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Through a process called “bioturbation,” burrowing macrofauna
have altered the seafloor habitat and modified global carbon cy-
cling since the Cambrian. However, the impact of macrofauna on
the community structure of microorganisms is poorly understood.
Here, we show that microbial communities across bioturbated, but
geochemically and sedimentologically divergent, continental mar-
gin sites are highly similar but differ clearly from those in non-
bioturbated surface and underlying subsurface sediments. Solid-
and solute-phase geochemical analyses combined with modeled
bioturbation activities reveal that dissolved O2 introduction by
burrow ventilation is the major driver of archaeal community struc-
ture. By contrast, solid-phase reworking, which regulates the distri-
bution of fresh, algal organic matter, is the main control of bacterial
community structure. In nonbioturbated surface sediments and in
subsurface sediments, bacterial and archaeal communities are more
divergent between locations and appear mainly driven by site-
specific differences in organic carbon sources.

bioturbation | burrow ventilation | redox state | particle reworking |
organic carbon sources

Organic matter (OM) is supplied to the ocean through in situ
photosynthesis and by external input from terrestrial sour-

ces. Although only a small fraction of OM escapes mineraliza-
tion in the water column and reaches the sediment surface,
marine sediments are the largest OM sink on Earth over geologic
timescales (1). Whether sedimentary OM is preserved or min-
eralized is in part controlled by microorganisms, which through a
network of hydrolysis, fermentation, and respiration (i.e., terminal
oxidation) reactions convert OM to its inorganic constituents.
Despite the important role of microorganisms in determining the
fate of sedimentary OM, the factors that control microbial com-
munity structure in marine sediments are not well understood. A
vertical zonation of respiration pathways based on Gibbs energies
has been proposed (2). However, such a clear zonation is absent
from many surface (3) and subsurface sediments (4), and respiring
organisms often only account for a small percentage of anaerobic
microbial communities (5). Instead, genomic and cultivation-
based data suggest that most anaerobic sediment microorgan-
isms gain energy from the fermentative or acetogenic breakdown
of OM (6–10). Additionally, correlations between certain bacterial
taxa and input of fresh phytoplankton detritus in surface sediment
(11), widespread occurrence of certain Thaumarchaeota in oxic
sediments (12), and dominance of phylogenetically distinct mi-
crobial taxa in energy-depleted subsurface sediments (13) indicate
that OM quality, presence of O2, and overall energy availability
are important drivers of microbial community structure.
A further factor that influences microbial activity and com-

munity structure in marine surface sediment is bioturbation.
Globally, >95% of the seafloor underlies oxygenated bottom water
(14), with most of this seafloor being inhabited by macrofauna

(15). These macrofauna interfere with the vertical zonation of
respiration reactions, change the distribution of OM, and influence
rates of microbial OM remineralization in surface sediments (15,
16) by two different modes of behavior. During “reworking,”
macrofauna displace particles, including sediment grains and or-
ganic detritus, through locomotion, burrow construction, ingestion,
or defecation. Reworking is often divided into “biodiffusional
mixing,” which describes random particle mixing over short dis-
tances, as well as “nonlocal mixing,” which describes unidirectional
particle transport over distances of centimeters to decimeters (17).
During “burrow ventilation,” macrofauna flush their burrows with
overlying water, meanwhile causing “bioirrigation,” which de-
scribes the enhanced solute transport through bulk sediments
around the burrow (17). Both processes vary with the types of
macrofauna that are present. Suspension feeders pump large
amounts of oxygenated seawater through their burrows and can
thereby induce redox fluctuations in burrows and sediment
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porewater (18). By contrast, deposit feeders mostly perform par-
ticle reworking, and thereby mix freshly deposited OM and oxi-
dized solid-phase compounds from the seafloor into deeper layers
and vice versa (19).
Despite its well-studied impact on sediment geochemistry,

little is known about the importance of bioturbation in struc-
turing microbial communities. Burrow wall microbial abundance
and diversity are often elevated and resemble those at the sed-
iment surface (20, 21). In addition, sulfate-reducing, denitrifying,
and nitrifying bacteria are often enriched in burrow walls (22,
23). Less is known about how bioturbation influences the com-
position of microorganisms throughout the bioturbated layer,
even though the geochemical influence of bioturbation extends
beyond burrows (18). Recently, Chen et al. (24) reported a
dominance of Bacteria over Archaea throughout bioturbated
sediment, and equal abundances of both domains in underlying
subsurface sediments. The same study also noted a clear change
in bacterial and archaeal taxa from bioturbated to nonbioturbated
layers. Chen et al. (24) hypothesized that introduction of electron
acceptors (e.g., O2, NO3

−) by burrow ventilation and labile OM
(e.g., phytodetritus) by particle reworking were responsible for the
observed patterns in microbial communities.
Here, we test this hypothesis by analyzing depth profiles of

microbial communities at four continental margin sites across
the Baltic Sea–North Sea transition. Sites differ in water depth,
sedimentation rate, metal and OM content, microbial activity,
and macrofaunal community structure, and range from non-
bioturbated to ventilation and/or reworking-dominated. At each
site, we quantify ventilation and reworking intensities by per-
forming reaction-transport modeling on porewater solutes and
particulate tracers, respectively, and determine redox state, total
organic carbon content (TOC), distributions of fresh OM, and OM
sources based on C-isotopic values (δ13C-TOC) and eukaryotic 18S
rRNA gene sequences. We then analyze trends in microbial
community structure in relation to modeled macrofaunal activities
and measured environmental variables. We show that burrow
ventilation mainly drives archaeal, whereas particle reworking
predominantly drives bacterial community structure in surface
sediment. We moreover observe that microbial communities in
nonbioturbated surface sediments more closely resemble those
in underlying subsurface layers than those from similar depths
in bioturbated sediment.

