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A machine learning model with 
human cognitive biases capable 
of learning from small and biased 
datasets
Hidetaka Taniguchi, Hiroshi Sato & Tomohiro Shirakawa

Human learners can generalize a new concept from a small number of samples. In contrast, 
conventional machine learning methods require large amounts of data to address the same types of 
problems. Humans have cognitive biases that promote fast learning. Here, we developed a method 
to reduce the gap between human beings and machines in this type of inference by utilizing cognitive 
biases. We implemented a human cognitive model into machine learning algorithms and compared 
their performance with the currently most popular methods, naïve Bayes, support vector machine, 
neural networks, logistic regression and random forests. We focused on the task of spam classification, 
which has been studied for a long time in the field of machine learning and often requires a large 
amount of data to obtain high accuracy. Our models achieved superior performance with small and 
biased samples in comparison with other representative machine learning methods.

Machine learning has been widely studied and has contributed to technologies used in our everyday life, such as 
automatic translation, image recognition and spam classification1. One notable method of machine learning is 
supervised learning, which generalizes the concept of a problem from a set of labeled training data. For example, 
a spam classifier uses training data in the form of a large sample of email texts that have been previously labeled 
into two classes, spam and ham (i.e., non-spam), to classify new uncategorized emails. The early representative 
machine learning methods include perceptron2, logistic regression (LR)3 and the nearest-neighbor rule4. Neural 
networks (NN)5 and support vector machine (SVM)6 were later proposed based on the perceptron. The other 
notable machine learning models include naïve Bayes (NB) and random forests (RF)7. These machine learning 
models have been studied for a long time and have shown superior performances across a variety of tasks.

Usually, these models require a large, well-balanced sample dataset to assure prediction accuracy8. However, in 
practice the proportion of real data is often biased. For example, over 90% of emails were identified spam mails in 
20129 while the common training datasets such as SpamAssassin10 and Ling-Spam11 consist only 20–30% of spam 
labeled data and rests are ham labeled data. Namely, real data is more likely to be imbalanced. Also, spam emails 
have become difficult to detect since their form dramatically changed12. Therefore, the data proportion and prop-
erty between real data and common datasets as a testbed for machine learning study might have much difference, 
and we thus consider that there is a strong need for the machine learning model which can deal such situation.

In contrast, humans can generalize a new concept from small and biased samples13,14. For example, by seeing 
a hippopotamus in a zoo for the first time, an infant can obtain a lot of information about the new object: what it 
looks like, how big it is, and the characteristics that differentiate hippos from other animals. In machine learning, 
hundreds or thousands of training samples may be required to tackle the same problems15. Also, humans do not 
need a large number of negative samples to learn a positive instance15. For example, infants do not need to see ele-
phants, to learn hippos. Namely, human can generalize a new concept from samples of single class, while machine 
learning requires many data and many labels.

