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INTRODUCTION

A gene regulatory network (GRN) is a set of genes that 
interact with each other and with other substances in 
cells indirectly (through production of proteins and 
RNA), thereby governing the rates at which genes in the 
network are transcribed into mRNA. These networks 
modulate performance of metabolic networks, which 
leads to structural changes in the physiology of living cells 
and tissues.[1] Modeling GRNs provides information on 
gene pathways. This information has many applications 
in medicine and biology, such as identification of 
metabolic pathways, identification of genetic diseases, 
the discovery of new drugs, reducing side‑effects of 
treatment, the study of expression patterns of genes 
with unknown function and gain ideas about their 
performance.[2,3] Microarray technology, which allows for 
the measurement of thousands of gene expression levels 
in parallel, has created a wealth of data not previously 
available to biologists along with new computational 
challenges. Microarray time–series data are a numerical 
matrix of thousands of rows (indicating genes) and 
dozens of columns (representing samples or time point). 
The general form of this data is as follows:

A B S T R A C T

Understanding the genetic regulatory networks, the discovery of interactions between genes and understanding regulatory processes 
in a cell at the gene level are the major goals of system biology and computational biology. Modeling gene regulatory networks and 
describing the actions of the cells at the molecular level are used in medicine and molecular biology applications such as metabolic 
pathways and drug discovery. Modeling these networks is also one of the important issues in genomic signal processing. After the advent 
of microarray technology, it is possible to model these networks using time–series data. In this paper, we provide an extensive review 
of methods that have been used on time–series data and represent the features, advantages and disadvantages of each. Also, we 
classify these methods according to their nature. A parallel study of these methods can lead to the discovery of new synthetic methods 
or improve previous methods.
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Where, gi represents genes and tj represents the time 
point. Dij  indicates the i th  gene expression level at the 
j th  time point. Thus, the value of signal g ti ( ) at the time 

t = j is equal to Dij . In a gene network, the value of g ti ( )  
is related to itself and to other genes at t -1 . Therefore, 
the aim of modeling methods is to explore the relationship 
between genes that determine the dynamics and structure 
of the network. However, some methods can only determine 
the structure of the network and others to determine the 
network structure and dynamics. On the other hand, the 
proposed model should be adapted to the nature of the 
data. Noise, missing values and uncertainty is the nature of 
the microarray time–series data. Some of these modeling 
methods need pre-processing, such as classification, 
estimation of missing values and clustering for better 
performance. For example, methods that are faced with the 
problem of huge search space, such as Bayesian networks, 
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biochemical processes highly. They show only two levels of 
gene expression, ON or OFF, causing many of the regulatory 
mechanisms that are based on different levels of expression 
to not be modeled. To solve this problem, BNs can be 
extended to the Generalized Logical Networks (GLN).

Generalized Logical Networks

GLN developed by Thomas and colleagues[11] is based on 
a procedure that generalizes upon BNs, letting variables 
to have more than two values and transitions to occur 
synchronously and asynchronously between states.[12] A GLN 
of n nodes as a dynamical system model in discrete state 
space includes a directed graph with a Generalized Truth 
Table (GTT) corresponded to each node.[13]

Let node gi  has Q quantization levels between 0 and Q−1, 
and is affected by the k parents Pa ( ) { , ,..., }g p p pi a a ak= 1 2  of 
{ , ,..., }Q Q Qk1 2 quantization levels, respectively. The GTT H 
of node gi is an operator that computes all possible 
combinations of parent node values (inputs) to values of gi
(output). Therefore, the value of gi at discrete time t, g ti ( ) , 
can be calculated by 

g t H p p pi a a ak( ) ( , ,..., )= 1 2 � (1)

The size of H with k parents isQ Q Qk1 2× × ×... , (exponential 
in k) and poses a memory problem. By generalization of 
binary decision diagram to diagram the logical choice, there 
is a space-efficient data structure to accumulate the GTT, 
eliminating redundancy and false variables.[13,14] Let g( )t be 
the state vector at discrete time t, 

g( ) [ ( ), ( ),... ( )]t g t g t g tn= ′1 2 � (2)

illustrating the values of all nodes at discrete time t. Let H 
be the GTT sets H H Hn1 2, ,...,  for all nodes and k k kn1 2, ,...,  
be the number of parents for each node. The maximum 
number of entering edges a node is the network complexity 
κ, where κ = max{ , ,..., }k k kn1 2 .

