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Maximal viral information recovery from sequence
data using VirMAP
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Accurate classification of the human virome is critical to a full understanding of the role

viruses play in health and disease. This implies the need for sensitive, specific, and practical

pipelines that return precise outputs while still enabling case-specific post hoc analysis. Viral

taxonomic characterization from metagenomic data suffers from high background noise and

signal crosstalk that confounds current methods. Here we develop VirMAP that overcomes

these limitations using techniques that merge nucleotide and protein information to tax-

onomically classify viral reconstructions independent of genome coverage or read overlap.

We validate VirMAP using published data sets and viral mock communities containing RNA

and DNA viruses and bacteriophages. VirMAP offers opportunities to enhance metagenomic

studies seeking to define virome-host interactions, improve biosurveillance capabilities, and

strengthen molecular epidemiology reporting.
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Accurate classification of viral sequences in metagenomic
datasets remains challenging despite large advances in
next-generation sequencing and bioinformatics. Current

methods rely on the classification of individual reads and/or
contigs through either alignments1–8 or kmer analyses9,10. These
approaches are all restricted by similar problems including: reads,
contigs, or kmers mapping equally well to different genomes,
codon degeneracy allowing two low-identity nucleotide sequences
to code identical polypeptides, widely varying sequence coverage
impacting assembler heuristics, large amounts of contaminating
sequences, and databases lacking sufficient coverage of the viral
tree of life. While some of these issues are solved by generating
high-quality contigs from an assembly, achieving the necessary
coverage for a quality assembly remains challenging. These issues
are particularly relevant to clinical and environmental virology as
they prevent accurate characterization of viruses from sequence
data alone.

We here develop VirMAP to address the current challenges in
identification and classification of low coverage and highly diver-
gent viruses within metagenomic datasets. VirMAP uses a variety of
techniques including a mapping assembly algorithm combining
nucleotide and amino-acid alignment information in a tiered
manner to build virus-like super-scaffolds, a merging system
designed to hybridize a mapping assembly and a de-novo assembly,
an improvement algorithm that iteratively merges and rebuilds
contig information, and a taxonomic classification algorithm that is
centered around a bits-per-base scoring system (Fig. 1).

Results
Test data sets. To evaluate the performance of VirMAP, we chose
four publicly available datasets that encompass common scenar-
ios faced when determining viral taxonomies (e.g., high vs low
coverage, high vs. low database homology, high vs. low non-viral
background). We also performed the same analysis using a more
standard approach described in the online methods to compare
VirMAP’s output, runtime, and computational results (Supple-
mentary Data 1 and Supplementary Note 1). Finally, to evaluate
the impact of genome coverage in the classification of viral
taxonomies, we ran all samples subsampled at 10%, 1%, and 0.1%,
10 times each. For the results discussed below, VirMAP did not
report any taxonomies with <1000 bits of aggregate alignment
information across all contigs, unless otherwise noted.

Mock Communities. We generated a single viral mock community
(VMC) (BioProject ID PRJNA431646) by combining purified
preparations of seven different viruses (human mastadenovirus B,
human mastadenovirus C, murine gammaherpesvirus 4, coxsack-
ievirus B4 [strain Tuscany], echovirus E13 [strain Del Carmen],
human poliovirus type 1 [strain Mahoney], and rotavirus A) at
different concentrations in phosphate-buffered saline. VMC was
extracted, reverse transcribed with random hexamers, amplified
using barcoded semi-random primers, and sequenced on the Illu-
mina HiSeq2500 platform (2 × 150 bp) at varying sequencing
depths yielding 36,974,536 total reads (Methods). Following stan-
dard adapter trimming and filtering (hg38 and PhiX), 6,180,026
total reads remained. The majority of reads were filtered using
BBDuk due to a high presence of adapter dimers and human gen-
ome contamination (41.75%) likely a consequence of low DNA
concentration in the library preparation.

