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ABSTRACT

Therapeutic angiogenesis is an important strategy to rescue ischemic tissues in patients with 
critical limb ischemia having no other treatment option such as endovascular angioplasty 
or bypass surgery. Studies indicated so far possibilities of therapeutic angiogenesis using 
autologous bone marrow mononuclear cells, CD34+ cells, peripheral blood mononuclear 
cells, adipose-derived stem/progenitor cells, and etc. Recent studies indicated that 
subcutaneous adipose tissue contains stem/progenitor cells that can give rise to several 
mesenchymal lineage cells. Moreover, these mesenchymal progenitor cells release a variety 
of angiogenic growth factors including vascular endothelial growth factor, fibroblast growth 
factor, hepatocyte growth factor and chemokine stromal cell-derived factor-1. Subcutaneous 
adipose tissues can be harvested by less invasive technique. These biological properties of 
adipose-derived regenerative cells (ADRCs) implicate that autologous subcutaneous adipose 
tissue would be a useful cell source for therapeutic angiogenesis in humans. In this review, 
I would like to discuss biological properties and future perspective of ADRCs-mediated 
therapeutic angiogenesis.

Keywords: Angiogenesis; Adipose-derived regenerative cell; Therapeutic angiogenesis; 
Mesenchymal stem cell; Ischemia

INTRODUCTION

Endogenous new blood vessel formation and microvascular angiogenesis are important self-
defense mechanisms when tissue is exposed to severe ischemia.1) However, these mechanisms; 
endogenous collateral vessel formation and capillary angiogenesis; are mainly mediated by 
endothelial cell (EC) proliferation and migration, and thus, are often hampered by co-existing 
morbidity such as diabetes mellitus, smoking, hypercholesterolemia, etc.2) It is not rare for 
diabetic patients to lose some parts of their extremities after suffering from severe peripheral 
artery obstructive disease (PAD) because of insufficient development of collateral vessels 
and angiogenesis. Therefore, the treatment option called “therapeutic angiogenesis” is an 
important strategy to salvage tissues against critical ischemic conditions.1)

Subcutaneous adipose tissue can be harvested by relatively easy and less invasive methods, 
an established liposuction method. Furthermore, recent studies have indicated that 
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subcutaneous adipose tissues contain stem/progenitor cells that can give rise to several 
lineage cells including fat, bone, cartilage, muscle, and etc.3)4) These progenitor cells are 
termed as adipose-derived stem cells (ASCs or ADSCs), or adipose-derived regenerative cells 
(ADRCs), and these terminologies including adipose-derived stromal vascular fraction (SVF) 
are essentially considered as an identical cell fraction.5)6) ADSCs/ADRCs can also release 
multiple angiogenesis-promoting growth factors such as vascular endothelial growth factor 
(VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), and chemokine 
stromal cell-derived factor-1 (SDF-1).7-9) The combination of these biological properties (i.e., 
mesenchymal progenitor cell supply and angiocrine factors release) suggests that autologous 
subcutaneous adipose tissue will be a good candidate for a cell source of therapeutic 
angiogenesis.7-14)

THERAPEUTIC ANGIOGENESIS: GROWTH FACTORS AND 
CYTOKINE THERAPY
Past great professors, Drs. Judah Folkman and Jeffrey Isner, were pioneers for angiogenesis 
research. Isner and co-workers15-17) had initiated the concept of “therapeutic angiogenesis” 
in the 1980s. Folkman18)19) observed that angiogenesis was essential for the growth and 
metastasis of solid tumors. His original idea that the suppression of tumor angiogenesis 
would be effective against tumor growth had been developed into a new paradigm of anti-
angiogenic therapy against neoplastic disorders, called “tumor-dormancy therapy”.18)19)