If the value of some node at time t depends on the parent 

are associated with cluster analysis.[4] Clustering methods 
combined with modeling techniques can create new 
methods for modeling GRNs, called the cluster-based 
approach.[5] In this article, we will review the basic modeling 
techniques, which include logical networks, bayesian 
networks, neural networks, state space models, differential 
equations and relevance networks, respectively. Section 
classification of models is dedicated to classify these 
models according to their nature.

Logical Network

Boolean Network Model

Here, we only think of two levels: ON / 1andOFF / 0 , with 
logical rules governing the functional relationship so an 
organism of n genes may have ( )2n  states. Boolean network 
(BN) consists of n nodes G = { g g gn1 2, ,..., } and a list of 
Boolean functions F = { f f fn1 2, ,..., }. Each node being a 
binary variable represents the state (expression) of gene i. 
The Boolean function g t f g ti i i( ) [ ( )]( )+ =1 Pa  shows the way 
to calculate the value of node gi at the next time point t+1 
by the values of its input nodes Pa ( )gi at the current time 
point t. Changes between states in a network are 
deterministic and synchronous. Figure 1 depicts a simple 
BN for the three genes. The upper row lists the state at t 
and the lower row the state at t+1, while the Boolean 
function calculating the output from the input is shown 
below each element.

To make a BN, you can use literature-based methods 
with qualitative data available or, if experimental data 
are available, you can get use of time–series data.[6,7] Two 
classes of procedure are often used to infer BNs. One is 
based on correlation measurement to model the topological 
connections between genes and the other is based on machine 
learning, in which Genetic Algorithm (GA) is the most common 
method for network modeling.[8] Because of the shortages of 
old evolutionary methods in the optimization via local fine-
tuning, many new methods have been proposed that use GA 
with different local search techniques. These include taboo 
search, hill-climbing, simulated annealing and the simplex 
method, all using local information to determine probable 
directions in the search space. Recently, new optimization 
techniques based on population intelligence, known as swarm 
intelligence methods including Particle Swarm Optimization 
(PSO)[9] and Ant Colony System,[10] were recommended as an 
alternative to old evolutionary algorithms. Now, it is proved 
that the methods made of combining both evolutionary 
algorithm and swarm intelligent have further improvements 
in performance.[8]

The BN method is more efficient than other methods of 
computational modeling. These networks are used for the 
analysis of large networks to be successful, but simplify 

Figure 1: (a) Example Boolean network (BN) and (b) the corresponding 
equations. In this case, n = 3. (c) Wiring diagram of the BN
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values from time t -1  through t J- , the network is J th 
order. A synchronous network changes the values of all 
nodes simultaneously through

g(t) H g g g= − − −( )( ) ( ) ( )t t t J1 2, , ..., � (3)

J th order networks, has the ability to model time 
varying  delays and are plentiful in biological systems.  
Let g g g( ) ( ) ( )t t t J- - -1 2, , ...,  be the initial J states of 
a  GLN.  A  trajectory of length T is defined as 
g g g( ) ( ) ( ).t t t T- - -1 2, , ...,

Song et al.[13] reconstructed GLNs by the use of a statistical 
approach that let them control false positives while other 
criteria used in network reconstruction, such as the Bayesian 
information criterion (BIC) used in dynamic Bayesian 
networks (DBNs) reconstruction and the coefficient of 
determination (COD) used in BNs reconstruction, do not 
explicitly enforce false-positive rate control.

GLNs are a good approach to demonstrate the non-linear 
interactions between genes. Also, those are able to study 
more about the biological system and its properties by 
describing state transition diagrams and finite steady 
states. However, their deterministic nature is incompatible 
with the stochastic nature of GRNs.