Humans have cognitive biases16–20 that effectively support concept acquisition21,22. Many researchers have 
attempted to reproduce human-level concept learning through machine learning21,23–25. According to one recent 
study22, two cognitive biases—symmetric bias22,26 and mutually exclusive bias27,28—can be effectively employed in 
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machine learning tasks. Symmetric bias promotes a tendency of inferring “if q then p” after convincing that “if p 
then q”29. For example, if p represents “the weather was rainy” and q represents “the ground was wet”, symmetric 
bias infers “if the ground was wet (q), then the weather was rainy a while ago (p)” from “if the weather was rainy (p), 
then the ground was wet (q)”29. In practice, such inference can lead to systematic errors29 because “the ground was 
wet” can be triggered by other factors such as “the garden sprinkler sprayed water”. Therefore, the relationship 
between “the weather was rainy” and “the ground was wet” is uncertain in this limited situation. However, this 
kind of inference can be observed in our everyday life, and this human characteristic is considered to promote 
faster learning and decision making22. Mutually exclusive bias is another tendency in which “if p  then q” is 
inferred after convincing that “if p then q”, where p  and q are the negations of p and q. For example, suppose a 
mother tells her son, “if you don’t clean up your room, then you will not be allowed to play”. In this sentence, p is 
interpreted as “not cleaning up a room” and q is interpreted as “not being allowed to play”. In this case, her son may 
also interpret the sentence as “if I clean up my room, then my mom will allow me to play” (i.e., →p q), and her son 
may therefore clean up his room29. In this case, the son seems to misunderstand the relationship between the two 
sentences. However, the communication between the mother and her son seems to be successful, and such con-
versations are often observed in our daily lives. In linguistic studies, mutually exclusive bias is thought to promote 
vocabulary growth in children27–33. For example, if p represents “being a hippopotamus” and q represents “being 
called a hippopotamus”, the mutually exclusive bias gives a tendency toward inference such that “if a child recog-
nizes an elephant (p), then the child does not think it is called a hippopotamus (q)” is inferred from “if a child recog-
nizes a hippopotamus (p), then learns that it is called a hippopotamus (q)”. Thus, mutually exclusive bias is said to 
prevent the confusion of distinct objects22. A number of studies have been conducted on symmetric bias and 
mutually exclusive bias since they were initially reported. The ΔP model34 and dual-factor heuristics (DH) 
model21 are examples. The ΔP model satisfies the mutually exclusive bias, while the DH model satisfies the sym-
metric bias22,29. As mentioned above, symmetric bias and mutually exclusive bias sometimes lead to incorrect 
logic but in a rather creative manner. Shinohara et al. therefore expected that including both of these biases in a 
model would yield more human-like inferences22. The resulting loosely symmetric (LS) model considers both 
symmetric and mutually exclusive biases, based on ΔP and DH models. In cognitive experiments, the LS model 
has shown a very high correlation with human inference and can be applied to any tasks that address conditional 
probability35.

In this study, to apply this human-like nature to machine learning tasks, we implemented the LS model within 
an NB text classifier to learn from small and biased samples. NB has high affinity with LS models since it addresses 
conditional probabilities. LS model is a well-formulated cognitive model and has a correlation to human infer-
ence35 and thus we implemented LS model into Naïve Bayes spam classifier to promote concept learning with 
symmetric bias and mutually exclusive bias.

Although symmetric bias and mutually exclusive bias hold in some conditionals such as “promises” and 
“threats”36, they sometimes lead to incorrect logic. For example, if p represents “the shoe is white” and q represents 
“a star is printed on it”, symmetric bias infers “if a star is printed on a shoe, then the shoe is white” and mutually 
exclusive bias infers “if the shoe is not white, then a star is not printed on it” from “if the shoe is white, then a star is 
printed on it”. These inferences are undoubtedly errors. Although the mutually exclusive bias is said to promote 
word learning in linguistics, it is still under investigation that the symmetric bias and mutually exclusive bias 
would be the fundamental of cognition, or they work only in limited situations.

However, in practice, symmetric bias and mutually exclusive bias are useful for our task, spam classification. 
Spam mails often contain spam-likely words such as “Casino” or “Slot”37. If p represents “this email contains a 
spam-likely word”, and q represents “this email is spam”, symmetric bias gives a tendency toward inference such 
that “if this email is spam (q), then this email contains spam-likely word (p)” from “if this email contains spam-likely 
word (p), then this email is spam (q)”. Also, mutually exclusive bias gives a tendency toward inference such that  
“if this email does not contain spam-likely word (p), then this email is ham (q)”. In this inference, according to the 
Equation38, we assume P(if p then q) is equivalent to the conditional subjective probability P(p/q) in the spam 
classification task. The number of empirical studies implied the existence of correlation between the conditional 
“if p then q” and conditional probability39,40. However, Barrouillet and Gauffroy reported that the relationship 
between P(if p then q) and P(p/q) was found only in limited situations36. Despite such circumstances, we assume 
that the Equation is useful for our tasks since the equivalence between the conditionals such as “if this email is 
spam (q), then this email contains spam-likely word (p)” and the conditional subjective probability P (this email 
containts spam - likely word|this email is spam) holds. The spam classification is therefore one of the best testbed 
for our challenge since it involves conditional probability and causal inference between classes and features.