Results
Sedimentological Characteristics. Four sites (AU1, AU2, AU3, and
AU4) were sampled along a water-depth gradient in the
Skagerrak–Kattegat–Lillebælt region between the North Sea and
Baltic Sea (586, 319, 43, and 37 m, respectively; SI Appendix, Fig.
S1 and Table S1). AU1 is located in the Norwegian Trench, has a
high solid-phase manganese content (SI Appendix, Fig. S2 and
Table S2), and receives sediments with low-reactivity OM through
horizontal transport by currents (25). AU2 is located on the
southern slope of the Norwegian Trench. Both AU1 and AU2
consist mainly of silty clay and have high rates of iron and man-
ganese reduction in the top 0 to 10 cm (26). AU3 in the northern
Kattegat is dominated by fine sands and silts, and also has high
rates of iron cycling (26). AU4 in the Lillebælt region of the Baltic
Sea is sulfidic with the exception of a 1-mm-thick oxidized surface
layer. Like AU1 and AU2, AU4 is dominated by silty clay, but the
sediment has a more muddy consistency. While porosities de-
crease and densities increase in the top 50 cm of all sites (SI
Appendix, Fig. S3), sediment grain sizes do not change notably
with depth (for detailed core descriptions, see SI Appendix, Sup-
plementary Text). Sedimentation rates based on 137Cs profiles in-
crease with decreasing water depth and distance to shore, and are
0.14, 0.27, 0.30, and 0.33 cm·y−1 at AU1-4, respectively (SI Ap-
pendix, Fig. S4 and Table S2). Macrofaunal biomass increases
from AU1 to AU3, whereas macrofauna are absent from AU4

due to seasonal bottom water hypoxia (26) (SI Appendix,
Table S2).

Biogeochemical Profiles. Vertical porewater profiles of oxygen
(O2), sulfate (SO4

2−), methane (CH4), and dissolved inorganic
carbon (DIC) suggest that microbial sulfate reduction, meth-
anogenesis, and total respiration (DIC production) increase from
AU1 to AU4 (Fig. 1A). Accordingly, DIC profiles steepen, while
both O2 penetration depth (AU1, 15 to 18 mm; AU2, 8 mm; AU3,
4 mm; AU4, <1 mm; from ref. 26) and the depth of the sulfate–
methane transition (SMT), below which SO4

2− is depleted and
CH4 accumulates, become shallower. Despite this general trend in
microbial activity and despite ongoing sulfate reduction, SO4

2−

and DIC concentrations are nearly constant in the top 60, 10, and
25 cm of AU1, AU2, and AU3, respectively.
TOC trends vary between stations and are not correlated with

water, sediment depth, or microbial activity (Fig. 1A). The highest
TOC is at AU4, where values increase with depth from 4.7 to ∼6%
in the upper 50 cm. At AU3, which has the lowest TOC, values
decrease from 0.8% at the seafloor to 0.5% at 50 cm—showing a
local peak at ∼30 cm—and gradually increase back to 0.8% below.
TOC decreases gradually from the seafloor to the core bottom at
AU2 and AU1, from 2.1 to 1.7% at AU2 and from 1.9 to 1.3%
at AU1.
δ13C-TOC and carbon-to-nitrogen (C:N) ratios at AU1 to

AU3 fall within typical ranges of marine phytoplankton (27).
δ13C-TOC is relatively constant with depth at AU1 (−22.8 ±
0.2‰) and AU2 (−22.5 ± 0.2‰), while at AU3 values decrease
from −23.0‰ to −24.1‰ in the upper 50 cm and stabilize
below. AU4 has δ13C-TOC similar to the other stations from 0 to
20 cm (−22.7 ± 0.3‰), but increases to approximately −20‰ at
50 cm and below suggest a significant additional TOC source,
e.g., seagrass (28). C:N values vary minimally at AU1, AU2, and
AU4 (mostly 8 to 9). At AU3, C:N ratios increase from ∼8 to 10
in the upper 40 cm, and further to ∼12 in the deepest sample.

Macrofaunal Activity and Community Composition. Chlorophyll a
(chl a) depth profiles reflect the input of fresh phytodetritus by
sedimentation and translocation of this phytodetritus to greater
depths by reworking (29) (Fig. 1B). The contribution of chl a to
TOC is negatively correlated with water depth (SI Appendix, Fig.
S5A), indicating a decrease in labile OM deposition with in-
creasing water depth. At AU1, chl a decreases threefold from
3 cm to underlying layers. At AU2 and AU3, chl a shows bimodal
distributions, with surface peaks at ∼7 and ∼3 cm and subsurface
peaks at ∼27 and ∼30 cm, respectively. The steepest chl a de-
crease is at the nonbioturbated AU4, where chl a values drop
over 10-fold in the upper 5 cm and show only minor increases
from 10 to 20 cm. Ratios of chl a/(chl a+ phaeopigments), which
are another proxy for fresh phytodetritus (30), confirm the trends
observed in chl a (SI Appendix, Fig. S5B).
Macrofaunal reworking was quantified by modeling solid-

phase biodiffusional mixing (DB) and nonlocal mixing (Na),
whereas published solute-phase bioirrigation coefficients (α) on
the same cores were used as proxies for ventilation rates (26).
DB, Na, and α generally decrease with water depth, matching the
decreasing macrofaunal biomass from AU3 to AU1 (Fig. 1B and
SI Appendix, Table S2). AU1 is dominated by the stationary
tube-dwelling polychaete Spiochaetopterus typicus, which feeds
on suspended particles and surface deposits, and the surficial
burrow-building, mainly ventilating chemosymbiotic bivalve
Thyasira equalis (31) (Fig. 1C). DB and α values are relatively
high in the upper 5 cm but decrease below detection below 10 cm.
The macrofaunal community at AU2 is dominated by Thyasira
equalis, the subsurface deposit-feeding bivalve Yoldiella lucida,
surface deposit-feeding and ventilating Abra nitida, in addition to
several deep-dwelling, deposit-feeding worms (Melinna cristata,
Galathowenia oculata, Maldanidae sp., and Neoleanira tetragona).
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This functionally diverse assemblage matches the high DB and α
values from 0 to ∼13 cm. However, the continuously high excess
210Pb and Na values to 40 cm are difficult to explain with these
fauna. One possibility is that the thaliassinidean shrimp, Calocaris
macandreae, which is common in the area and can dig intensively to
60 cm or deeper (32), was missed due to limited depth penetration
of our box corer. Matching the high DB and α values throughout the
upper 10 cm, AU3 is dominated by dense populations of the brittle
star Amphiura filiformis (>1,000 individuals [ind.]·m−2) and the

bivalve Kurtiella bidentata. Both are biodiffusors that typically live in
<10-cm depth and feed on fresh phytodetritus (33). In addition,
specimen of the ghost shrimp Callianassa tyrrhena, which forms
deep, gallery-like burrows, were found in deeper layers (16 ± 4
ind.·m−2), and explain the clear subsurface peaks of 210Pb and Na at
∼20 cm. Matching the absence of macrofauna, DB, Na, or α values
indicate no significant bioturbation activity at AU4.
To facilitate the comparison of geochemical and microbial

community data, we define the upper layers of sediment, where
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bioirrigation rates (α) are high, as ventilation-dominated layers
(VLs hereafter). Deeper layers, where bioirrigation is largely
reduced but significant reworking, in particular nonlocal mixing,
is still present, are termed reworking-dominated layers (RLs
hereafter). The inferred zonation of dominant bioturbation ac-
tivities generally matches depth profiles of chl a and %Fe(III)
[percentage of Fe(III) of reactive solid-phase iron (Fig. 1B); data
from ref. 26]. %Fe(III), an indicator of sedimentary redox con-
ditions, decreases in a similar fashion to α values throughout the
VLs and remains at background values below and throughout
the nonbioturbated site AU4. However, to avoid definitional
biases, all correlation analyses between environmental variables
and microbial community data performed later in this study are
independent of the proposed divisions into VLs and RLs.

