgNP-GP samples, approximately 1000-fold greater than the 
sensitivity of cells in culture. These data provide compelling 
evidence that knowledge of species-specific toxicity of silver 
nanoparticles is imperative in gaining better insights on the 
systematic toxicity so that antibacterial and antimicrobial 
applications of AgNPs can be capitalized within the health 
and hygiene sectors.

Figure 9 Images of zebrafish after acute embryotoxicity tests. (A) Control Murashige and Skoog medium (MS) 24 hpf (Magnification at 40x); (B) Control Murashige and 
Skoog medium (MS) 96 hpf (Magnification at 20x); Images of organism exposures at various concentrations of AgNP-GP 96 hpf: (C) (Magnification at 40x), and (D) 156 μg 
L−1 (Magnification at 20x); (E) (Magnification at 40x), and (F) 625 μg L−1 (Magnification at 20x). Images of control (A and B) depict normal developments. Exposed at 156 μg 
L−1 of AgNP-GP showed coagulated egg (C) and larvae where curvature of the spine was observed along with cardiac and vitelline edema (D). Organisms exposed to 625 μg 
L−1 of AgNP-GP, showed coagulated egg (E) and larvae with reduced head size, reduced body size, column curvature vertebral, cardiac and vitelline edema (F). Overall, the 
organisms exposed to AgNP-GP at 78 μg L−1 concentration showed no lethality, however, organisms exposed to 1250 μg L−1 concentration of AgNP-GP showed 100% 
lethality. 
Abbreviations: AgNP-GP, silver nanoparticles; MS medium, Murashige and Skoog medium.
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Insights on nanoparticles toxicity can be gained from 
several types of in vivo toxicological investigations in animals 
before venturing into toxicological studies in humans. 
Evaluation of the toxicity of nanoparticles in multispecies 
organisms/animals has become a cornerstone of human safety 
evaluation. Toxicological studies of nanoparticles using multi-
species organisms/animals make it possible in extrapolating 
the results from animal systems to humans. Indeed, the 
Environmental Protection Agency (EPA), Food and Drug 
Administration (FDA), and other regulatory authorities man-
date investigations of experimental drugs or nanomedicine 
agents, derived from various nanoparticles, for evaluation of 
adverse effects over a wide range of doses, dosage regimens, 
and exposure durations before approving for human applica-
tions. Toxicity investigations in multispecies animals catalyze 
extrapolation of the results of toxicity and mutagenicity studies 
from animal systems to humans.90–93

In order to evaluate species-specific toxicity of AgNP- 
GP, we have undertaken detailed toxicity investigations in 
Sprague Dawley rats. Our overarching objective was to 
assess the toxicity of AgNP-GP in rats so that these types 
of nanoparticles can be ultimately recommended with safety 
and risk limits of doses toward human health and environ-
ment. In this context, we reasoned that the biological activity, 
together with species and/or tissue specificity, should include 
the use of relevant species. Zebrafish may not be relevant 
from the viewpoint of testing the overall pharmacological 
activity of nanoparticles due to the absence of receptor/epi-
tope distribution in this species. Toxicity studies in non- 
relevant species may be misleading and are discouraged. 

Insights into receptor/epitope distribution provide vital infor-
mation on in vivo toxicity. Therefore, utility of relevant 
animal species, for testing the in vivo toxicity of nanoparti-
cles, assumes a paramount role in gaining long-term toxicity 
information. Toxicity studies in animals are intended to ulti-
mately translate the findings in assessing tissue cross- 
reactivity profile in human tissues. Therefore, the choice of 
animal species for the evaluation of toxicity of nanoparticles 
(or experimental drugs) should reflect, to a greater degree, the 
in vivo profiles common to human beings. Therefore, we 
have carried out safety evaluation in Sprague Dawley rats for 
the complete evaluation of systemic toxicity and also for 
defining toxicity limits of silver nanoparticles.

In this study, the systemic toxicity of AgNP-GP in 
Sprague Dawley Rats was studied. Table 4 depicts full 
details of clinical signs of toxicity, mortality and morbidity 
from day 0−28. The detailed biochemical markers and 
histopathological results, as summarized in Table 5, 
unequivocally demonstrated that AgNP-GP exerted no 
adverse systemic toxicity effects even in the main immune 
system organs including the thymus and spleen. Although, 
the potential systemic toxicity of AgNPs remains contro-
versial and species-specific, oral administrations of AgNP- 
GP up to 10.0 mg kg−1 body weight over a 28-day dosing 
regimen showed no obvious organ toxicity in both the 
male and female Sprague Dawley rats (Table 5).