VirMAP assigned 50.1% (3,099,015) of quality trimmed,
adapter trimmed, and human-filtered VMC reads to viruses. Of
these, 99.99% were assigned to the following: human poliovirus 1
(47.04%), human mastadenovirus C (30.90%), coxsackievirus B4
(13.30%), murid gammaherpesvirus 4 (7.43%), echovirus E13
(0.78%), human mastadenovirus B (0.55%), and rotavirus A (32

reads, 0.0010%) (Fig. 2 and Supplementary Data 2). The
remaining 8 reads were assigned to bosavirus MS-2016a, which
is thought to be a cell culture contaminant present in fetal bovine
serum. The low abundance of rotavirus reads corresponded to the
low titer used to build the VMC. A random subsample and
mapping of the remaining reads not classified by VirMAP
showed high homology to cell culture and mouse host cell lines.
No further investigative efforts were performed.

At 10 and 1% subsampling, VirMAP reported six of seven viral
constituents in all trials, with rotavirus remaining unreported
(Supplementary Data 2). At 0.1% subsampling, VirMAP reported
six of seven viral constituents in eight of the ten trials, rotavirus
remained unreported in all trials. The two trials reporting only
five members missed adenovirus B. In all subsampled trials at all
depths, no viruses other than the expected members of the VMC
were reported by VirMAP.

In addition to processing the VMC dataset with VirMAP, we
applied a standard taxonomic classification method (see “meth-
ods” section) for comparative purposes. The standard approach
reported eight taxonomies. It missed rotavirus but included an
unidentified adenovirus and a misclassified adenovirus taxonomic
call, likely misclassifications of human mastadenovirus B contigs
(Table 1 and Supplementary Data 1). All subsampling trials using
the standard approach failed to report rotavirus, similar to
VirMAP. At 10% subsampling, the standard approach reported
six of seven members of the VMC in only two of ten trials. At 1%
and 0.1% subsampling, the standard approach reported no more
than three and two members of the VMC, respectively
(Supplementary Data 3).

The total number of viral bases reconstructed by VirMAP
(162,705 bp) relative to the full VMC contig set decreased to
55.55, 25.99, and 10.0% for 10, 1, and 0.1% subsampling levels,
respectively. The total viral bases constructed and identified by
the standard approach (60,073 bp) decreased to 24.76, 5.36, 0.11%
for 10, 1, and 0.1% subsampling levels, respectively. These results
highlight VirMAP’s ability to more correctly build viral genomic
reconstructions and assign viral taxonomies despite declining
genomic coverage. In addition to VirMAP and the standard
assembly and mapping approach, we also employed publicly
available taxonomic classifiers that rely on read mapping
(FastViromeExplorer5, VirusSeeker8, Kaiju9, and ViromeScan3),
contig mapping (VirusTAP7, VIPIE2), a combination of both
read and contig mapping (drVM1), or marker gene mapping
(MetaPhlAn26), for comparative purposes using the VMC dataset
(Table 1). Other existing pipelines (e.g. metaVIC11, VIROME12,
VIP13, and MetaVir214) were not included in our analysis due to
unavailability of essential resources such as missing databases and
discontinued web resources.

Using the list of intended viral constituents in VMC, we
evaluated the number of unique viruses and total taxonomic IDs
found to calculate values for precision, recall, and F-score for each
pipeline. Simultaneously, the total number of reads used and the
total number of correctly classified reads were tracked. Precision,
recall, and F-score values for VirMAP were 0.88, 1.0, 0.94,
respectively, on VMC. The recall value indicated that VirMAP
was able to find all expected constituents of the mock community,
however, the presence of a single viral contaminant lowered the
precision value. The F-score shows that VirMAP was highly
accurate. CPU hours used were not tracked as not all methods are
were locally operated. Contig classifying approaches generally had
higher precision values as aligning longer queries minimizes the
chance of a colliding alignment with database entries containing
short errors, e.g., flanking vector sequences. However, such
approaches are not likely to find low abundance viruses due to
most assembler’s inability to make contigs from non-overlapping
reads. Read classifying approaches generally suffer more from
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aberrant database alignments and must implement effective filters
to overcome these errors to achieve higher precision scores.
FastViromeExplorer’s use of the ratio between observed and
expected coverage effectively filters a large amount of noise,
resulting in an excellent precision value. However, read count and
taxonomic rank cutoffs lowered its recall value, similar to most of
the other read classifying pipelines. Marker gene mapping
methods offer a separate solution to classifying taxonomies while
overcoming database contamination issues; however, they are
heavily reliant on properly annotated genome entries as well as
high coverage. In order to effectively find viruses, we believe a
combination of both read and contig mapping approaches must
be effectively used.