Microbial Abundance and Richness. 16S rRNA gene abundances of
Bacteria show similar depth profiles across sites and decrease by
one to two orders of magnitude from core tops to bottoms (Fig.
2A). Except for a decrease in the top 4 cm of AU1 and AU3,
archaeal gene abundances are relatively stable in the top 200 cm
of AU1, 40 cm of AU2, 35 cm of AU3, and 20 cm of AU4, and
only decrease with depth below.
Bacteria-to-Archaea ratios (BARs) decrease with depth,

showing the highest values in the VLs of AU1 to AU3 and at the
seafloor of AU4 (Fig. 2B). At AU1 to AU3, BARs increase in
surface sediments and then show a clear drop in the RLs. Local
peaks in VLs and RLs generally match local peaks in chl a or
excess 210Pb. Below the RLs, BARs continue to decrease to ∼100
cm, below which values are relatively stable. AU4 shows a dif-
ferent trend: Except for the peak value at the seafloor, BARs are
lowest above the SMT, and increase gradually below the SMT.
Chao 1 richness is higher in Bacteria than in Archaea except at

the sediment surface of AU4 (Fig. 2C). At AU1 to AU3, bac-
terial and archaeal richness increase throughout the VLs and
reach their highest values in the RLs before decreasing below. At
AU4, bacterial richness stays relatively constant, whereas ar-
chaeal richness decreases strongly in the top 30 cm.

Depth Profiles of Microbial Communities. Microbial community
structure changes consistently from bioturbated to nonbioturbated
sediments, and between the VLs and RLs of bioturbated sites

(Fig. 2 D and E). In the VLs of AU1 to AU3, Bacteria belonging
to Bacteroidetes, Acidobacteria, Alphaproteobacteria, Deltaproteo-
bacteria, Gammaproteobacteria, and Planctomycetes are dominant.
In the RLs, percentages of Gammaproteobacteria and Bacter-
oidetes decrease, while fractions of Deltaproteobacteria, Plancto-
mycetes, and Chloroflexi increase (Fig. 2D). The nonbioturbated
surface sediment of AU4 (0 to 20 cm) is also rich in Bacteroidetes,
Gammaproteobacteria, Deltaproteobacteria, and Planctomycetes,
but here these groups coexist with a significant percentage of
Chloroflexi. The nonbioturbated layers of AU1 to AU3 and layers
below 30 cm at AU4 share Deltaproteobacteria, Planctomycetes,
and Chloroflexi as dominant bacterial fractions. Furthermore,
Atribacteria clearly increase below the SMTs, where methano-
genesis dominates the terminal OM degradation. Additional, site-
specific characteristics in subsurface layers include high percent-
ages of Aminicenantes at AU1 and AU3, and high percentages of
Spirochaetae at AU2.
Among the Archaea, the Marine Group I class (Thaumarch-

aeota) dominates the bioturbated layers of AU1 to AU3 (Fig.
2E). In the VLs, two phylotypes, Nitrosopumilus sp. 1 [98.7%
similarity to Nitrosopumilus cobalaminigenes (34)] and Nitro-
sopumilus sp. 2 (95.8% similarity to N. cobalaminigenes), account
for 33 ± 14% and 30 ± 8% of total archaeal abundance, re-
spectively. While Nitrosopumilus sp. 1 is virtually absent from
nonbioturbated samples, Nitrosopumilus sp. 2 occurs locally at
high relative abundances in nonbioturbated subsurface layers.
Percentages of Woesearchaeota are high in bioturbated layers
(15 ± 6%), but also in nonbioturbated layers of AU1 and AU4.
Relative abundances of Bathyarchaeota (mainly Group C3) are
high everywhere except in VLs of AU1 and AU3 and the surface
layer of AU2. Euryarchaeota (mainly Marine Benthic Group D
[MBG-D] of Thermoplasmata), Lokiarchaeota (mainly gamma
subgroup), and Thorarchaeota are rare or absent within VLs, but
increase and are abundant in RLs of AU1 to AU3 and in non-
bioturbated sediments. Methanomicrobia are rare at all stations,
except below the SMT of AU3 and AU4 (>99% ANME-1b).

Microbial Community Assembly and Its Potential Drivers Across the
Four Sites. A principal coordinates analysis (PCoA) (also known
as multidimensional scaling analysis) indicates significant differ-
ences in microbial community compositions between VLs, RLs,
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and nonbioturbated sediments (Fig. 3A). These differences are
robust across different distance matrices (e.g., unweighted Uni-
frac, Bray-Curtis; SI Appendix, Fig. S6) and taxonomic levels (e.g.,
phylum, class, order, and zero-radius operational taxonomic unit
[ZOTU]; SI Appendix, Fig. S7). Burrow wall communities (AU3
only) cluster with those in adjacent bulk sediment, and thus follow
the division between VLs and RLs (Fig. 3A and SI Appendix, Fig.
S8). By contrast, microbial communities in nonbioturbated sam-
ples are separated by sites, and show strong depth-related changes,
especially in Bacteria. The only nonbioturbated sample that
clusters with bioturbated samples is the bacterial community at the
seafloor (0 to 2 cm) of AU4.
A canonical analysis of principal coordinates (CAP) shows

that different environmental variables are correlated with bio-
turbated and nonbioturbated communities (Fig. 3B). Bacterial
and archaeal communities in bioturbated sediments are signifi-
cantly correlated with the modeled bioturbation variables (α, DB,
Na), and with SO4

2− and %Fe(III). Furthermore, bacterial, but
not archaeal, communities show significant correlations with chl
a, and neither are significantly correlated with C:N ratios. In
nonbioturbated sediments, bacterial and archaeal communities
correlate with CH4, TOC, and δ13C-TOC. The above variables
explain 68% of bacterial and 75% of archaeal total community
variation. Most of this variation is accounted for by the first two
axes displayed in Fig. 3B, which explain 50.3% of bacterial and
54.1% of archaeal variation.