After the identification of angiogenic growth factors such as VEGF and basic FGF (bFGF), 
investigators in the cardiovascular field started testing their hypothesis that facilitating 
angiogenesis with growth factor genes and/or proteins would improve tissue blood flow and 
function in critically ischemic diseases.15-17)20) A number of preclinical animal studies together 
with in vitro laboratory data supported the safety and feasibility of clinical application of 
therapeutic angiogenesis using growth factor genes or proteins. Thereafter, abundant clinical 
trials have been performed to conduct therapeutic angiogenesis with genes and cytokines.21) 
Initial small clinical trials showed successful results, however, clinical studies with 
randomized placebo-controlled trails failed to show sufficient improvement of angiogenesis, 
tissue function and patients' symptoms.21) These findings suggested that the clinical trial 
of therapeutic angiogenesis using single factor might have a limited efficacy. This will be 
explained by the fact that the expression of more than 750 genes were either up-regulated 
or down-regulated more than 2-fold by acute ischemic event in vivo,22) and such dramatic 
changes may not easily be overcome by a single cytokine treatment. So far, only small 
numbers of studies using HGF or bFGF have been shown to reveal promising data, but these 
may be because a number of cytokines or transcription factors are expressed by downstream 
to these cytokine-mediated signal transduction.23-26)

THERAPEUTIC ANGIOGENESIS: CELL THERAPY

A pioneering work by Drs. Asahara et al.27) regarding the identification of endothelial 
progenitor cells (EPCs) in human peripheral blood (PB) was published in 1997. Since EPCs 
and hematopoietic stem cells (HSCs) share several cell surface antigens such as Flk-1, 
Tie-2, CD31, and CD34, EPCs are believed to derive from hemangioblasts or closely related 
cells existing in the bone marrow (BM) in adults.28) Circulating EPCs derived from the BM 
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participate in new blood vessel formation and/or re-endothelialization on the injured arterial 
wall.27) Although transplantation of culture expanded EPCs could successfully augment 
angiogenesis and tissue blood supply in experimental animal models,29) this procedure has 
not been developed into clinical trials because of difficulties in culture expansion techniques 
and limited number of cells to implant.

Instead, based on the fact that patients' own BM can be obtained by an established way and 
that the fresh BM contains HSCs and EPCs, implantation of autologous BM mononuclear 
cells has been investigated in both preclinical and clinical studies.30-33) Adult BM has been 
shown to contain EPCs that mobilize into peripheral circulation after stimulation by 
ischemia or by cytokines such as VEGF and SDF-1.34-36) We previously demonstrated that 
implantation of autologous BM mononuclear cells into ischemic skeletal muscles successfully 
augmented angiogenesis and collateral vessel formation in both animal studies and 
human trials.30)31)33)37-40) Especially in the clinical study called the “Therapeutic angiogenesis 
with cell transplantation (TACT) trial,” we have shown that more than 80% of Burger's 
disease patients and about 50% of PAD patients were well responsive to this therapeutic 
procedure.38-40)

However, there were several limitations to this procedure. First, the procedure itself 
is too invasive for patients having critical limb ischemia (CLI). In the TACT protocol, 
approximately 1–3×109 BM mononuclear cells were required for cell transplantation in 1 
limb, which contains 1–3×107 CD34+ cells and needs about 800 mL of fresh BM aspirated 
from the ileum.33)37) Secondly, although the safety and efficiency of the TACT protocol have 
been established, we recently reported that patients with severe end-stage PAD had poor 
responses to the TACT procedure.37)39) For example, patients with diabetes or with chronic 
hemodialysis due to end stage renal disease (ESRD) showed limited responses to the TACT 
procedure.33) Moreover, several studies indicated that patients with severe PAD, ischemic 
heart disease and/or multiple coronary risk factors had diminished functions of EPCs and 
poor responses to angiogenic cell therapy.41-44) These results suggest that even autologous BM 
mononuclear cells were isolated, the functions of stem/progenitor cells are already reduced 
to induce sufficient level of angiogenesis after implantation into the “host” ischemic tissues. 
It has been demonstrated that the efficacy of the TACT procedure was limited in patients 
with poorly controlled diabetes and ESRD.33)39) In such patients, the number and functions of 
EPCs are also reduced and are difficult to be isolated. Also, we previously demonstrated that 
the number and function of circulating EPCs were markedly reduced in chronic smokers even 
without other risk factors.44)