Probabilistic Boolean Network

Unlike the BN and the multi-state generalization, 
Probabilistic Boolean Network (PBN) is not based on the 
assumption of deterministic gen–gene interaction.[15] These 
networks are a probabilistic generalization of BNs by 
allowing the nodes to have more than one associated 
Boolean function. In PBN, uncertainty is considered by the 
transition probability matrix of the system evolution. 
Therefore, for each node, its corresponding set of Boolean 
functions is to: F = { F F Fn1 2, ,..., }, where F f f fi

i i
l
i

i
= { , ,..., },( ) ( ) ( )

( )1 2

is one of the functions that determines the amount of gene 
expression for gene i and l i( ) is the number of possible 
Boolean functions. If l i( ) = 1 for all genes, the PBN will be 
converted to a BN. At any time point, for the gene i, only 
one of the Boolean functions Fi  may be chosen; therefore, 
for the realization of a PBN, there are altogether l ii

n

( )=∏ 1
 

modes. Figure 2 shows the basic building block of a PBN.

Shmulevich et al. used Coefficient of Determination (COD) 
to select a list of predictors for a given gene.[16] Let
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Boolean functions that are commensurate with the highest 
CODs will be selected in the probabilistic network.[17]

Marshall et al. executed an inference procedure for PBN that 
was successful well enough but had a downside of huge 
need of temporal data for inference.[18] Ching et al. used a 
more practical way to determine the network known as 
multivariate Markov model.[19] Here, the state of gene i  at 
time point t  has a binary probability distribution marked 
by vector

r

P P g P gi t i t i t, , ,[ ( ), ( )]= = = ′0 1 .

The model assumes[15]

r r

P Pi t ij
j

n

ij j t, ,+
=

= ∑1
1

γ τ � (5)

where, τ ij  is the probability transition matrix from gene j
to gene i  and γ ij is the non-negative weight factor that has

γ ij
j

n

=
=
∑ 1

1

� (6)

Bayesian Network

Static Bayesian Network

A Bayesian network model is a probabilistic- graphical 
representation of a joint probability distribution for random 
variables. To define B (Bayesian network), a set of variables 
B=(G,Θ) is used, where G is a direct acyclic graph (DAG) that 
indicates conditional dependency relationships between 
random variables and Θ (series of parameters indicating 
conditional probability distribution) is used. Let us look at 
Figure 3 and consider a simple model with Markov 
assumption. G is relevant to the topology of a GRN, where 
each node shows a gene as a random variable and each 
edge shows dependency between nodes. Markov 
assumption is a basic property of Bayesian networks. This 
means that the variable gi  with parents is independent of 
all other variables except the parents and their children. 

Figure 2: A basic building block of a probabilistic boolean network
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Thus, the joint probability distribution of genes  
G = { g g gn1 2, ,..., } is depicted as follows:

P g g g P g gn i
n

i i
( , ,..., ) ( | ( ), )1 2 1= ∏ = Pa θ � (7)

Where, Pa ( )gi is a set of parents of gi  in G and  is a 
statistics from observed data D.

Obtaining a Bayesian network B = (G,Θ) from D means 
obtaining structure for dependency G and concluding the 
set of probabilistic parameters Θ. Obtaining Θ is easy if G 
and D are known, and learning G can be done by finding 
G * with maximum P(G | D). Learning G given D is a NP-hard 
problem because the number of possible graph structures 
increase exponentially as the size of a network increases.[20]  
Therefore, Bayesian networks focus on small problems 
in many approaches and need clustering methods for 
larger ones. One popular heuristic approach is restricting 
the G to a certain category.[15] In general, there are two 
methods for learning Bayesian network structure: (1) 
conditional independence-based learning and (2) learning 
based on scorings criteria. Methods based on scorings 
have two components: (a) a function of scorings, which 
estimates the amount of the matching network with 
a data set and (b) a technique to search for structures 
with high score. This method, using the data set, finds 
the most likely structure for the network.[21] Using the 
definition of scoring function for different network 
structures, the structure learning problem becomes an 
optimization problem. Therefore, the global optimization 
algorithm, such as GA, PSO… can be used. Among the 
common scoring functions, we can point to the Bayesian 
Dirichlet Equivalence (BDE), Bayesian Information Criteria 
(BIC), Minimum Description Length (MDL) and Maximum 
Likelihood (ML).[21,22] Given the large number of possible 
structures, a full-scale search in the space of graphs is not 
possible. Therefore, heuristic search algorithms such as 
greedy search, MCMC technique, Hill-Climbing algorithm, 
K2 algorithm… can be used.[21,22]

The main weakness of Bayesian networks is that they do 
not consider the dynamic process of gene regulation. 
Also, they are limited non-circular relations. However, the 
feedback loop is one of the important methods in real 
gene networks. To overcome these weaknesses, dynamic 
Bayesian networks (DBNs) have been proposed as a 
generalization of Bayesian networks.