Eukaryotic 18S Gene Abundance and Community Structure. The ob-
served correlations with TOC, δ13C-TOC, and chl a suggest an
important role for OM content, sources, and degradation state in
driving microbial community structure. Here, we explore eukary-
otic 18S rRNA sequences for insights into OM sources, inputs of
OM by ventilation and reworking, and distributions of living
eukaryotes (Fig. 4).
18S rRNA gene copies decrease in the upper meter, with

depth profiles at each site matching the distributions of modeled
macrofaunal activity, but are similar across sites below 100 cm.
At AU4, gene copy numbers drop fivefold in the top 3 cm, but
only decrease slightly below. At AU1 to AU3, 18S gene copy
numbers decrease by two orders of magnitude throughout the
bioturbated zone, with the steepest decreases occurring within
the VLs. Below the RLs, gene copy numbers decrease gradually
at AU2 and AU3, and increase slightly at AU1.
18S rRNA gene sequences suggest dominant contributions of

photosynthetic organisms, with the highest contributions at AU4
(>90% in all but surface sediments). At all sites, fractions of
diatoms belonging to diverse Bacillariophyta decrease steeply
with depth and are correlated with chl a distributions (Spearman
r = 0.76, P < 0.001; SI Appendix, Fig. S5C). 18S genes of the
diatom Chaetoceros spp. (shown separately) are an exception.
Sequences of these diatoms show less depth attenuation compared
to other diatoms, and even dominate the subsurface of AU4.
Dinoflagellates (Dinoflagellata, mainly Dinophyceae) have low
relative abundances in the VLs but increase in the RLs and some
subsurface layers. AU3 and AU4 show elevated contributions of
green algae (Chlorophyta, mostly unicellular Trebouxiophyceae)
and plants (Streptophyta, mainly Zostera marina, minor contribu-
tions of terrestrial angiosperms) in deeper layers, confirming the
high DNA preservation potential of both phyla in marine
sediments (35).
Among the nonphotosynthetic eukaryotes, protistan bacter-

ivores, dominated by Excavata (mainly Euglenida and Kineto-
plastida) and benthic Foraminifera (mainly Globothalamea and
Monothalamida), are most abundant in the VLs of AU1 to AU3.
These distributions are consistent with the O2 or nitrate require-
ments of these groups and imply that both groups may live in the
VLs of these stations. By contrast, uncharacterized marine stra-
menopiles (MAST) have increased percentages in the nonventilated

horizons of AU1, uncharacterized Cercozoa occur at high pro-
portions throughout AU1 to AU3, and Fungi account for high
fractions in nonbioturbated layers of AU1 and AU3. At AU1,
metazoan 18S genes of worms (Annelida, mainly Polychaeta) and
flat worms (Platyhelminthes) dominate the VLs, whereas tunicates
(mainly Ascidiacea) dominate in deeper layers. The other sites
have lower metazoan 18S gene contributions dominated by
Nematoda (AU2 to AU4), Annelida (AU2), and Arthropoda
(surface sample of AU4; mainly Copepoda) in surface sediments
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and by Urochordata, Annelida, Cnidaria, and Arthropoda in sub-
surface layers. Bivalves and brittle stars were only detected at very
low (<0.1%) relative abundances, despite being dominant mem-
bers of the macrofaunal communities at AU1 to AU3.

Drivers of Bacterial vs. Archaeal Community Structure in Surface and
Subsurface Sediment.Variation partitioning analyses coupled with
redundancy analyses (VPA-RDA) and Mantel tests were incorpo-
rated into a path model to analyze the most important drivers of
microbial community structure in surface (0 to 40 cm) vs. subsurface
sediments (>40 cm; Fig. 5). Hereby the relative importance of all
environmental variables tested in Fig. 3B was determined.
According to VPA-RDA, the variables that provide the most

explanatory power in surface sediment account for 50% and 58%
of bacterial and archaeal community variation, respectively (Fig.
A). Notably, ventilation and reworking differ in their impacts on
bacterial and archaeal communities. Reworking, based on non-
local mixing (Na) and biodiffusional mixing (DB), appears to
drive bacterial community structure by controlling OM compo-
sitional variables (chl a, δ13C-TOC, and TOC; r2 = 0.50, P < 0.05,
partial least-squares [PLS] regression), whereas SO4

2−

concentrations and bioirrigation rates (α) are less important. By
contrast, archaeal community variation is mainly explained by
bioirrigation. Mantle tests, moreover, show that eukaryotic 18S
rRNA gene sequences are highly correlated with bacterial and
archaeal community structure and explain a higher fraction of
bacterial (r = 0.83) than archaeal community variation (r = 0.50).
In subsurface sediments, VPA-RDA suggest that TOC and

δ13C-TOC, and to a lesser extent SO4
2− and CH4, are the main

drivers of microbial community structure (Fig. 5B). Measured
variables explain 56% of bacterial but only 29% of archaeal com-
munity variation. According to Mantle tests, eukaryotic 18S rRNA
gene sequences are again highly correlated with and explain
comparable fractions of bacterial (r = 0.40) and archaeal com-
munity variation (r = 0.46).

Drivers of Microbial Taxa Composition from Bioturbated to
Nonbioturbated Sediment. To identify the most important fac-
tors that drive the relative abundances of specific microbial taxa,
we examined pairwise correlations between dominant bacterial
and archaeal lineages and 1) modeled bioturbation activity (α,
DB, Na), 2) geochemical variables [%Fe(III), chl a, SO4

2−, CH4,
δ13C-TOC, TOC], and 3) dominant eukaryotic taxa (Fig. 6).
Based on observed correlation patterns, which are supported

by clustering patterns in a co-occurrence network of microbial
lineages (SI Appendix, Fig. S10), we propose the following cat-
egories of microorganisms: Type I “bioturbation lineages” are
dominated by bacterial Bacteroidetes, Verrucomicrobia, Acidobacteria,
and Gammaproteobacteria, and thaumarchaeal Nitrosopumilus sp. 1
and sp. 2. These lineages generally show significant correlations with
α, DB, Na, chl a, SO4