To validate the VMC result, a wholly separate mock virome
was evaluated. The novel enrichment technique of viromes
(NetoVir) method for sample preparation was recently described
employing a comprehensive mock viral community of nine
viruses15, and the resulting dataset was made publicly available
(BioProject: PRJNA319556). This mock virome consists of known

concentrations (ranging from 107 to 1010 genome copies per mL)
of nine viruses spanning diverse taxonomic, genomic, and
physical characteristics. We selected the control sample
(SRR3458562), as it represented the least processed dataset, and
analyzed it with VirMAP. A total of 6,707,800 reads (37.04%)
were classified as being of viral origin across 10 distinct viral
lineages, which included the nine viruses in the mock community
(Fig. 3). One additional virus identified in the set was southern
tomato virus, a virus previously observed to co-infect with pepino
mosaic virus16, a member of the mock community. Overall, a
good correlation was observed between the proportion of viral
reads per lineage obtained through VirMAP and those reported
by Conceição-Neto (R2= 0.9972)15.

Following a similar approach to the subsampling strategy with
VMC, the NetoVir dataset was subsampled at 10, 1, and 0.1%, 10
times each, and analyzed using VirMAP and the standard
approach. In all 10 trials at each subsampling depth, all nine
mock community viruses were correctly reported by VirMAP
except for a single trial at 0.1% subsampling where bovine
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Fig. 1 A schematic overview of VirMAP. Data processing with VirMAP is achieved through four main stages (shaded colors) divided into nine major steps
(top left corner). A putative list of viral genomes and protein pseudo-scaffolds are constructed from clustered nucleotide and translated alignments to the
Genbank viral and phage divisions (gbvrl and gbphage). Nucleotide and amino acid pseudo-scaffolds are “built” and merged into a single super-scaffold per
genome. A merged de novo assembly is constructed and merged in, resulting in contigs that are then refined using an iterative rebuild process. The
improved dual assembly is filtered against a comprehensive Genbank database and are taxonomically classified using a novel per-base contig scoring
system
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alphaherpesvirus 1 was missed (Supplementary Data 4). Viruses
other than those present in the mock community were reported
by VirMAP. In five trials at 10% and five trials at 1%
subsampling, a contig likely belonging to Dickeya virus Limestone
was not incorporated into the main Dickeya virus contig and was

subsequently underclassified as “myoviridae”. The unincorpo-
rated contig maps across the 5′ and 3′ ends of the pseudo-
constructed genome, suggesting a circular genome or chimeric
misassembly. However, VirMAP’s merging engine assumes a
linear genome and is unable to incorporate contigs in this fashion.
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Fig. 2 Viral Mock Community (VMC) calculated genome coverage depth and span from remapping source reads to VirMAP reconstructed genomes. The
VMC consists of purified preparations of seven different viruses (a) human poliovirus type 1 [strain Mahoney], (b) echovirus E13 [strain Del Carmen],
(c) coxsackievirus B4 [strain Tuscany], (d) human adenovirus (b, e) human adenovirus (c, f) murine gammaherpesvirus 4, and (g) rotavirus, combined at
different concentrations in phosphate-buffered saline. Coverage depth and span are represented for each of the viruses in VMC per nucleotide position. For
coverage span, a value of 1 represents a nucleotide position covered with respect to the source genome. VMC is available at BioProject ID PRJNA431646
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In one trial at 10%, 16 reads likely belonging to acanthamoeba
polyphaga mimivirus were classified as “mimivirus”. In one trial
at 10%, 10 reads from southern tomato virus were reported.
Finally, in one trial at 1%, 26 reads likely belonging to Dickeya
virus Limestone were reported as “unclassified phage”. This error
was traced to two database entries, sharing 99% sequence identity
to Dickeya virus Limestone, that were misannotated (see
Supplementary Note 2 for further discussion).

