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‘ ") Check for updates

31 Don't Want My Algorithm to Die in

Detecting Deteriorating Patients Early

In this issue of the Journal, Pimentel and colleagues (pp. 44-52) report a
retrospective evaluation of a new model (Hospital-wide Alerting via
Electronic Noticeboard [HAVEN]) for predicting deteriorating ward
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a Paper

patients using vital signs, laboratory measurements, demographics, and
historical diagnostic coding (1). The standard metrics of accuracy are
impressive (e.g., a c-statistic of 0.901). Accepting nine false alarms for every
one true positive, HAVEN will identify more than 40% of cardiacarrests or
unplanned ICU admissions within the preceding 48 hours and provide as
much as 12-hour notice for more than 25%. This is twice the rate of the best
of the alphabet soup of competitors (NEWS, LAPS-2, eCART, and several
friends) (2-4).

But predictive scores with nice acronyms are two-a-penny. So why
should we care? Because, reading the report carefully, this is a score that
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is built with implementation in mind. The authors state that “HAVEN
recalculate(s) a patient’s deterioration risk each time a new variable is
recorded” (1).

This is a substantially different challenge to that faced by the poster
children of machine learning and artificial intelligence. Successful
implementation of machinelearningalgorithms have largely focused on
diagnostic imaging or pathways that do not require updating or real-
time feedback loops (5, 6). In these, a digital image is captured,
processed, and reported. The timescale follows the rhythm of the clinic
visit. The data source is fixed and consistent.

In contrast, acute medicine does not have that luxurious timescale
or reliable data source. Ward vital signs change as often as hourly,
laboratory values are inconsistently measured, and the technology must
update hundreds of patients instantly and simultaneously rather than
batch process mammograms overnight.

Building a risk score that supports bedside clinical care for
hundreds of patients across an entire hospital is as much about
engineering as about machine learning. This requires a different set of
trade-offs, and it is, therefore, exciting to see such a score performing
well. Three criteria must be met to implement machine learning in such
a scenario. These can be neatly mapped to the rapid response system
reflex arc (7).

The afferent limb requires that data are digital first. Notably, the
authors here have selected those items that are often digital even in
hospitals that are only partway along the digital maturity spectrum (8).
This suggests a broader impact than a model that depends on natural
language processing of notes, current diagnostic information, or drug
administrations. Moreover, the afferent limb requires a pipeline that
delivers the digital signal to a computational engine near instantaneously.
This is not part of the infrastructure provided by most electronic health
record systems in which data is typically made available through a
reporting data warehouse the following calendar day.

The second stage inserts a machine learning “synapse” before the
efferent “effector” limb of the rapid response system. This must rapidly
update the risk prediction in a trustworthy and reliable manner. Data
entry errors or incomplete results must be managed (indeed the pattern
of “missingness” might itself be informative). And “better” models that
are computationally expensive must be eschewed for simple, “last one
carried forward” median or mode approaches.

The third stage, the efferentlimb, then returns this prediction to the
bedside clinician in a manner that meets modern medical device
engineering quality management standards (9).

Although the paper describes the development of the risk score, it has
been done with these stages in mind. And despite the constraints this
imposes, the score still performs. The closest similar work is the recent
report from Google DeepMind on predicting acute kidney injury (10).
They developed a similarly pragmatic data processing pipeline that was
also suitable for real-world implementation.

Where work such as this must remain vigilant is in the cultural
biases that it cannot help but encode. Unlike digital imaging, the
prediction target is clinical, not biological. HAVEN predicts cardiac
arrest and unplanned ICU admission. In other words, if intensivists
have an age bias (they do) or manifest prognostic pessimism for
hematological malignancy, then this will be learned by the model (11).
The prediction will then not serve these cohorts well. Such risks are
mitigated by interpretable machine learning and by excellent and
transparent reporting. Both are present here.

I now cannot wait to see the third stage being implemented and these
tools returning predictions to the bedside. Work such as this is a stepping

Editorials

stone to true translational data science. We are not short of algorithms, but
the majority of these end their lives in an academic report. For machine
learning to have its promised impact on health care, we need engineering
pipelines, and we need pragmatic algorithms. This paper hints at the
former and strongly delivers the latter. M
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