Based on this hypothesis, we developed two models, named loosely symmetric naïve Bayes (LSNB) and 
enhanced LSNB (eLSNB). These two models have three characteristics that are not involved in traditional NB 
approaches. Our models (1) permit adjusting feature weights under the condition of feature vectors that belong 
to each class, while NB classifier assumes that every feature in a text is conditionally independent, (2) address a set 
of n-dimensional feature vectors to calculate a posterior probability, while NB addresses only one feature vector 
from one class and (3) retain the simplicity and processing speed of NB classifiers while offering superior perfor-
mance. These characteristics effectively adjust feature weights within a restricted data distribution.

The contribution of this paper is directed to the both fields of machine learning and cognitive science. We 
investigated the efficiency of cognitive model on machine learning tasks: how cognitive biases support machine 
learning with small and biased data. Our contribution is not limited to the spam classification task. Rather, we 
studied how human cognitive biases and machine learning models can be integrated to realize fast learning from 
small and biased data, namely, imitating human-level concept learning. Our models yielded superior perfor-
mances compared with conventional machine learning models when learning was performed based on small and 
biased samples.
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Methods
Naïve Bayes.  NB is a generative model based on Bayes’ theorem41 and is often used for text classification42. 
In spam classification, each message is characterized as an n-dimensional word feature vector = ...W w w w, , , n1 2  
that is predefined to belong to class = ∈C spam ham c C, , i , where ham is non-spam. The posterior probability 
that W  belongs to ci is given as defined in equation (1).
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P(W) is called “evidence” and takes the same value for all classes and does not affect the relative values of their 
probability43. It can be ignored, as in equation (2).
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The NB classifier assumes that every feature in a text is conditionally independent and that each distribution 
is estimated as a one-dimensional distribution1. In practice, this assumption is unrealistic because words such as 
“money” and “casino” are likely to co-occur in the same text. However, this assumption of conditional independ-
ence greatly simplifies the calculation and yields superior performance in text classification.

Loosely symmetric naïve Bayes.  We implemented the LSNB model based on the naïve Bayes classifier. 
Table 1 shows the 2 × 2 contingency table of the LS model, where a, b, c and d are the frequencies or joint proba-
bilities of p and q.

The LS model estimates the strength of the relation between p and q as defined in equations (3–6).
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Though the equation may appear somewhat complicated, it is just a modified conditional probability. For 
example, equation (3) is a conditional probability modified by including the terms 

+
ac

a c
 and 

+
bd

b d
. If both terms 

equal zero, the model is equivalent to conditional probability, namely, there is no bias. If b = c is satisfied, equa-
tions (3) and (5) are always equivalent and the model has a complete symmetric bias. Additionally, if a = d and 
b = c are simultaneously satisfied, equations (3 and 5) and (6) are equivalent and the model has complete symmet-
ric and mutually exclusive biases. Figure 1, which shows the relation between LS(q|p) and LS(p|q) as well as the 
relation between LS(q|p) and |LS q p( ), demonstrates this. The data points in the figure are randomly generated by 
uniformly estimating a, b, c and d from [0, 1]. If the bias is complete, then LS(q|p) = LS(p|q) and | = |LS q p LS q p( ) ( ) 
hold, and the graphs have a positive and proportional relationship. If there is no bias, there is no correlation 
between LS(q|p) and LS(p|q) or between LS(q|p) and |LS q p( ), so the distribution of the plots in Fig. 1 would be 
random. The distributions of the plots in Fig. 1 show an intermediate shape: a hybrid proportional and random 
distribution. It seems trivial, however if the model always completes symmetric bias or mutually exclusive bias, 
the model would be illogical and does not show similarity to human inference. ΔP and DH models always com-
plete either bias and conditional probability does not involve any biases22,29. Meanwhile, the LS model flexibly 
adjusts the weights of each type of bias using the terms 
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try and mutually exclusivity as shown in Fig. 1, its theoretical mechanism is still under investigation. However, 
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Table 1.  2 × 2 Contingency table of the LS model.
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this model showed higher correlation to human inference compared to other cognitive models such as ΔP and 
DH models29.

In order to apply the formula to an NB approach, the 2 × 2 contingency table is arranged as in Table 2 and 
LSNB is calculated as in equations (7–10).