For the standard approach at 10% subsampling, eight trials
reported all nine members of the community, with one trial
missing feline panleukopenia virus and one trial missing human
polyomavirus 1. At 1% subsampling, all ten trials missed
mimivirus, and eight of ten trials missed bovine alphaherpesvirus.
At 0.1%, no trial reported more than six of the nine expected
viruses. The standard approach reported an average of 5.5, 2.8,
and 1.1 erroneous taxonomic IDs per trial at 10, 1, and 0.1%
subsampling, respectively (Supplementary Data 5).

Published metagenomic data sets. To test VirMAP using clinical
samples, we processed a dataset (submitted by University Medical
Center Hamburg-Eppendorf on 2015-05-22 under the title
Unbiased metagenomic RNA sequencing (UMERS)) of 20
respiratory specimens (BAL, sputum and swab) of patients with
seasonal influenza infection and five BAL samples from patients
with influenza-negative pneumonia, (BioProject ID PRJEB7888)17.

The dataset contained 25 samples totaling 178 Gb represented
by 1.75 billion reads generated with both Illumina HiSeq (2 × 100
bp) and MiSeq (2 × 150, 2 × 250, and 2 × 300) chemistries.
Of these, 2,430,488 (0.14%) were determined to be viral
and 327,940 reads were incorporated into contigs greater than
500 bp that were unclassifiable by VirMAP (Supplementary
Data 6). All individual fastq sets were concatenated based on
biosample id and results were compared to those reported by the
authors who used qPCR and sequencing to evaluate the
samples.

VirMAP was able to reconstruct contigs representing not only
all viral genome segments reported by the authors, but also 32
influenza contigs across four samples for which the authors did
not report findings (sample IDs 677, 768, 1116, and 1689)

(Supplementary Data 7). Across all publicly available samples,
VirMAP recruited 193% more reads to contigs determined to be
influenza compared to the authors (UMERS - 263,210 reads,
VirMAP - 509,039 reads).

In two instances, the strongest viral signal determined by
VirMAP disagreed with the reported one (samples 677 and 768).
In both cases, positive H1N1 qPCR results were reported. These
two samples represented the two highest CT values observed for
the H1N1 specific probe (both CT of 34). In sample 677, VirMAP
detected nine influenza A segments and assigned seven segments
to H3N2, one segment (genome segment 4) to H1N1, and one to
Influenza A. This likely explains the authors positive H1N1 result
as the qPCR probe targets genome segment 4. In sample 768,
VirMAP partially reconstructed eight influenza A genome
segments, assigning all of them to H3N2. However, the signal
in this sample was low, consisting of only 60 total reads. The
positive H1N1 qPCR indicates that an H1N1 genome may have
been present at a level below the limit of detection for sequencing.

Additionally, VirMAP determined sample 104 to have the
strongest H1N1 signal among all samples tested based on the
number of recruited reads. However, the authors reported a
negative H1N1 qPCR result for this sample. Mapping the probe
sequence against VirMAP’s reconstructed H1N1 segment 4 shows
a mismatch at base 15 of the probe sequence, potentially
explaining their negative result.

The authors also report five samples containing viruses other
than influenza. VirMAP found the same viruses in three out of
five samples. The data for the remaining two reported samples
were not among the publicly available files. In addition to non-
influenza viruses reported by the authors, VirMAP was able to
detect human herpesvirus 4 in two samples, human parainfluenza
virus 3 in a sample other than the one reported by the authors,
and astrovirus HK2014 in one sample.