Dynamic Bayesian Network

An extension of a Bayesian network model to incorporate 
temporal concept is a DBN. These networks are able to 
obtain time-course information and cyclic feedback and 
feed-forward relation between the random variables and 
are, therefore, appropriate for modeling the time-dependent 
phenomena using time‑series data. DBNs, in a state 

transition from time t-1 to t, are defined as a DAG where the 
nodes represent random variables and the edges represent 
the relationship between random variables in the transition 
state, with a set of probability distributions. In comparison 
with the static Bayesian networks, DBNs include random 
variables { , ,..., }. ,g g gt t n,t1 1 2 1 1- - - of time step t–1 in addition 
to { , ,..., }, , ,g g gt t n t1 2 of time step t.[15] When between a 
variable with itself in a state of transition, there is a 
connection; in the final graph of the network structure, this 
variable will be a ring. The basic premise of these networks 
is that the probability distribution of the dependencies is 
time-invariant or nearly unchanging with time.

Obtaining DBNs can be performed by getting use of the 
same idea of learning Bayesian networks. Considering 
additional random variables of time, t–1 is the only 
difference here. From this point of view, Friedman et al. 
have evolved some rules to score and learn structures 
from Bayesian networks to the case of DBNs. Thus, other 
methods of parameter and structure learning in Bayesian 
networks can be used here.

Compared with conventional Bayesian networks, the DBN 
learning process is the heavy computational complexity, 
because the number of possible graph structures and the 
parameters are increased, and this should be considered 
in the search methods of learning algorithms. Therefore, 
those are mostly applied to small systems in comparison 
with the study of Bayesian networks.[15]

Structural EM (SEM) algorithm for learning Bayesian 
networks from incomplete data sets was presented.[23] 
This algorithm is a generalized EM algorithm for learning 
the structure. SEM runs the following two steps until 
convergence: (1) Bayesian network parameter optimization 
is usually done by the EM algorithm and (2) local search 
for model structure. In fact, SEM searches the optimum 
solution in the combined structure and parameter space. 
Yu Zhang et al. used DBN with Structure Expectation 
Maximization (SEM) for modeling of gene network from 
time–series gene expression data of Saccharomyces  
cerevisiae.[24,25]

Figure 3: Example Bayesian network consisting of a graph, conditional 
probability distributions for the random variables, the joint probability 
distribution and conditional independencies
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DBNs are also an alternative method to demonstrate 
mechanisms of gene regulation using estimates of the 
changes described by a system of differential equations 
with autoregressive models.[26] Specifically, when the gene 
products have been measured at regularly spaced time 
points, a simple way to approximate the rate of change 
d dg t f g g gi i n/ ( , ,..., )= 1 2  is possible by a first-order linear 
approximation. This approach to model the rate of change 
can be used by the linear Gaussian network.[27] In the 
linear  Gaussian networks, we assume that the variables  
{ g g gn1 2, ,..., } are all continuous and conditional 
distributions for each variable gi  with parents as 
Pa( ) { , ,..., }( )g g g gi i i ip i≡ 1 2  is a Gaussian distribution with 
mean as a linear function of the parent variables and 
conditional variance σ τi i

2 1= / . Parameter τ i  is called 
precision. The dependence of each variable to the parents 
with the linear regression equation is shown as follows:

µ β βi i ij ij
j

g= +∑0 � (8)

where the mean mi is a linear regression function of the 
parent variables and regression parameters are 
( , ,..., )( )β β βi i ip i

T
0 1 .[26] Ferrazzi et al. proposed a non-linear 

regression extension of (8) as follows:

µ β β ψi i ij ij
j

g= +∑0 ( ) � (9)

where ψ  is the hyperbolic tangent function.[28] They used 
Bayesian approach to model selection that solves the 
problem as hypothesis test.[26,28]