2−, δ13C-TOC, and distributions of Bacillar-
iophyta others, Foraminifera, and Excavata. Type II “ubiquitous
lineages” are abundant in surface and subsurface sediments and in
many cases only show weak or inconsistent trends in relation to
bioturbation activity, geochemical variables, or 18S genes. This cat-
egory is dominated by bacterial Delta- and Alphaproteobacteria and
Planctomycetes, as well as archaeal Woesearchaeota, Diapherotrites,
and Lokiarchaeota (beta subgroup). Type III “subsurface lineages”
correlate most strongly with CH4 concentrations, δ13C-TOC, and/or
with 18S genes of Streptophyta, Chlorophyta, Fungi, and MAST.
These lineages are dominated by bacterial Chloroflexi (all but Cal-
dilinea), Aminicenantes, Spirochaetae, and Atribacteria, as well as
archaeal Bathy-, Odin-, Thor-, Eury-, and Aenigmarchaeota.
Notably, many bacterial but only few archaeal Type III lineages

are correlated with δ13C-TOC. Also, while Type I Bacteria are
typically negatively correlated with δ13C-TOC, Type II and Type
III Bacteria are mostly positively correlated with δ13C-TOC.
Furthermore, within the Lokiarchaeota, which we classify as Type
II above, the dominant gamma subgroup shows correlation
patterns typical of Type III lineages. Finally, several variables are
only weakly or rarely correlated with dominant bacterial and
archaeal taxa. These include TOC and relative abundances of
Chaetoceros spp. of Bacillariophyta, Dinoflagellata, and Metazoa.
Most of the Type I “bioturbation lineages” can be further

subdivided based on correlations with measured variables: Type
Ia members, consisting of dominant Archaea (Nitrosopumilus sp.
1 and sp. 2) and several less dominant bacterial groups, e.g.,
Opitutae and Verrucomicrobiae (both Verrucomicrobia), Ocean-
ospirillales, BD7-8 marine group, and Alteromonadales (all
Gammaproteobacteria), show strongest correlations with bio-
irrigation rates (α) and contributions of Foraminifera and Exca-
vata. By contrast, Type Ib members, which include Cyanobacteria,
most Bacteroidetes, Verrucomicrobia, Acidobacteria, and Gam-
maproteobacteria, as well as several deltaproteobacterial lineages
(Myxococcales, Sva0485), mainly correlate with reworking-related
variables, i.e., chl a, DB, and Na, and/or with 18S gene percent-
ages of Bacillariophyta others and Excavata. This subdivision of
“bioturbation lineages” into Type Ia and Type Ib lineages is also
visible in the co-occurrence network (SI Appendix, Fig. S10).
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Discussion
Our study indicates that bioturbation controls microbial com-
munity structure in surface sediments across continental margin
sites that differ greatly in water depth, sedimentation rates, input
of fresh OM, TOC content, redox conditions, microbial activity,

and macrofauna (Figs. 1–3). Independent of macrofaunal abun-
dance, community structure, or dominant mode of behavior (ven-
tilation, reworking), bacterial and archaeal communities inhabiting
bioturbated surface sediment are highly similar to each other,
and differ significantly from those in nonbioturbated surface or
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subsurface sediments (Figs. 1 and 3A). While bioturbation gen-
erally favors Bacteria over Archaea (BARs; Fig. 2B), both bac-
terial and archaeal richness are lowest in sediments with high
ventilation rates and highest in reworking-dominated sediments
(Fig. 2C). Ventilation, moreover, selects for different lineages
(Type Ia) than reworking (Type Ib), and is most likely the main
driver of archaeal community structure in surface sediment
through its impact on O2 availability and redox conditions (Figs.
5A and 6). By contrast, reworking appears to drive bacterial
communities through its influence on fresh OM distributions.
In subsurface sediments, where bioturbation is absent, bacte-

rial community structure is mainly correlated with organic carbon
content and sources (TOC, δ13C-TOC) and methane concentra-
tions, whereas the main drivers of archaeal community structure
remain unclear (Figs. 5B and 6). Stronger site-specific community
clustering in Archaea suggests that site-related variables may play
a more important role in structuring archaeal than bacterial
communities (Fig. 3). Type III “subsurface lineages” of Bacteria
and Archaea show strong correlations with 18S genes of certain
eukaryotic groups (Fig. 6). Archaea generally show stronger cor-
relations with nonphotosynthetic MAST, Fungi, and Cercozoa,
whereas Bacteria show stronger correlations with photosynthetic
Chlorophyta and Streptophyta. The implications of these correla-
tions are unclear, though it is worth mentioning that bacterial
communities in surface sediments also show strong correlations
with biomarkers of photosynthetic organisms, i.e., chl a, 18S genes
of diatoms (Bacillariophyta others; Figs. 5A and 6A). Yet, the ex-
istence of Type II “ubiquitous lineages” indicates that not all mi-
crobial lineages are controlled by bioturbation or OM sources.
Correlations of several Type II members with SO4

2− or CH4 sug-
gest possible involvement in respiration reactions or syntrophic
associations with microorganisms involved in respiration reactions.

Impact of Ventilation on Microbial Community Structure. It appears
that strong ventilation activity reduces microbial richness and
selects for distinct “Type Ia” aerobic and aerotolerant microor-
ganisms that are highly similar across sites (Figs. 1 and 2). The
impact of ventilation is not restricted to burrow walls but extends
throughout the entire VL, as indicated by only minor differences
in community structure between burrow walls and bulk sedi-
ments (Fig. 3 and SI Appendix, Fig. S8). Possibly the high rates of
porewater exchange and sediment mixing cause sediments
throughout the entire VL to come into contact with O2 or ex-
perience strong redox fluctuations on a frequent basis. These
frequent chemical disturbances may exclude many anaerobes
and select for a low diversity of redox-resilient microorganisms.
Ventilation is the main driver of archaeal community variation

in surface sediments (Fig. 5A), and in particular favors two phy-
lotypes of the aerobic nitrifying thaumarchaeotal genus Nitro-
sopumilus (Fig. 2). The relative abundance of one of these
phylotypes, Nitrosopumilus sp.1, is even highly correlated with
ventilation rates (Spearman r = 0.86, P < 0.001; SI Appendix, Fig.
S11). While ventilation is only a minor driver of bacterial com-
munity variation in surface sediments, relative abundances of
several verrucomicrobial classes (Opitutae, Verrucomicrobiae) and
gammaproteobacterial orders (Oceanospirillales, BD7-8, Alter-
omonadales) are significantly correlated with α. Previous marine
isolates of Verrucomicrobiae and Oceanospirillaceae (dominant
family of Oceanospirillales in our study) were aerobes with broad
substrate spectra (including monosaccharides, amino acids, alco-
hols, organic acids), and some Oceanospirillaceae additionally
perform nitrate reduction (36, 37). Opitutae, Psychromonadaceae
(dominant family of Alteromonadales), and BD7-8 subgroup com-
monly live in symbiotic relations with marine sediment inverte-
brates and are facultatively anaerobic carbohydrate degraders
(Opitutae, Psychromonadaceae) or putatively chemoautotrophic,
aerobic sulfide oxidizers (BD7-8) (38–40).