= |( )a P w c (7)j i
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Above, = |a P w c( )j i  is the probability that word wj co-occurs in class ci, and b P w c( )j i= |  is the probability that 
word wj does not co-occur in class ci. Similarly, c P w c( )j i= |  and d P w c( )j i= |  are the probabilities of co-occurrence 
in the presence or absence, respectively, of wj in class ci. Each probability is given by equations (7–10), and the 
modified weight of word wj in class ci is calculated as in equations (11–13).
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For example, if some words such as “money” and “casino” were only observed in spam labeled texts much 
more frequently from ham labeled texts, these words should be considered spam related words, and vice-versa; 
the settings above reflect such situation. The main difference between NB and LSNB is the way in which they 
calculate the posterior probability; in the NB calculation process, the likelihood |P W c( )i  is given by 

| = +P w c a a b( ) /( )j i , while the LSNB method produces the likelihood |P w c( )LS j i  using a, b, c and d.

Figure 1.  (a) Relation between |LS q p( ) and |LS p q( ). (b) Relation between |LS q p( ) and |LS q p( ).

wj wj

ci a b

ci c d

Table 2.  Contingency table used in the LSNB model.
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Enhanced loosely symmetric naïve Bayes.  We further modified the LSNB model to develop the eLSNB 
model, which includes word density, defined in equation (14).
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In the above formula, N c w( , )i j  is the number of times word wj occurs in class ci and WD c w( , )i j  is the word 
density. The word density is used as a confidence measure in many text classification applications44. We developed 
this model to more optimally adjust the weights of each feature. For example, if word wj is frequently observed in 
spam texts but infrequently in ham texts, then word wj should be more strongly considered to be a spam-related 
word. The reason why we employed word density information into eLSNB is that external bias can be effectively 
employed in some practical cases. The causal relationship is sometimes difficult to estimate from observed raw 
data. In such a condition, the eLSNB model introduces bias into the features and flexibly modifies its weight as 
shown in equations (15–18).
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After the weight modifications, the eLSNB model calculates the likelihood and the posterior probability as in 
equations (11–13).

Email corpus.  We used two publicly available English email corpora in the experiment. The SpamAssassin10 
corpus consists of 3900 ham messages and 1897 spam messages, and 33% of the sample data were spam. The 
Ling-Spam11 corpus consists of 2412 ham messages and 481 spam messages. We used the lemm version (texts are 
lemmatized) of the Ling-Spam corpus for the experiment, and 17% of the messages were spam.

Figure 2.  (a) spam classification accuracy, (b) ham classification accuracy and (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. Error bars indicate the standard error.
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Experimental Settings.  We conducted two experiments with different percentages of spam and ham mes-
sages in the learning phase, using seven classification models: SVM, NN, LR, RF, NB, LSNB and eLSNB. The SVM 
classifier was used with a Gaussian kernel, which is common for text classification with = .cost 0 1, = .gamma 0 1. 
We used a three-layered NN with a sigmoid function, which is common for binary classification. The number of 
nodes in a hidden layer was 10. The number of nodes seems few, but we found this value is suitable for the follow-
ing experiments. The LR used binominal regression with α = 0.1. RF used 300 trees, and the number of features 
for the decision split was the square root of the dimensions of the feature space. For the experimental settings of 
the NB, LSNB and eLSNB models, we set prior probabilities to be equal for each class, namely, = .P spam( ) 0 5 and 

= .P ham( ) 0 5, to avoid any initial asymmetry. Half of the whole dataset was used as test data. The parameters of 
each model were decided after some trials and chosen best values for the experiments.

In the following experiments, we used only biased and skewed numbers of training data. In Exp. 1-1, the same 
number of spam and ham messages were used as training data, where = ∗spam t 40 and = ∗ham t 40, for 

| ≤ ≤t t[ 1 6], with 50% spam. In Exp. 1-2, there were differing numbers of spam and ham messages used as train-
ing data, with = ∗spam t 24 and = ∗ham t 40, for | ≤ ≤t t[ 1 10], producing 38% spam. In Exp. 1-3, 17% of 
messages were spam with = ∗spam t 8 and = ∗ham t 40, for | ≤ ≤t t[ 1 30]. In Exp. 2, the amount of training 
data belonging to either class was set to a constant value. In Exp. 2-1, the size of the spam training data was 25 or 
100 messages as a constant parameter while the number of ham training messages was = ∗ham t 40, for 

| ≤ ≤t t[ 1 6]. Therefore, only the number of ham sample messages increased, while the number of spam sample 
messages was constant. In Exp. 2-2, the number of ham training data messages was 25 or 100 as a constant param-
eter and the number of spam training data messages was = ∗spam t 40, for | ≤ ≤t t[ 1 6]. The settings used for 
Exp. 2-2 were the inverse of those used in Exp. 2-1. In particular, Exp. 1 was an investigation how biased data 
would affect machine learning model and Exp. 2 was an investigation how small data also affects the 
performances.