Let M M M Mg= { , ,..., }0 1  is a set of Bayesian networks that 
each network describes a hypothesis on the dependency 
structure of the random variables g g gn1 2, ,..., . According to 
Bayes’ theory, the prior probability p Mh( ) of each model 
into the posterior probability is revised using the data D as 
follows:

p M D p M p D Mh h h( | ) ( ) ( | )∝ � (10)

The Bayesian approach selects the network with maximum 
posterior probability. The quantity p D Mh( | )  is called a 
marginal likelihood. By averaging out the parameters, the 
marginal likelihood provides an overall measure of the data 
generation mechanism that is independent of the values of 
the parameters.[26] Marginal likelihood is possible by 
calculating the following integrals:

p D M p D p dh h h h( | ) ( | ) ( )= ∫ θ θ θ � (11)

where qh is the vector parameterizing the distribution of 
g g gn1 2, ,..., , conditional on Mh , as in the Gaussian network, 
showing a set of parameters βij  and τ i .

Because of the probabilistic nature and dynamic aspect of 
DBNs, those are one of the most successful methods for 
modeling GRNs using time–series data.

Neural Networks

Recurrent Neural Networks

One of the other methods that can be used to model GRNs 
is a neural network where each node in the network is 
corresponded to a gene. A connection between nodes 
represents a regulatory interaction and the edge weight 
indicates the stringency and type of regulatory relationship. 
The most successful of neural network-based model is the 
recurrent neural network (RNN).[5,29] This model is 
biologically believable and noise-resistant. The dynamics of 
a time-discrete neural network of n nodes is described by a 
system of non-linear update rules for each node value gi as 
follows:

g t t g t t a S w g t b d g ti i i ij j i i i
j

( ) ( ) ( ( ) ) ( )+ = + + −








∑∆ ∆ � (12)

W, a, b, d are the parameters of the model. Weight parameters 
are W ={wij |i, j= 1,...,n}, where wij represents the effect of 

node j on node i. Activation strengths are a = { ai | i = 1,...,n}, 
bias parameters are b ={ bi | i = 1,...,n} and degradation 
rates are d ={ di | i = 1,...,n}. The activation function (log-
sigmoid) is S x e x( ) / ( )= + −1 1 .[30] This mathematical model 
executes self-regulation and degradation as well. Back-
propagation through time[31] (BPTT) algorithm or other error 
(parameter) minimization (optimization) algorithms can be 
used as a learning strategy.[32] This algorithms minimizes the 
error function as in

E g t g ti
it

i( ) [ ( ) ( )]g,g) )= −∑∑1
2

2 � (13)

Where, 
)g  is the computed values vector and the values g 

are the given expression data of the mRNAs at discrete time 
points.

By defining an error function as an indicator of network 
performance, the network learning problem becomes a 
parameter estimation problem with the goal of minimizing 
error function (maximizing network performance). 
Algorithms based on gradient descent, such as BPTT, are 
efficient to update the parameters in the recursive neural 
networks. But, in this method, each weight needs a 
separate learning rate, because the error surface often has 
a different gradient along each weight direction.[8] Gradient-
based optimization algorithms and error back-propagation 
algorithm are faced with the problem of falling into the 
trap of local minimum. Many networks have a structure 
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that are not enough regularity for the derivatives used in 
the gradient-based methods. Therefore, methods such as 
error propagation are not applicable. In this case, global 
parameter optimization techniques, including evolutionary 
algorithms and the swarm intelligence methods (GA and 
PSO), should be used. However, because of computational 
complexity, this modeling approach is suitable only for very 
small systems.[8]

Feed-Forward Neural Network

Artificial feed-forward neural networks (ANN) can be used 
as molecular models for genetic regulatory networks. 
ANNs are a powerful method for function approximation. 
They are the so-called universal operators. In principle, 
they are able to approximate any function.[33] They suit 
well for multidimensional problems and they can imitate 
Boolean logic. For example, the Boolean function called 
exclusive OR (XOR) can be described with an ANN as 
Figure 4.

Despite the benefits, the artificial neural networks are not 
often used for modeling of GRNs because of several reasons. 
Biochemical a priori knowledge, such as the reaction rates, 
cannot be interpreted by ANNs because the rates may 
not have any parallel parameter in the ANN model. The 
most usual algorithm for determining the parameters for 
ANNs is Back-Propagation, which was presented in section 
“Recurrent neural networks”. Similar to the BPTT algorithm, 
the gradients of the error function update the weights 
with the help of the gradients. The number of parameters 
of the ANN model may be too large compared with the 
available data. Instead of a single molecule type, a large 
artificial neural network may represent the whole genetic 
regulatory network.[34] That approach and the related 
optimization issues were already discussed in “Recurrent 
Neural Networks”.