ADIPOSE-DERIVED MESENCHYMAL STEM/PROGENITOR 
CELLS
Since the BM aspiration is invasive for patients with severe ischemic diseases, less invasive 
techniques for isolating other candidate cells for angiogenic therapy have been explored. One 
of the attractive sources for isolating cells for therapeutic angiogenesis would be autologous 
subcutaneous adipose tissue.3-14)45-50) Adipose tissue mainly comprises 2 classes of cells. 
One is mature adipocytes (MAs) forming major volume of the adipose tissue, and the other 
is stromal cells termed as SVF. Studies have demonstrated that SVF contains multipotent 
mesenchymal stem/progenitor cells that could differentiate into various lineage cells 
including adipocytes, fibroblasts, myocytes, pericytes, osteoblasts, chondrocytes, and etc.3)4) 
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Recently, adipose tissue has been shown to contain multipotent mesenchymal stem cells 
termed adipose-derived stem/progenitor cells (ASCs or ADSCs) or ADRCs that have an ability 
to regenerate various damaged tissues. ADRCs could be isolated from even a small amount 
of human subcutaneous adipose tissues and culture-expandable.4) Autologous ADRCs could 
be isolated by minimal invasive technique such as a local liposuction method even in patients 
with CLI.

THERAPEUTIC ANGIOGENESIS USING ADIPOSE-
DERIVED REGENERATIVE CELLS: A NEW PARADIGM
Previous studies showed that ADRCs could differentiate into ECs or EPCs,10)11) but in our 
investigation we could not confirm ADRCs to differentiate into the endothelial lineage cells.9) 
One study used low-serum conditioned medium supplemented with VEGF and insulin-like 
growth factor-1 to make ADRCs differentiation to ECs or EPCs.10) The difference of such 
culture conditions might have affected the differentiation capacity of ADRCs into ECs.47) 
Nevertheless, a recent study failed to show that human ADRCs differentiated into ECs even 
under culture with endothelial specific medium EC growth medium-2.48) In addition in vivo 
study, we could not confirm differentiation of ADRCs into ECs. Implanted GFP-positive 
ADRCs expressed no endothelial makers but CD140b, also know as PDGF receptor B and 
a myofibroblast-specific marker, and co-localized with vascular pericytes.9) These results 
suggest that ADRCs might not have capability to differentiate into EPCs or ECs but into 
pericytes or vascular smooth muscle cells after in vivo implantation. Several recent studies 
also demonstrated that ADRCs could differentiate into pericytes in vitro and in vivo.48-50)

Although our study and previous studies failed to show the ADRCs or ASCs gave rise to 
the ECs, it has been shown that ADRCs can secrete multiple angiogenic growth factors.7)8) 
Therefore, autologous ADRCs may be very useful for therapeutic angiogenesis via a growth 
factor-dependent paracrine mechanisms. Nakagami et al.8) and Sumi et al.13) previously 
reported that implanation of adipose-derived mesenchymal cells induced angiogenesis via a 
secretion of growth factors. We also found that implantation of ADRCs significantly augmented 
angiogenesis in a mouse model of severe hind limb ischemia (Figure 1).9) Our data indicated 
that implantation of ADRCs induced angiogenesis not only by angiogenic cytokine release but 
also by chemokines such as SDF-1.9) We found that implantation of MAs into skeletal muscles 
worsened angiogenesis compared to saline-injected control mice. We found that ADRCs 
expressed SDF-1, and the abundance of messenger RNA (mRNA) and protein expression was 
significantly greater in ADRCs than in MAs.9) Recent studies indicated that MAs release other 
adipocytokines including tumor necrosis factor-α and interleukin-6. These inflammatory 
cytokines might have negatively affected angiogenesis by MA implantation that was observed in 
our study.7) SDF-1 is a member of CXC chemokines originally isolated from murine BM stromal 
cells.51) CXCR4 is the receptor for SDF-1 and is a co-receptor for HIV type 1 infection.52) The SDF-
1/CXCR4 axis regulates multiple physiological processes including embryonic development and 
organ homeostasis. SDF-1 is considered as one of the key regulators of EPCs mobilization from 
the BM into PB.36) Thus, SDF-1 has been shown to augment neovascularization by acceleration 
of EPCs recruitment into ischemic foci.36)53) In addition, VEGF is one of powerful angiogenic 
cytokines that can also mobilize EPCs from BM and inhibit EPC apoptosis.54) Interestingly, in 
the mouse ischemic hind limb model, VEGF-A-mediated angiogenesis partly depends on the 
activation of the SDF-1-CXCR4 pathway.53) Taken together, chemokine SDF-1 likely plays a pivotal 
role for the ADRC-mediated angiogenesis.9) In fact, therapeutic efficacies and mobilization 
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of EPCs after ADRCs implantation was markedly suppressed by injection of an anti-SDF-1 
neutralizing monoclonal antibody in our study.9)