Before the experiments were conducted, we eliminated punctuation, numerals and stop words45 from email 
texts as well as any word features that were observed only once. Stop words are English words commonly observed 
in any general text, such as “this” and “you”. These words do not affect classification and are often eliminated 
before the training phase. Furthermore, according to the theory of burstiness46,47, words related to the text content 
tend to be observed more than once. Thus, we eliminated words from the feature vector that were observed less 
than twice.

Figure 3.  (a) spam classification accuracy, (b) ham classification accuracy and (c) f-measure values for 
spamassassin. (d) spam classification accuracy (e) ham classification accuracy and (f) f-measure values for ling-
spam. Error bars indicate the standard error.
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All experiments were implemented using R (https://www.r-project.org). We used the e1071 package for SVM, 
the nnet package for NN, the glmnet package for LR, and the randomForest package for RF. NB, LSNB and eLSNB 
models were implemented within the R statistical computing environment using custom scripts.

Results
We compared the performance of NB, LSNB, eLSNB, SVM, NN, LR and RF on spam classification. The purpose 
of the task was to classify texts into one of two classes, spam and ham. We used two mail corpora, SpamAssassin 
and Ling-Spam, in the following experiments.

Experiment 1.  In the following experiments, we varied the percentage of spam training data in each experi-
ment and compared the spam classification accuracy, ham classification accuracy and F-measure.

Experiment 1-1.  The results of Exp. 1-1 are shown in Fig. 2. Overall, eLSNB, LSNB, NN and RF methods 
achieved higher classification accuracy for spam classification. NB did not improve the spam classification accu-
racy through the experiment and showed relatively lower accuracy. In the ham classification, eLSNB, LSNB, NB 
and NN showed higher classification accuracy compared to the other models. LR did not improve the ham clas-
sification accuracy through the experiment and was the worst among all the models.

In this experiment, the total number of training data was less than 500. Therefore, each classification model 
was expected to have difficulty in optimizing the proper weights for each feature. However, the eLSNB, LSNB, 
NN and RF yielded higher F-measure scores. Additionally, eLSNB and LSNB models exhibited improved spam 
and ham accuracies compare to the NB base model. Overall, eLSNB performed the best in terms of F-measure, 
supported by its use of the LS model and word density information for optimizing the feature weights from a 
small number of samples.

Experiment 1-2.  The results of Exp. 1-2 are shown in Fig. 3. Although the percentage of spam training data 
in this experiment was higher than that in Exp. 1-1, almost all the models yielded similar results. For example, 
NB, LSNB, eLSNB and NN models performed similarly throughout Exp. 1. Meanwhile, RF, LR and SVM showed 
some trade-offs between spam and ham accuracies. These models improved ham classification accuracy and 
decreased spam classification accuracy compared with the results in Exp. 1-1. Therefore, the performances of RF, 
LR and SVM were affected by the spam percentage and expected to have some sensitivity to imbalanced data.

Experiment 1-3.  The results of Exp. 1-3 are shown in Fig. 4. SVM and RF showed nearly perfect accuracy 
in ham classification, followed by NN and eLSNB, in descending order. LR and NB showed relatively lower ham 

Figure 4.  (a) spam classification accuracy, (b) ham classification accuracy and (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. The error bars indicate the standard errors.