Stochastic Neural Networks

One of the most important issues in modeling GRNs is 
the impact of noise in gene regulation by experimental 
theoretical research and mathematical simulations. 
There are two major approaches based on detailed 
biochemical knowledge and rich data sources for studying 
stochastic occurrence in GRN; stochastic simulation 
algorithm and stochastic differential equations.[35] Tian 
et al. introduced stochastic neural network models.[36] 
They concentrated on stochastic models based on one-
stage models (12). In their approach for experimental 
data with expression levels, they used Poisson processes 
to describe the synthesis and degradation of expression  
products. Corresponding to the difference model (12), 
stochastic models based on Poisson random variables take 
the form 

g t t g t X ta S w g t b

X td g t

i i i ij j i
j

i i

( ) ( ) ( ( ) )

( )

( )
( )

+ = + +

−

∑∆ ∆

∆ � (14)

Where, X  is a Poisson random variable with mean l , 
whose distribution is

p X m
m

e m
m

( )
!

, , ,...= = =−λ λ 0 1 � (15)

When the gene expression is normalized within a range of 
unity in order to represent expression levels of a cluster of 
genes, exponential random variables can be used for 
realizing variations. Stochastic models with exponential 
random variables are given by (14), where X  is an 
exponential random variable with mean l . Using β =1/ l, 
the distribution of X is 

p X x e dx xxx
( ) ,< = >−∫ β β

0
0 � (16)

Similar to Poisson random variables, the distribution of an 
exponential random variable is determined by the mean. 
However, the variance of exponential random variables is
l2 . In order to match the variance, stochastic models can 
also be constructed with normal random variables, given by 

g t t g t N t a S w g t b

N t d g t

i i i i ij j i
j

i i i

( ) ( ) ( ) ( ( ) )

( ) ( )

+ = + + +

− +

∑∆ ∆

∆

1

2 � (17)

where, Nik ~ N t ik( , )0 2∆ σ . In model (17), σ ik
2  is an adjustable 

parameter. The differential equation form of model (17) is

d dg t a S w g t b d g t t

a S w g t b

i i ij
j

i i i i

i i ij
j

i i

( ) [ ( ( ) ) ( )]

( ( )

= + −

+ +

∑

∑σ 1 )) ( )d dw wi1 i2−σ i i id g t2 � (18)

where, wik are Wiener processes whose error increments 
∆ ∆w w wik ik ik= + −( ) ( )t t t  are normal random variable 

Figure 4: Left: An artificial feed-forward neural network model that can 
solve the exclusive OR (XOR) problem. Right: The truth table of XOR
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N(0,  ∆t). Model (18) can be considered as a stochastic 
differential equation of the continuous model. However, it 
is used just in the normalized concentration case.[36]

State Space Model

Another modeling approach of GRN is a State Space Model 
(SSM). It can be viewed as an extension to DBNs (Markov 
model), where it is assumed that the observed measurements 
depend on some hidden state variables.[15,30] The information 
of unmeasured variables or effects corresponds to these 
hidden variables (such as regulating proteins, excluded 
genes in the experiments, degradations, external signals or 
biological noise).[30] Schafer and Strimmer proposed a SSM.[37]  
With the assumption that gene expression levels cannot 
be directly observed (hidden states), a SSM in the general 
form is 

g Tg Aut t t g t+ = + +1 ε , � (19)

y Cg Bvt t t y t= + + ε , � (20)

Equations (19) and (20) show the model of a dynamical 
system based on the theory of linear systems, where the 
vector g  represents the state of the genes for the system, y  
is the observed data for g , T is the state transition matrix, 
C is the state to observation matrix and A and B are the 
inputs influence matrices for inputs u t  and vt , respectively. 
Here εg t,  and ε y t,  are white noise terms of system noise 
and observation noise, respectively. If A = 0 and B = 0, 
basic linear SSM or standard SSM is extracted.[15]