ADIPOSE-DERIVED REGENERATIVE CELL THERAPY FOR 
ANGIOGENESIS: CLINICAL TRIALS
Previously, Lee et al.55) conducted a clinical trial to test the safety and efficacy of implanting 
autologous ADRCs into the ischemic limbs of patients with Burger's disease and diabetes. 
Their study involved 15 patients with CLI (12 with Burger's disease and 3 with diabetic foots). 
ADRCs were isolated from subcutaneous adipose tissues, expanded in culture until passage 
3, and intramuscularly injected into the ischemic muscles of patients. They showed that this 
cell-based therapy using ADRCs might be feasible and effective for increasing blood flow and 
improving pain and clinical outcomes in patients with CLI.55)

Although the efficacy of autologous ADRC implantation for therapeutic angiogenesis has 
been established in animal and human studies, it is still unknown how many cells should 
be used for optimal angiogenesis. In the case of BM mononuclear cells, it has been reported 
that the injection of too many cells resulted in adverse effects in an animal model.56) The 
optimum dosage of ADRC implantation will be necessary to be determined. Second question 
is what the optimal cell isolation method is. Recently, freshly isolated ADRCs by means of 
collagenase digestion followed by an automatic centrifuge system using a specific machine 
is useful for regeneration of adipose tissues for reconstructive surgeries.46)57) Such technique 
needs neither cell cultivation nor an artificial cell processing. If 2 classes of ADRCs obtained 
by either culture method or fresh isolation method have equal potency in terms of releasing 
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Figure 1. Efficacy of autologous BM-MNCs implantation in patients with CLI. Kaplan-Meier analysis of overall survival, major amputation-free, and total 
amputation-free survival following BM-MNC implantation in patients with PAD (ASO), TAO, and CDV.40) 
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angiogenic growth factors, it will be useful to employ such machine for cell-mediated 
therapeutic angiogenesis. Thirdly, either ADRC number or functions may be affected by 
concomitant patients' conditions or atherogenic risk factors. For example, SDF-1 expression 
is considered to be reduced in diabetes,58) and the function and number of progenitor cells 
are generally reduced in patients with multiple risk factors including diabetes, hypertension, 
aging and smoking.41-44)59)60) Such pathological conditions are commonly complicated in 
patients with PAD. Little is known whether ADRC number and functions are influenced by 
the presence of such risk factors as well. Before applying this new technique to therapeutic 
angiogenesis, it will be necessary to elucidate these points.

POTENTIAL NEW MECHANISMS OF ADIPOSE-DERIVED 
REGENERATIVE CELL-MEDIATED ANGIOGENIC 
THERAPIES

Although direct differentiation of cells and cytokine/chemokine released from ADRCs have 
been considered as major mechanisms for therapeutic angiogenesis,8)9)61-64) a recent progress 
in science has identified additional potential mechanisms for ADRC-mediated angiogenic 
therapy.65) One of these mechanisms may be extracellular microvesicles (EMVs) released from 
ADRCs.66) Recently, a variety of cells have been shown to release EMVs that contains proteins, 
lipids, mRNAs, precursor microRNAs (miRNAs), miRNAs, transfer RNAs, and etc (Figure 2). 
Among them, ADRCs have been shown to release miRNAs to stimulate angiogenesis or tissue 
regeneration. Kang et al.66) showed that ASCs or ADSCs induce angiogenesis by EMV transport 
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Figure 2. Mechanisms for the ADRCs-mediated angiogenesis in ischemic tissues. 
Subcutaneous adipose tissue is isolated from patient with CLI. ADRCs are isolated by the adipose tissues and 
directly implanted into the patient's own ischemic skeletal muscles. Implanted ADRCs release angiogenic 
cytoines/chemokines, extracellular microvesicles including miRNAs that stimulate local angiogenic response. A 
part of ADRCs differentiated into pericytes and support the angiogenesis. 
ADRC = adipose-derived regenerative cell; CLI = critical limb ischemia; miRNA = microRNA.
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of miRNA-31. We recently reported that cardiac implanted ADRCs released miRNA-214 that 
was taken up by cardiomyocytes by a clathrin-mediated endocytosis.67) These EMV-transported 
miRNA-214 protected cardiomyocytes against acute myocardial infarction in a mouse model. 
These content molecules of EMVs released from mesenchymal stem/progenitor cells gained 
more and more attention for future application of cell-free conditioned medium-mediated 
regenerative medicine.65)
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