https://www.r-project.org
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classification accuracy. Additionally, SVM, RF and NN showed improved ham classification accuracy relative to 
Exps 1-1 and 1-2. However, spam classification accuracies of SVM, RF and LR were relatively lower than those 
of other models. SVM, RF and NN also exhibited decreased spam classification accuracy in Exps 1-1 and 1-2. 
Additionally, the trade-offs of RF, LR and SVM became wider in Exp. 1-3 relative to Exp. 1-2. Furthermore, NN 
showed a trade-off that was not observed in Exp. 1-1 or 1-2. Meanwhile, the eLSNB, LSNB and NB did not show 
such a trade-off and produced higher spam classification accuracy. NB, LSNB and eLSNB did not appear to be 
affected by changes in the class distributions. The proposed models each outperformed the NB base model. Thus, 
eLSNB and LSNB approaches had some advantage under the biased class distribution in comparison with other 
models, somewhat resembling the fast learning that is characteristic of humans. Overall, Exp. 1 showed that the 
LSNB and eLSNB methods simply produced higher classification accuracy than NB and had the highest perfor-
mance in terms of F-measure.

Experiment 2.  In the following experiments, the number of training data of either class was predefined to 
be a constant value.

Experiment 2-1.  The results of Exp. 2-1 are shown in Fig. 5 (the number of spam training data was prede-
fined as 100) and Fig. 6 (the number of spam training data was predefined as 25). When the spam training data 
contained 100 spam messages, all models showed increased ham classification accuracy. Meanwhile, NN, LR, RF 
and SVM showed decreased spam classification accuracy as the training data increased in number. Thus, these 
models showed some sensitivity to the data distribution, owing to the lack of spam relative to ham in the training 
data. If the number of spam messages in the training data is large enough relative to ham, each machine learning 
models is able to estimate the proper weights for each feature. However, in this experiment, the feature distribu-
tions between spam and ham were strongly biased. NN, LR, RF and SVM could not properly weight each feature 
and spam classification accuracy decreased as the number of ham training data increased. Meanwhile, LSNB and 
eLSNB did not decrease either spam or ham classification accuracies. Overall, eLSNB produced superior results 
in terms of F-measure.

When the number of spam training data was predefined as 25, RF, SVM and NN performed better in ham 
classification. However, as in Exp. 2-1, these models did not show superior results on spam classification. In 
particular, SVM showed higher ham classification accuracy, though the spam classification accuracy was the 
worst among all the models. The NN, RF and LR also showed similar trade-offs. LSNB was also affected by the 
biased sample data, which was not observed in Exp. 1. Although LSNB produced higher ham scores, the spam 
classification accuracy decreased as the sample dataset increased in size. Meanwhile, NB and eLSNB did not show 

Figure 5.  (a) spam classification accuracy, (b) ham classification accuracy and (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. The number of spam training data points was predefined at 100. Error bars indicate the standard 
error.
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such trade-offs. Therefore, LSNB seems to fail to adjust the effectiveness of its symmetry and mutually exclusive 
biases caused by the strongly imbalanced data distribution, even though it produced superior results in Exp. 1. 
Meanwhile, eLSNB did not show such a trade-off and produced relatively better spam and ham classification 
accuracies. Overall, eLSNB showed the best classification results in terms of F-measure.

Experiment 2-2.  The results of Exp. 2-2 are shown in Fig. 7 (where the number of ham training data was 
predefined to 100) and Fig. 8 (where the number of ham training data was predefined to 25). When there were 
100 ham training data, almost all the models increased spam classification accuracy as the size of the training data 
increased. Meanwhile NN, SVM, LR and RF models decreased in ham classification accuracy through the exper-
iment. This suggests that these models also showed some sensitivity, as seen in the results of Exp. 2-1.

When there were 25 ham training data points, eLSNB and NB had superior performance in ham classification. 
Meanwhile, NN, LR, RF and SVM did not show higher performance, in spite of these models having had higher 
ham classification accuracy in Exps 1 and 2-1. Also, NN, LR, SVM and RF had the best performance in spam 
classification. The data proportions between Exps 2-1 and 2-2 were symmetric, and therefore the spam classifi-
cation results of Exp. 2-1 and ham classification results in Exp. 2-2 were similar. The results might not show such 
symmetry if the data properties or feature distributions were very different between the spam and ham training 
data. Since most models showed trade-offs as the dataset increased in size, these models had some sensitivities 
to imbalances in the data distributions. As Exps 1 and 2 showed, SVM, LR, RF and NN were strongly affected 
by the data ratio. NB did not show such strong trade-off, but its performance was relatively lower. The proposed 
LSNB model showed a trade-off in Exp. 2, and the bias adjustment of the model failed somewhat in some cases. 
Meanwhile, eLSNB overcame this weakness and word density information helped to prevent the problematic data 
sensitivity. Overall, eLSNB had the highest F-measure values.