If the inputs are as the observations from a previous time 
point, the system is described as

g Tg Ayt t t g t+ = + +1 ε , � (21)

y Cg Byt t t y t= + +−1 ε , � (22)

This model has been used by Rangel et al. and Beal et al.[38,39] 
Please note that the above equation can be rewritten as 

y C Tg Ay By

CA B y C Tg C

t t t g t t y t

t t g

= + + + +

= + + +

− − − −

− −

( 1 1 1 1

1 1

ε ε

ε

, ,)

( () ,, ,)t y t− +1 ε � (23)

Here, the transition in the observation domain over time, 
through the hidden states g t , is determined by the matrix
T' CA B   = +  The matrix T’ determines the direct gene–
gene interactions and the regulation through hidden states 
over time (indirect interaction). Activation or inhibition of 
gene j  on gene i  is determined by a non-zero matrix 
element [ ]  T' ij depending on its sign.[30] The parameters of 
model can be estimated using EM algorithm. Rangel et al. 
used this approach and constructed a confidence interval 
on T’ by using bootstrap,[38] while Variational Bayesian EM 

Algorithm, which can be considered as a Bayesian extension 
of the standard EM algorithm, was used by Beal et al. to 
derive a posterior estimation on T’.[39]

Differential Equations

Using differential equation models, including ordinary 
differential equations, non-linear differential equations, 
partial differential equations and stochastic differential 
equations, another method for constructing a genetic 
regulatory network of gene expression is based on time–
series data, which can describe the system dynamics more 
accurately. Although many implementations of this model 
are only based on linear systems and possibly the model 
is unsuitable for obtaining the complex phenomena, in 
general, changes in the expression of a gene in a specific 
time (discrete or continuous) are determined by a function 
that shows the effect of activation or inhibition of other 
genes (regulators of a gene).[8] In other words,

d dg t f g g g p ei i n s/ ( , ,..., , , )= 1 2 � (24)

where, gi  is the expression level of gene i  at time t , n  is 
the number of genes, ps  is parameter set of the system and 
e  is an external perturbation to the system. The function fi  
with respect to its ability to describe the system dynamics 
and complexity can be a linear or non-linear function (such 
as linear, piecewise linear, pseudolinear, log-sigmoid, tan-
sigmoid…).[8]

A simple model of stochastic differential equations 
describing the process of gene transcription is as follows:

∆ ∆ ∆g t c c f g ti
i

n

i it t t( ) [ ( )] ,= + +
=
∑0

1

ε � (25)

where g t( )  and git represent the expression level of target 
gene and i th is the regulator gene. ci  determines the 
involvement of the i th gene regulators. fi  is a sigmoid 
function of the i th regulators and εt t,∆  is random error with 

normal distribution N t( , )0 2σ ∆ .[35] This model is the model 
introduced in stochastic neural networks, but in continuous 
form.

Another most popular non-linear ordinary differential 
equations (ODE) model is the S-system, which is described 
by the power law model.[40] In the S-system model, changes 
in the expression of a gene are a product of power-law 
functions. It can be described as

d dg t g gi i j
k

j

n

i j
q

j

n
i j i j/ , ,= −

= =
∏ ∏α β

1 1

� (26)

where α i  and βi  are rate constants that show the direction 
of mass flow. The real number exponents ki j,  and qi j,  are 
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kinetic orders that reflect the intensity of interaction from 
gene j  to i .

Because of their use of continuous variables, the ODE models, 
especially non-linear ODE models (such as S-system models) can 
more accurately represent the underlying physical phenomena 
in comparison with the discrete variable models. This model 
is useful to describe the theoretical aspects of control systems 
analysis and design of dynamic systems. Thus, they are able 
to explain the sensitivity analysis, control analysis, stability 
analysis and, steady-state evaluation of a given system.[8,41]

To model GRNs using differential equations, one needs 
to know which genes those regulate each other, while in 
the case of most biological systems, it is not known. In 
addition, many data are needed to estimate the parameters 
of these equations.[42] However, using reverse engineering 
techniques in discrete space (such as recursive neural 
networks), the differential equation system can be rebuilt 
in a continuous mode.