The standard approach for this dataset yielded an average of
6.13 influenza segments per sample across 16 of the 20 known
positive samples, with the remaining four samples producing no
results, mirroring the authors original result. Segments pro-
duced by the standard approach consisted of 1.07 contigs
per segment on average (Supplementary Data 8). For

Table 1 Comparative analysis of ten viral sequence classifiers

Pipeline Mapped Reads (%) Unique Calls Viral Taxonomies CCR (% of mapped) Precision Recall F-score

VirMAP 3,099,015 (50.1%) 8 8 3,099,007
(99.999%)

0.88 1.00 0.94

Read classification

FastViromeExplorer 2,710,170 (43.85%) 7 4 2,710,170 (100%) 1.00 0.57 0.73
VirusSeekera 10,750 (0.174%) 16 16 1,467 (13.65%) 0.31 0.57 0.40
Kaiju 2,287,962 (37.02%) 227 227 433,243 (18.94%) 0.09 1.00 0.17
ViromeScan 663,185 (10.73) 427 354 614,016 (92.586%) 0.01 0.57 0.02

Contig classification

drVMb 22,404,813
(362.54%)

673 158 18,235,876 (81.39%) 0.35 1.00 0.52

VirusTAP NA 5 5 NA 0.6 0.43 0.50
VIPIEc ~109633 (~1.77%) 13 11 ~23,731 (~21.65%) 0.30 0.71 0.42

Standard methodd 2,319,573 (37.53%) 8 8 2,273,193 (98.03%) 0.75 0.86 0.80
Marker gene classification

MetaPhlAn2 NA 5 5 NA 0.40 0.29 0.34

The Viral Mock Community (VMC) dataset (6,180,026 trimmed reads) was processed through nine different pipelines for viral taxonomic classification. VMC was generated by combining purified
preparations of seven different viruses (human adenovirus B, human adenovirus C, murine gammaherpesvirus 4, coxsackievirus B4 [strain Tuscany], echovirus E13 [strain Del Carmen], human poliovirus
type 1 [strain Mahoney], and rotavirus A) in phosphate-buffered saline. Unique calls refer to the distinct database entries reported while viral taxonomies represent a reduction of unique calls to NCBI
taxonomic ID. CCR: Correctly Classified Reads. Precision: (true positives/true positives+ false positives). Recall: (true positives/true positives+ false negatives), F-score: harmonic average of recall and
precision scores 2 × ((P × R) / (P+ R))
aVirusSeeker applies filtering and clustering techniques to the reads and final counts are derived from this reduced set
bdrVM internally counts identical reads across multiple reported entries, so the total counts can exceed 100%
cVIPIE reports reads as counts per 100,000 reads, the approximation is a rescaled amount against the original read counts
dThe standard approach employs a metagenomic assembly using MEGAHIT and a sequential top-hit mapping classification using BLASTn and BLASTx
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comparison, VirMAP yielded an average of 9.05 influenza
segments per sample across all 20 samples. All segments
reconstructed by VirMAP consisted of one contig
per segment. The average number of segments reported by
VirMAP exceeded the number of Influenza genome segments
because VirMAP identified multiple influenza virus subtypes
per sample across the majority of samples. The extra segments
were found in trace amounts and below the threshold that any
assembler could use to generate a contig.

The Influenza dataset was subsampled using the same
conditions as the mock communities described above. At 10%
subsampling, the standard approach reported influenza in 10 out
of 20 samples in at least one trial. For trials where influenza was
found, an average of 5.23 influenza segments were reported. The
remaining 10 samples failed to produce influenza contigs in any
trial. Using the same dataset, VirMAP reported influenza across
all 20 samples in at least one trial. For trials where influenza was
found, an average of 6.55 influenza genome segments were
reported. At 1% subsampling, the standard approach, when
finding influenza, averaged 2.73 segments across 7 samples, while
VirMAP, when finding influenza, averaged 4.22 segments across
18 samples. At 0.1% subsampling, the standard approach, when
finding influenza, averaged 2.1 segments in one sample, while
VirMAP, when finding influenza, averaged 2.23 segments across
17 samples. However, in two samples the influenza signal was
below the default aggregate cutoff of 1000 bits per taxon, and thus
would not have been reported. (Supplementary Data 9). We
compared the total reconstructed sequence length of influenza
segments between VirMAP and the standard approach at all
levels of subsampling. Results show VirMAP improves both the
length and contiguity of influenza segments when using the total
dataset and at all levels of subsampling (Fig. 4).