Discussion
The present study tested the performance of NB, SVM, NN, LR and RF machine learning methods against our 
models, designated LSNB and eLSNB, using small and biased samples. We focused on the classic spam classifica-
tion task, which has been studied for a long time in the field of machine learning. The data proportion and con-
texts between real spam mail data and common spam classification datasets have much difference, and the 
machine learning model which can deal such situation is strongly needed. The conventional algorithms, such as 
NB, NN, SVM, LR and RF, often require a large amount of well-balanced sample data to assure prediction accu-
racy in tasks such as spam classification. In contrast, humans can generalize a new concept from a small number 

Figure 6.  (a) spam classification accuracy, (b) ham classification accuracy and (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. The number of spam training data points was predefined to 25. Error bars indicate the standard 
error.
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of samples, even if the composition of the samples is imbalanced13–15. Some researchers claim that human beings 
have cognitive biases16–20 and that these biases facilitate concept learning from small and biased samples21,22. We 
developed LSNB and eLSNB based on this hypothesis and attempted to reproduce this small and biased sample 
scenario properly as a machine learning task. The difference between NB and our models is that LSNB and eLSNB 
include two additional terms 

+
ac

a c
 and 

+
bd

b d
, which modify the probabilities of the models. As shown in the 

Methods section, these two terms adjust the effectiveness of symmetric bias and mutually exclusive bias; in other 
words, they promote concept learning, but do not always make correct inferences.

In the experiments, we tested the models using different percentages of spam and ham data in the learning 
phase to investigate how model behaviors changed according to changes in the feature distribution. In Exp. 1-1, 
we used the same numbers of spam and ham training data points, and Exps 1-2 and 1-3 used less spam and more 
ham data (33% spam in Exp. 1-2 and 17% in Exp. 1-3). These three experiments were investigations of how biased 
data would affect the performances of machine learning models.

In Exp. 1-1, every model showed higher classification accuracy on spam and ham and most models increased 
their performance with the incensement of data size. However, SVM, LR and NB showed relatively lower spam 
and ham classification accuracies. The total number of training data in this experiment was less than 500. 
Therefore these models did not perform well from such a small number of training data. In contrast, LSNB and 
eLSNB simply improved upon the performance of the NB base model, producing superior results. The class dis-
tribution of this experiment was equal between spam and ham. Therefore trade-off was not observed from every 
model.

In Exp. 1-2, SVM, LR and RF showed trade-offs between spam and ham classifications. The spam classification 
accuracies of these models were relatively lower at the initial stage and gradually increased throughout the exper-
iment. Meanwhile their ham classification performances merely increased and showed similar F-measure scores 
as shown in Exp. 1-1. Although RF showed higher F-measure scores, its sensitivity to class distributions was 
observed. In practice, NB, SVM, LR and RF often require a large amount of training data to assure the prediction 
accuracy. However, we only used limited number of training data in this study. These models thus showed less 
ability of learning from limited number of data. Meanwhile eLSNB, LSNB and NN did not show trade-offs and 
kept higher classification performances.

In Exp. 1-3, SVM and RF showed bigger trade-offs. These models showed almost perfect ham classification 
performances, even when the number of training data was small. However, their spam accuracies were very 
low. Although their spam accuracies increased throughout the experiment, these models did not perform as 

Figure 7.  (a) spam classification accuracy, (b) ham classification accuracy (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. The number of ham training data points was predefined to 100. Error bars indicate the standard 
error.
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well as other models. Furthermore, NN did not show trade-offs in Exps 1-1 and 1-2, however, its spam accuracy 
decreased and ham classification performances were merely increased. This fact suggests NN also suffered from 
small biased training data. eLSNB, LSNB and NB did not show such trade-offs and showed higher spam and 
ham classification performances. The spam accuracy of NB was relatively lower. Meanwhile LSNB and eLSNB 
increased their performance compare to its base model NB.