Relevance Networks

Relevance networks are defined using a pairwise measure 
of interactions between genes. With a set of n genes 
G = {g1,g2,...,gn} and a set of observations D on genomic 
profiling (gene expression) for T time points, a relevance 
between gi and gj can be obtained by the use of profiles 
related to their time-series [gi,1 gi,2 ... gi,m] and [gj,1 gj,2 ... gj,m]. 
Among the different relevance measures used to infer 
relationships, in the first step, correlation for each gene 
pair is obtained based on different measures like Pearson 
correlation, Spearman correlation and mutual information. 
The commonly used Pearson correlation shows the strength 
of a linear relationship between the genes. In contrast to 
that, Spearman’s rank correlation indicates non-linear 
correlations as well as mutual information. It seems that 
if the value of the correlation is not zero then there is a 
biological relationship between genes going on.[30] Using 
the data processing inequality (DPI) for that purpose, Basso 
et al. developed the ARACNe algorithm.[43]

After the first step (correlation for each gene pair), the 
edges with the lowest mutual information will be removed. 
In contrast, to eliminate indirect interactions, De la 
Fuente et al. use partial correlations that have coefficients 
measuring the correlation between two genes conditioning 
on one or several other genes in their proposed method.[44]  
The number of genes conditioning the correlation 
determines the order of the partial correlation.[30]

An inferred network from a relevance network method is 
naturally undirected and statistical independence of each 
data sample is assumed, implying that measurements of gene 
expression at different time points are to be independent. 
This predefinition ignores time point dependencies.[30]

Classification of Models

The mentioned methods are classified from different 
perspectives, such as whether the model is a discrete space 
or continuous space model. A discrete SSM describes a 
system using quantized data, while a continuous SSM can 
describe a system without discretizing the data and loss of 
information. With this definition, the logical networks and 
Bayesian networks as models of discrete space. However, 
neural networks and differential equations are continuous 
time models. DBNs can also be a continuous space and 
discrete space.

Another important criterion for classification of these 
methods is the ability to model the structure and dynamics 
of GRN. The structure represents all the interconnections 
among the nodes that generally indicate the relationships 
between one gene with another gene, or another set of 
genes. But, structure alone does not completely describe 
the network. When we are interested in our research on the 
network response to a specific disorder, or to predict the 
future behavior of the system, we need a network model 
that is able to describe the system dynamics. Knowing the 
dynamics of the system usually provides a mathematical 
equation that describes the system behavior over time. 
It can help us in discovering the mechanisms of gene 
regulation, especially knowing what happens at each stage 
of the process. It also enables us to be able to intervene 
in some of these processes at a particular time, such as 
things that pharmacologists can do to control a disease 
like cancer. However, for biologists and pharmacologists, 
knowing the structure of the network has high  
priority.

Figure 5: Classification of gene regulatory network reverse engineering 
models according to their nature
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Also, the mentioned methods can be a deterministic or 
a stochastic model. The process of gene regulation is 
essentially a random process. Therefore, stochastic models 
are more consistent with the nature of these networks. On 
the other hand, there is inevitable noise in genomic signals. 
Thus, a deterministic system does not model the noise term.

Figure 5 shows the classification of models according to the 
above criteria. This figure shows the intrinsic properties of 
the model in which each tick mark represents the ability 
of having a property for a model. But, this figure does not 
show the superiority of one model over another model. 
For the modeling of GRNs, a matching model with existing 
data is more important than a model with the true nature of 
gene regulation, such as the stochastic, dynamic nature and 
so on. Hence, for example, a static Bayesian network that is 
more adapted to the data structure is more efficient than a 
DBN with fewer matches. Because, according to the above, 
the structure is far more important than the discovery of 
dynamics of systems. But, in a similar condition in terms 
of matching the data, a model that can clearly show the 
true nature of the network in terms of system dynamics, the 
probabilistic (stochastic) nature and the continuous-time 
model is better.

CONCLUSION

In this paper, we have reviewed the modeling and inference 
of GRN from time-series data. All methods mentioned 
above are a type of reverse engineering GRNs from time-
series data and not really a simulation method. Simulation 
capabilities of these methods for GRNs depend on the 
ability to obtain biological knowledge. Some methods are 
flexible to accommodate biological knowledge, but others 
are simply a mathematical model that adapt with time-
series data. However, the analysis of GRNs is largely based 
on reverse engineering.
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