These results highlight drawbacks of assembly-based classifica-
tion methods, primarily the dependency on overlapping read
segments, which precludes assembly of low abundance viruses. As
VirMAP combines information derived from both read mapping
and read assembling, it is able to extract and classify viral
information even if the underlying coverage of a virus is well
below the abilities of a de-novo assembly engine. This is especially
apparent in the 0.1% subsampling set; VirMAP still reported the
influenza virus in 17 out of 20 samples, while the standard
approach reported influenza virus in only one.

To test VirMAP against a more complex metagenomic dataset,
we used a data set submitted by the University of Brasilia on 01

August 2017 under the project title “Viral diversity of the Federal
District of Brazil” (BioProject ID PRJNA395784). This dataset
was chosen due to its recent submission and potentially complex
viral community composition. Four samples totaling 19.23 Gb
represented by 199.67 million reads generated with Illumina (2 ×
100 bp) chemistry from a TruSeq RNA library with a ribosomal
depletion step were processed through VirMAP. Of these,
4,932,775 (2.47%) were determined to be viral and 2,062,096
million reads were incorporated into contigs greater than 500 bp
that were unclassifiable. A total of 489 viral taxonomies were
identified in all four samples, of which Laverivirus UC1 captured
the most reads (1,046,272 reads). The virus reported in all four
samples that captured the most reads (428,511) was maize rayado
fino virus. Sample SRR5868318 contained a high prevalence of
human enteric viruses and was collected in June of 2014
(Supplementary Data 10).

This dataset was also processed with the standard assembly and
mapping approach described previously. Initial standard results
were filtered to remove taxa IDs with <300 aggregate bits of
alignment, which lowered the average number of taxa IDs
reported per sample from 480 to 236 (Supplementary Data 11
and Supplementary Data 12). Three-hundred bits of aggregate
alignment information was empirically chosen as a filtering cutoff
for the standard approach since the number of taxa containing
only contigs with very weak (50–100) bit-scores increased
substantially below that threshold. This suggests that the majority
of taxa IDs found by the standard approach below that threshold
are potentially very low information hits. For VirMAP, the
internal pipeline filters all viral contigs below 300 bits of
information, and the standard table construction script further
filters taxa IDs that score below an aggregate 1000 bits of
alignment information. 300 bits is the default threshold as contigs
containing less aggregate alignment information were commonly
observed to be false positives. VirMAP found an average of 423
taxa IDs per sample in the raw unfiltered output (300 bits/contig
minimum), and reported an average of 231 taxa IDs per sample
in the filtered table output (1000 bits/taxa ID minimum). As these
samples are environmental, there is no underlying ground truth
to compare against. The standard approach found 4.3 megabases
of contigs that could be mapped to a viral taxonomy; when
filtered at 300 aggregate bits per taxon, 4.0 megabases of contigs
could be mapped to a viral taxonomy. These results suggest that
the taxa IDs filtered by the 300 bit threshold are from short
contigs and not longer contigs containing short and weak
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Fig. 3 VirMAP analysis of an external mock community. A mock virome control sample (SRR3458562) recently reported15 was processed with VirMAP. A
total of 5,969,272 reads (32.96%) were classified as being of viral origin across 10 distinct viral lineages which included the nine viral constituents of the
mock community. Additionally, one putative contaminant virus was identified: southern tomato virus
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alignments to viral sequences. VirMAP in its raw output was only
able to construct 1.69 megabases of contigs, and 1.04 megabases
of contigs when filtered. The disparity between total contig length
reported is likely caused by the standard assembly creating longer
low coverage contigs that have slight homology to known viral
proteins, as only the top scoring alignment per contig is used for
classification. One example would be a prophage embedded in
highly divergent bacteria serving as a contig’s best alignment
event. Such a contig would contribute its full length to the total
length of viral contigs on the weight of a single low query
coverage alignment event. Contrasting with VirMAP’s strategy to
use as much alignment information as possible when calling a
contig’s taxonomic origin, this issue causes the standard approach
to be prone to false positives, especially in low scoring situations.
The amount of contigs per taxa ID in the filtered datasets was
2.29 for VirMAP and 12.25 for the standard approach. For the
raw datasets, VirMAP assigned 1.81 contigs per taxa ID while the
standard approach assigned 6.94. This shows that the standard
approach created more contigs containing only low scoring
alignments to a single taxa ID. Upon filtering, the remaining taxa
IDs with higher amounts of alignment information are much
more fragmented on average. VirMAP exhibits this behavior as
well, albeit at a much lower rate.