In Exp. 1, each model showed interesting tendency for the data ratios. NN, SVM, LR and RF showed trade-offs 
between spam and ham classification accuracies. In particular, the trade-offs of these models became bigger and 
bigger as the spam percentage decreased. Therefore these models exhibited some sensitivity to the feature distri-
bution and their accuracies have widely fluctuated. NB did not show such a trade-off; however, its classification 
performance was relatively low. In contrast, LSNB and eLSNB simply improved upon the performance of the NB 
base model, producing superior results. LSNB and eLSNB adjust feature weights using feature vectors for each 
class, while NB simply calculates the product of the conditional probability. We consider that this modification 
yielded better learning from small and biased samples, and eLSNB produced the best performance in terms of its 
F-measure. The eLSNB model is a modified version of the LSNB model that uses word density information. This 
modification successfully improved the learning process.

In Exp. 2, we investigated the effect of more imbalanced sample distributions on machine learning models. We 
predefined the number of training data of either class at a constant value, i.e., 100 or 25. Therefore, the disparity in 
the number of training data between spam class and ham class messages became progressively wider throughout 
the experiment. Accordingly, the feature distribution of the training data was strongly imbalanced. In this exper-
iment we focused on how small data affect the performances of machine learning models.

In Exp. 2-1, all models had strong trade-offs throughout the experiments and decreased in accuracy as the 
size of the training data set increased, except for the NB and eLSNB models. For example, the spam classification 
performances of SVM, LR, RF and NN decreased significantly as the size of ham training data increased. At the 
initial stage of the experiment, these models had lower ham performances and higher spam performances. If 
the models were able to optimize their performance under an imbalanced data distribution, such a decrease in 
accuracy would not be observed. As the data proportions of Exps 2-1 and 2-2 were symmetric, the spam clas-
sification results in Exp. 2-1 and ham classification results in Exp. 2-2 were similar. This fact suggests that the 
composition of feature distributions were symmetric between Exps 2-1 and 2-2. For example, if the spam data is 
easier to classify than ham data, the results would be asymmetrical and vice-versa. Therefore, there is no initial 
asymmetry between spam and ham training data. We consider that these trade-offs were not caused by the con-
tents of the corpus, but rather the difference in the number of training data points belonging to each class—in 

Figure 8.  (a) spam classification accuracy, (b) ham classification accuracy and (c) F-measure values for 
SpamAssassin. (d) spam classification accuracy, (e) ham classification accuracy and (f) F-measure values for 
Ling-Spam. The number of ham training data points was predefined as 25. Error bars indicate the standard 
error.
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other words, the imbalanced data distribution. SVM, LR, RF and NN were strongly affected by this factor. Also, 
our LSNB model showed a trade-off even though its NB base model did not decrease in performance through 
the experiment. We cannot explain the exact reason why LSNB showed such a trade-off, but we assume that 
LSNB may not fully adjust to the effects of symmetric and mutually exclusive biases. Although NB did not exhibit 
strong trade-off, its performance was relatively low. Additionally, we roughly estimate that there is a difference in 
characteristics between the NB and NN; NB did not show a trade-off but its classification performance was rela-
tively low, while NN showed higher performance in terms of F-measure, but it had a strong trade-off. In contrast, 
eLSNB did not show such a trade-off and consistently produced the best F-measure. The inclusion of word density 
information in the eLSNB model appeared to overcome the data sensitivity of the base LSNB model. In practice, 
as a form of eLSNB, word density strengthened the contraposition of feature values in the 2 × 2 contingency table. 
As previous studies have indicated, human cognitive biases play a key role in the ability to learn from small and 
biased samples. However, we assume that human cognitive biases themselves are not powerful enough to produce 
human-level concept leaning, and additional biases, such as word density, may be needed. Since the relationship 
between cause and effect is sometimes difficult to infer from observed raw data, external biases may promote 
concept learning in models, even if it is not derived from human cognition directly.

In conclusion, we developed LSNB and eLSNB models that include symmetric bias and mutually exclusive 
bias by implementing the LS model into a base NB model. These novel models were successful, yielding higher 
performance compared with existing representative machine learning algorithms with small and biased samples. 
Our models seem to have reproduced the ability of human learning to some extent. In future research, we will 
investigate the relationship between conditional probability, human cognitive bias, the effectiveness of external 
bias and how these factors interact in the learning process in order to realize human-level concept learning.
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