Besides correlating with α, many Type Ia taxa also strongly
correlate with 18S gene percentages of labile algae (Bacillar-
iophyta others) and protists (Foraminifera, Excavata). Correla-
tions with benthic Foraminifera and Excavata match the aerobic
or facultatively anaerobic metabolism of Type Ia microorganisms
and these protists. By contrast, correlations with carbohydrate-
and amino acid-rich diatoms [Bacillariophyta others (41)] are
consistent with the use of carbohydrates and amino acids as
energy substrates by several Type Ia taxa.
While all “Type Ib” lineages and many Type II bacteria (e.g.,

Alpha- and Deltaproteobacteria) are also present in high read
percentages throughout the VLs, high ventilation rates seem to
select against Type III “subsurface lineages.” These lineages may
not tolerate O2 exposure and/or the strong redox fluctuations
that are the norm in bioturbated surface sediments (16). Several
Type III groups, including Bathyarchaeota, Lokiarchaeota
(gamma subgroup), Thorarchaeota, Euryarchaeota (MBG-D),
and Chloroflexi (Anaerolineae and Dehalococcoides) already in-
crease in percentages in deeper parts of the VLs and the un-
derlying RL, and are abundant in nonbioturbated surface sediment
of AU4.

Impact of Reworking on Microbial Community Structure. Our study
indicates that reworking strongly impacts bacterial but not ar-
chaeal community structure by mediating the transport of fresh
OM into sediment (Figs. 3B and 5A). Matching this trend, bac-
terial but not archaeal gene abundances are significantly corre-
lated with chl a content (Spearman r = 0.86, P < 0.001) and
eukaryotic gene abundances (Spearman r = 0.92, P < 0.001) in
surface sediments of bioturbated sites (SI Appendix, Fig. S12).
Reworking-related Type Ib bacterial taxa show strong corre-

lations with chl a content and 18S gene percentages of diatoms
(Bacillariophyta others; Fig. 6). These lineages comprise mostly
aerobic, microaerobic, and facultatively anaerobic Bacteria that
degrade algal polysaccharides, e.g., Flavobacteriia (42) of Bac-
teroidetes, Sandaracinaceae of Myxococcales (43), and organo-
and photoorganotrophic Halieaceae [main family of gammapro-
teobacterial Cellvibrionales (44)]. Many Type Ib lineages, e.g.,
Flavobacteriia, Sphingobacteriia (both Bacteroidetes), and Sav0071
(Gammaproteobacteria), are, furthermore, distributed indepen-
dent of bioirrigation rates (α) or redox status [%Fe(III)] (Fig. 6A).
In addition, several metabolically diverse lineages correlate sig-
nificantly with nonlocal mixing (Na). The metabolisms of these
lineages include nitrification [e.g., Nitrospinae (45), Nitro-
somonadales of Betaproteobacteria (46)], aerobic methylotrophy
[E01-9C-26 of Gammaproteobacteria (47)], aerobic organotrophy
[Arenicella ofGammaproteobacteria (48)], anaerobic organotrophy
[Bacteroidia of Bacteroidetes (49)], and sulfate reduction [Sva0485
of Deltaproteobacteria (50)].
The diversity of aerobic, microaerobic, and anaerobic metab-

olisms among Type Ib lineages, and the fact that many Type III
lineages already emerge in the RLs, explains the high diversity in
sediment layers where reworking is the dominant macrofaunal
activity. We suggest that the decreased O2 input but continued
significant input of fresh OM results in a spatially and temporally
heterogeneous mosaic of oxic to anoxic conditions and OM
ranging from fresh detritus to diagenetically altered, low-reactivity
compounds. The richness in chemical microenvironments results in
a high diversity of metabolic niches that support the coexistence of
physiologically diverse Type I bioturbated, Type III subsurface, and
Type II ubiquitous lineages within the same macroenvironment.

Changing Communities from Surface to Subsurface Layers. The shift
toward Type III subsurface lineages in nonbioturbated sediment
is accompanied by a decrease in microbial richness as Type I
lineages, which appear linked to O2 and fresh OM input, de-
crease in relative abundance (Figs. 2 and 6). At AU4, where O2 is
absent, Type III Archaea (gamma subgroup of Lokiarchaeota,
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Bathy- and Thorarchaeota, Thermoplasmata) and Bacteria are
present at the seafloor (Anaerolineae, Dehalococcoidia) or emerge
at depths where labile phytodetritus (chl a, Bacillariophyta others)
is depleted (Atribacteria) (Figs. 2 and 4).
Despite these consistent changes from bioturbated to non-

bioturbated sediments, the reasons for the high site dependency
of microbial community structure in nonbioturbated sediments
remain unclear. Percentages of many Type II taxa are signifi-
cantly correlated with SO4

2− concentrations, whereas percentages
of numerous Type III taxa are significantly correlated with CH4
concentrations (Fig. 6). The correlations of Methanomicrobia with
CH4 concentrations and of Desulfobacterales with SO4

2− concen-
trations match the known CH4-cycling and SO4

2−-reducing me-
tabolisms of these taxa, respectively. In other cases, syntrophic
partnerships with sulfate reducers or methanogens offer a
potential explanation.
OM composition may also be important, given that many

subsurface microorganisms gain energy by fermentative or ace-
togenic breakdown of OM (6–10). Consistent with this notion, a
major fraction of subsurface bacterial community variation can
be explained with TOC and δ13C-TOC (Fig. 5B). Moreover,
δ13C-TOC and percentages of major 18S lineages correlate sig-
nificantly with major Type III groups (Fig. 6). Dominant bacte-
rial lineages degrade aromatic compounds and fatty acids
[Dehalococcoidia (8)], or ferment carbohydrates or proteins
[Anaerolineae (51), Omnitrophica (52), Aminicenantes (53), Spi-
rochaetes (54)]. Atribacteria have been linked to syntrophic
growth on organic acids with methanogenic partners (55) and to
fermentation of sugars and organic acids (9). Dominant Archaea
have been linked to protein fermentation [MBG-D (7), Thor-
archaeota (56)], fermentative or acetogenic breakdown of pro-
teins, carbohydrates, and lignin [Bathyarchaeota (10)], fermentation
of unknown substrates [Aenigmarchaeota (52)], and syntrophic
growth on amino acids [gamma subgroup of Lokiarchaeota (57)].

