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I Don't Want My Algorithm to Die in a Paper
Detecting Deteriorating Patients Early

In this issue of the Journal, Pimentel and colleagues (pp. 44–52) report a
retrospective evaluation of a newmodel (Hospital-wide Alerting via
Electronic Noticeboard [HAVEN]) for predicting deteriorating ward

patients using vital signs, laboratorymeasurements, demographics, and
historical diagnostic coding (1). The standardmetrics of accuracy are
impressive(e.g.,ac-statisticof0.901).Acceptingninefalsealarmsforevery
onetruepositive,HAVENwill identifymorethan40%ofcardiacarrestsor
unplanned ICUadmissionswithin thepreceding48hours andprovide as
muchas12-hournoticeformorethan25%.Thisis twicetherateofthebest
of thealphabet soupof competitors (NEWS,LAPS-2, eCART,andseveral
friends) (2–4).

Butpredictive scoreswithnice acronymsare two-a-penny. Sowhy
shouldwe care? Because, reading the report carefully, this is a score that
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is built with implementation inmind. The authors state that “HAVEN
recalculate(s) a patient’s deterioration risk each time a new variable is
recorded” (1).

This is a substantiallydifferent challenge to that facedby theposter
children of machine learning and artificial intelligence. Successful
implementationofmachinelearningalgorithmshavelargelyfocusedon
diagnostic imaging or pathways that do not require updating or real-
time feedback loops (5, 6). In these, a digital image is captured,
processed, and reported. The timescale follows the rhythmof the clinic
visit. The data source is fixed and consistent.

In contrast, acutemedicine does not have that luxurious timescale
or reliable data source. Ward vital signs change as often as hourly,
laboratoryvalues are inconsistentlymeasured, and the technologymust
update hundreds of patients instantly and simultaneously rather than
batch process mammograms overnight.

Building a risk score that supports bedside clinical care for
hundreds of patients across an entire hospital is as much about
engineering as about machine learning. This requires a different set of
trade-offs, and it is, therefore, exciting to see such a score performing
well. Three criteriamust bemet to implementmachine learning in such
a scenario. These can be neatly mapped to the rapid response system
reflex arc (7).

The afferent limb requires that data are digital first. Notably, the
authors here have selected those items that are often digital even in
hospitals that are only partway along the digital maturity spectrum (8).
This suggests a broader impact than amodel that depends on natural
language processing of notes, current diagnostic information, or drug
administrations.Moreover, the afferent limb requires a pipeline that
delivers the digital signal to a computational engine near instantaneously.
This is not part of the infrastructure provided bymost electronic health
record systems in which data is typically made available through a
reporting data warehouse the following calendar day.

The second stage inserts a machine learning “synapse” before the
efferent “effector” limb of the rapid response system. Thismust rapidly
update the risk prediction in a trustworthy and reliable manner. Data
entry errors or incomplete resultsmust bemanaged (indeed thepattern
of “missingness”might itself be informative). And “better”models that
are computationally expensive must be eschewed for simple, “last one
carried forward”median or mode approaches.

Thethirdstage, theefferent limb, thenreturnsthispredictiontothe
bedside clinician in a manner that meets modern medical device
engineering quality management standards (9).

Althoughthepaperdescribes thedevelopmentof theriskscore, ithas
been done with these stages inmind. And despite the constraints this
imposes, the score still performs. The closest similar work is the recent
report fromGoogle DeepMind on predicting acute kidney injury (10).
They developed a similarly pragmatic data processing pipeline that was
also suitable for real-world implementation.

Where work such as this must remain vigilant is in the cultural
biases that it cannot help but encode. Unlike digital imaging, the
prediction target is clinical, not biological. HAVEN predicts cardiac
arrest and unplanned ICU admission. In other words, if intensivists
have an age bias (they do) or manifest prognostic pessimism for
hematological malignancy, then this will be learned by the model (11).
The prediction will then not serve these cohorts well. Such risks are
mitigated by interpretable machine learning and by excellent and
transparent reporting. Both are present here.

Inowcannotwait to see the thirdstagebeing implementedandthese
tools returning predictions to the bedside.Work such as this is a stepping

stoneto true translationaldatascience.Wearenotshortofalgorithms,but
themajority of these end their lives in an academic report. For machine
learning to have its promised impact on health care, we need engineering
pipelines, and we need pragmatic algorithms. This paper hints at the
former and strongly delivers the latter. �
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