Detailed gross pathological and histopathological ana-
lysis (Table 5), post oral administration of AgNP-GP, have 
conclusively revealed that, under in vivo toxicology test-
ing conditions, gum arabic stabilized silver nanoparticles 
were found to be well tolerated within the 10.0 mg kg−1 

body weight dosing range when administered orally for 
a period of 28 days in Sprague Dawley rats. Therefore, our 
results infer that the “no-observed adverse effect level 
(NOAEL)” limit for the AgNP-GP is 10.0 mg kg−1 body 
weight in both male and female Sprague Dawley rats.

Conclusions
In this comprehensive toxicity investigation of our silver 
nanoparticles (produced through green nanotechnology), we 
have followed globally acceptable regulatory requirements, 
that potential new medicines are tested in at least two animal 
species, for assessing safety and tolerability prior to first-in- 
human (FIH) trials. Multispecies toxicity in animals have 
become particularly relevant in the context of testing toxicity 
profiles of nanomedicines and nano antibiotics or antimicro-
bials such as those derived from silver nanoparticles as 
reported in the current investigation. The results, as reported 

Table 4 Summary of Clinical Signs of Toxicity, Mortality and 
Morbidity from Day 0−28

Group 
No.

Dose of 
AgNP- 
GP (mg/ 
kg/b.w.)

Sex Mortality/ 
Morbidity

Clinical 
Signs of 
Toxicity

No. 
with 
Clinical 
Signs/N

G1 0 M 0/6 Normal 6/6
F 0/6 Normal 6/6

G2 5.0 M 0/6 Normal 6/6
F 0/6 Normal 6/6

G3 7.5 M 0/6 Normal 6/6
F 0/6 Normal 6/6

G4 10.0 M 0/6 Normal 6/6
F 0/6 Normal 6/6

Abbreviations: b.w, body weight; G1, control group; G2, low-dose group; G3, 
mid-dose group; G4, high-dose group; F, female; M, male; N, number of animals.
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herein, demonstrate that our silver nanoparticles exhibited 
toxicity in a zebrafish animal model while no toxicity was 
found in the Sprague Dawley rat model—thus exemplifying 
the importance of the use of two species (a rodent and a non- 
rodent) for toxicological assessment of nanomedicines. Our 
investigations unequivocally show that silver nanoparticles 
stabilized through gum arabic protein (AgNP-GP) can be 
safely utilized as broad-spectrum antibiotics in a range of 
consumer products including as antimicrobial (such as anti-
bacterial, antifungal and antiviral) agents both for in vitro and 
in vivo product development applications.
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Table 5 Histopathology Data of Sprague Dawley Rats Treated with AgNP-GP (5.0 mg kg−1 - 10.0 mg kg−1 Body Weight Dosing 
Regimen)

Organ Name Group Number G1 G4

Dose (mg/kg/b.w.) 0 10.0

Number of animals 6 6 6 6

Sex M F M F

Histopathology indings

Lungs Examined 6 6 6 6

Infiltrate, cellular minimal 2 2 1 2

Liver Examined 6 6 6 6

Vacuolation, cytoplasmic, hepatocytes, focal 

minimal

0 1 0 1

Adrenals Examined 6 6 6 6

Accessory adrenocortical nodules, present 0 0 0 1

Vacuolization, cytoplasmic, cortex minimal 1 0 1 0

Uterus with cervix Examined – 6 – 6

Dilation, lumen, uterine horn, present NA 1 NA 0

Skin with mammary gland, mesenteric lymph node, 

trachea, esophagus, thyroid and parathyroid, thymus, 

heart, aorta, eyes, brain, stomach, duodenum, 
jejunum, ileum, Peyer’s patches, cecum, colon, rectum, 

spleen, kidneys, urinary bladder, testes, epididymitis, 

male sex glands, ovaries, vagina, skeletal muscle, 
pancreas, pituitary gland, salivary glands and spinal 

cord

No noticeable changes observed

Notes: Figures examined indicate number of slides examined microscopically in the particular group; other figures indicate number of findings per organ in the particular 
group. 
Abbreviations: G1, control group; G4, high-dose group; F, female; M, male; NA, not applicable.
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