Conclusions and Further Implications. Our study indicates that
macrofaunal bioturbation controls microbial community assem-
bly at all phylogenetic levels and promotes dominance of Bac-
teria over Archaea in surface sediments from diverse continental
margin settings. Burrow ventilation appears to control archaeal
community structure mainly by regulating O2 input. By contrast,
reworking appears to be the main driver of bacterial community
structure, presumably by controlling the distribution of reactive
OM. The reasons for bacterial dominance over Archaea remain
uncertain, but may be related to higher metabolic versatility
among surface sedimentary Bacteria. Certain Bacteria have been
shown to thrive in natural and engineered habitats under oxic–
anoxic fluctuations by means of their ability to rapidly shift be-
tween aerobic respiration and fermentation (58, 59). Similar
adaptations may confer fitness advantages to certain groups of
Bacteria in bioturbated sediments.
While literature data suggest that the energy substrates of

major bacterial and archaeal lineages overlap at the compound
level, relative abundances of many bacterial classes are strongly
correlated with 18S percentages of photosynthetic eukaryotes.
By contrast, archaeal lineages, in particular Type III subsurface
lineages, tend to be more strongly correlated with nonphotosynthetic
MAST, Fungi, and Cercozoa. Future investigations will reveal
whether these trends reflect general differences in detrital food
sources among Bacteria and Archaea.

Materials and Methods
Sampling. All samples were taken during a cruise of the R/V Aurora in August
to September 2014. The top 50 cm of sediment were collected using a
Rumohr corer, which is a lightweight gravity corer that enables access to
nearly undisturbed surface sediments (60). All deeper layers were sampled
using a gravity corer (down to ∼500 cm). Sediments for faunal analysis were

sampled using a box corer (40 cm × 40 cm × 60 cm). For detailed sampling
scheme, see SI Appendix, Supplementary Text.

Macrofaunal Analysis. Faunal sampling, identification, and quantifications
were as outlined by Kristensen et al. (26). Sediments from two to three box
cores per station were sieved through 1-mm mesh on board, and the re-
trieved material preserved in 4% formaldehyde. Fauna were separated from
debris in the laboratory and stored in 70% ethanol for later counting,
identification to lowest possible taxon, and classification into functional
groups based on faunal mobility and feeding behavior. Macrofaunal bio-
mass was estimated based on abundance data and known relationships
between water depth and average individual biomass from the Kattegat–
Skagerrak area (26, 61, 62).

DNA Extraction. DNA was extracted from unhomogenized ∼0.2 g of wet
sediment following lysis protocol II of the modular method of Lever et al.
(63), which combines chemical (lysis solution I) and mechanical cell lysis
(bead-beating: 0.1-mm Zirconium beads), 2× washing with chloroform:isoamyl
alcohol (24:1), and precipitation with a mixture of linear polyacrylamide, so-
dium chloride, and ethanol. DNA was then purified according to protocol A of
the CleanAll DNA/RNA Clean-Up and Concentration Micro Kit (Norgen Biotek
Corporation). To minimize adsorptive losses of DNA during the extraction,
samples were homogenized with 0.1 mL of 10 mM sodium hexametaphos-
phate solution prior to cell lysis.

Quantitative PCR. Abundances of bacterial and archaeal 16S rRNA genes and
eukaryotic 18S rRNA genes in DNA extracts were quantified on a LightCycler
480 II (Roche Life Science) by SYBR-Green I-based quantitative PCR (qPCR).
The primer pairs for Bacteria, Archaea, and Eukarya were Bac908F_mod (5′-
AACTCAAAKGAATTGACGGG-3′) (63)/Bac1075R (5′-CACGAGCTGACGACARCC-
3′) (64), Arch915F_mod (5′-AATTGGCGGGGGAGCAC-3′) (65)/Arch1059R (5′-
GCCATGCACCWCCTCT-3′) (66), and All18SF_mod1 (5′-TGCATGGCCGTTCT-
TAGT-3′)/All18SR_mod1 (5′-CTAAGGGCATCACAGACC-3′) (ref. 35, modified
from ref. 67), respectively. Plasmids of 16S rRNA genes from Holophaga foe-
tida (Acidobacteria) and Thermoplasma acidophilum (Euryarchaeota) and of
18S rRNA genes from Tubifex (Oligochaeta) were applied as bacterial, ar-
chaeal, and eukaryotic standards, respectively (further information in SI Ap-
pendix, Supplementary Text).

Sequencing and Bioinformatic Analyses. Sequence libraries were prepared
according to a standard workflow (SI Appendix, Supplementary Text). 16S
rRNA gene amplicons obtained with the primer pairs S-D-Bact-0341-b-S-17
(5′-CCTACGGGNGGCWGCAG-3′)/S-D-Bact-0785-a-A-21 (5′-GACTACHVGGG-
TATCTAATCC-3′) (68) for Bacteria and S-D-Arch-0519-a-A-19 (5′-C AGCMG-
CCGCGGTAAHACC-3′) (69)/967Rmod (5′-GTGCTCCCCCGCCAATT-3′) (65) for Ar-
chaea were sequenced via the MiSeq platform (Illumina). Raw sequence reads
were quality-checked by FastQC (www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc), read ends were trimmed using seqtk (https://github.com/lh3/
seqtk), paired end reads were merged into amplicons by flash (70), primer sites
were trimmed by usearch (71), and quality filtering was done by prinsEq (72).
ZOTUs were generated using the UNOISE3 algorithm (73) and clustered using
a 97% identity threshold. Bacterial 16S genes and eukaryotic 18S genes were
taxonomically classified using the SILVA 16S database [release 128 (74); con-
fidence threshold, 0.7] and Protist Ribosomal Reference database [PR2 v.19
(75); confidence threshold, 0.9], respectively. Archaeal 16S genes were
assigned in ARB (www.arb-home.de) using neighbor-joining phylogenetic
trees that were based on a manually optimized SILVA database that was ex-
panded to include 16S gene sequences from whole-genome sequencing
studies.

Geochemical Analyses. Sediment chl a and pheophytin from ∼1.5 g wet
sediment were extracted in 90% acetone and quantified spectrophoto-
metrically following an acidification method (76). To measure TOC, total
nitrogen (TN), δ13C-TOC, and δ15N-TN isotopic compositions, sediment sam-
ples were dried, decarbonized, and homogenized. Analyses were done on 5-
30 mg of homogenized sediments by elemental analyzer/isotope ratio mass
spectrometry, as described previously (77). Porosity and wet density of sed-
iments were calculated from the wet and dry weights of 2-cm3 sediments.
CH4 concentrations were measured by gas chromatography as published
previously (78). Porewater concentrations of SO4

2− and DIC were measured
by ion chromatography and gas chromatography and were published pre-
viously (79), as were bioavailable Fe(II) and Fe(III) contents, which were
extracted using 0.5 M HCl and measured spectrophotometrically (26).
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Radionuclides. Two HPGe gamma spectrometry systems (ORTEC GMX-120265
and GWL-100230) were used for radionuclides analysis (210Pb, 46.52 keV;
214Pb, 351.99 keV; and 137Cs, 661.62 keV) (80). Efficiencies of gamma de-
tectors were calibrated using IAEA reference materials (RGTh and RGU) and
an in-house secondary standard (“Rock-Falling Mountain Soils”; RMC-AEC
Taiwan). Excess 210Pb was calculated by subtracting 214Pb (used as an index
of 226Ra, i.e., supported 210Pb) from total 210Pb. The activities of radionu-
clides were decay-corrected to the sampling date. All radionuclide data were
calculated on a salt-free dry-weight basis.

Transport–Reaction Models. Biological mixing rates of sediment particles were
modeled based on the steady-state conservation equation for radiotracers
(210Pb) (81) with consideration of biodiffusional and nonlocal mixing effects:

∂
∂x

(φsDB
∂Cs

∂x
) − Fssed

ρs
∂Cs

∂x
− Naφ

s(Cs − Cs
0) − φsλCs = 0, [1]

where x is depth; Cs, the concentration of excess 210Pb; φs, the solid volume
fraction; Fssed, the constant flux of solid sediment to the seabed; ρs, the solid-
phase density; and Cs

0, the excess 210Pb concentration atx = 0; λ is the 210Pb
decay constant. Fixed concentration and zero concentration gradients were
imposed at the sediment–water interface and at 50-cm depth, respectively.
Biodiffusional mixing (DB) and nonlocal mixing (Na) were described by the
following:

DB(x) = DB(0)
2

  erfc(x − xDB

σDB

), [2]

Na(x) = Na(0)  exp[(x − xNa)2
2σ2Na

]. [3]

Parameters that describe the mixing coefficients at x = 0  DB 0( ),  Na 0( )( ),
mixing depth (xDB, xNa), and spread (σDB, σNa) were adjusted to reproduce the
observed excess 210Pb profiles. The bioirrigation coefficients (α) were calcu-
lated by Kristensen et al. (26), by fitting a double-exponential nonlocal ex-
change function (similar to Eq. 3) to the measured DIC profile.

Multivariate Statistics. Statistical analyses were performed in R (www.R-
project.org) and based on ZOTU-level phylogenetic assignments unless
stated otherwise. Chao1 richness, and PCoA and CAP coordinates using Unifrac
and Bray–Curtis distances were calculated using the “phyloseq” package (82).
In the CAP analysis, α, DB, Na, and %Fe(III) were assumed to be zero at >40 cm.
Using the “vegan” package (83), we performed 1) a PERMANOVA analysis
(permutations = 999) to examine the (dis)similarity between different groups
of samples; 2) VPA-RDA to determine how environmental factors individually
or jointly contribute to microbial community variation; and 3) Mantel tests to
examine correlations between microbial and eukaryotic communities. Using
PLS regressions in the R package “plsm,” we examined impacts of reworking
activities on variations of OM distributions (84). A cooccurrence network of
bacterial and archaeal lineages was constructed using Cytoscape (https://
cytoscape.org/).

Data Availability. Gene sequences are available online through the National
Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov (bac-
terial and archaeal 16S, BioProject PRJNA565394; eukaryotic 18S: Nucleotide
accession nos. MN487107-MN488526). All geochemical, qPCR, and modeled
bioturbation rate data are included in Dataset S1.
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70. T. Magoč, S. L. Salzberg, FLASH: Fast length adjustment of short reads to improve

genome assemblies. Bioinformatics 27, 2957–2963 (2011).
71. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing

reads. EMBnet. J. 17, 10–12 (2011).
72. R. Schmieder, R. Edwards, Quality control and preprocessing of metagenomic data-

sets. Bioinformatics 27, 863–864 (2011).
73. R. C. Edgar, UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon

sequencing. bioRxiv:10.1101/081257 (15 October 2016).
74. C. Quast et al., The SILVA ribosomal RNA gene database project: Improved data

processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
75. L. Guillou et al., The protist ribosomal reference database (PR2): A catalog of uni-

cellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic

Acids Res. 41, D597–D604 (2013).
76. M. A. Lever, I. Valiela, Response of microphytobenthic biomass to experimental nu-

trient enrichment and grazer exclusion enrichment and grazer exclusion at different

land-derived nitrogen loads. Mar. Ecol. Prog. Ser. 294, 117–129 (2005).
77. N. Looser, E. Schneebeli-Hermann, H. Furrer, T. M. Blattmann, S. M. Bernasconi, En-

vironmental changes and carbon cycle perturbations at the Triassic–Jurassic boundary

in northern Switzerland. Swiss J. Geosci. 111, 445–460 (2018).
78. S. Flury et al., Controls on subsurface methane fluxes and shallow gas formation in

Baltic Sea sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 188, 297–309

(2016).
79. I. P. G. Marshall et al., Environmental filtering determines family-level structure of

sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 13,

1920–1932 (2019).
80. C.-A. Huh, C.-C. Su, C.-H. Wang, S.-Y. Lee, I.-T. Lin, Sedimentation in the Southern

Okinawa Trough—rates, turbidites and a sediment budget. Mar. Geol. 231, 129–139

(2006).
81. F. J. Meysman, B. P. Boudreau, J. J. Middelburg, Modeling reactive transport in sed-

iments subject to bioturbation and compaction. Geochim. Cosmochim. Acta 69,

3601–3617 (2005).
82. P. J. McMurdie, S. Holmes, phyloseq: An R package for reproducible interactive

analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
83. J. Oksanen et al., The vegan package. Commun. Ecol. Package 10, 631–637 (2007).
84. B. Mevik, R. Wehrens, The pls package: Principal component and partial least squares

regression in R. J. Stat. Softw. 18, 1–23 (2007).

15922 | www.pnas.org/cgi/doi/10.1073/pnas.1917494117 Deng et al.