The four samples from the Brazilian sewage set were
subsampled according to the same conditions as the mock
communities and Influenza dataset. When unfiltered, the
standard approach yielded an average of 274 taxa per sample
per trial at 10% subsampling (Supplementary Data 13). The 1 and
0.1% trials yielded an average of 68 and eight taxa, respectively.
When filtered, the standard approach yielded an average of 112,
30, and 4 taxa per sample per trial for the 10, 1 and 0.1% trials,
respectively. VirMAP averaged 453, 189, and 77 taxa per sample
per trial for the unfiltered tables, and an average of 174, 62, and
24 taxa per sample per trial for the filtered tables of the 10, 1 and
0.1% trials, respectively. For the 10% unfiltered set, VirMAP
reported more taxa IDs than the non-subsampled unfiltered run.
An inspection showed this to be caused by different random
portions of low coverage, low identity viruses not containing
enough aggregate alignment information to enter the LCA

engine, resulting in an overclassification of contigs. However,
when filtering using the default 1000 bit threshold this artifact
disappeared. Comparing either filtered or unfiltered tables, the
drop-off in detectable taxa when subsampling was not as steep
with VirMAP, suggesting a more gradual drop off in the retrieval
of meaningful information at increasingly suboptimal coverage
levels. A qualitative comparison on how the pipelines presented
in Table 1 performed on the Influenza and Brazil datasets can be
found in Supplementary Note 3.

Discussion
Here we present a pipeline for viral metagenomics that aims to
maximize viral information recovery and reconstruction to pro-
vide the highest level of taxonomic resolution possible. It operates
in a manner independent of coverage depth and offers parameters
that can be modified to tune the sensitivity/specificity tradeoff
(Supplementary Data 14). VirMAP was created out of the
necessity to accurately define viral taxonomies from clinical and
environmental samples which lacked closely related database
entries. This pipeline provides a unique methodology for viral
detection and classification with relevance in clinical virology,
viral surveillance, and molecular epidemiology. Overall, VirMAP
offers a major advancement over existing viral classification
pipelines in the accurate detection and identification of viral
sequences from metagenomic datasets and provides the user with
intermediate and final outputs to continue post hoc investigation
for case-specific studies.

Methods
Contig generation. VirMAP employs both de-novo and mapping assembly stra-
tegies to create a working set of contigs. For the mapping arm, input reads are
dereplicated and digitally normalized18 using default parameters. These two steps
reduce the amount of data used while minimizing information loss; however, they
are not required. Processed reads are aligned to a comprehensive viral nucleotide
and viral protein database sourced from the Genbank viral (gbvrl) and phage
(gbphg) divisions using BBMap19 and DIAMOND20, respectively. All translated
alignments within 20% of the subject sequence and within 8% of the top scoring
subject per query are reported. For nucleotide alignments the thresholds are 90%
and 5%, respectively. These thresholds were empirically found to minimize false
positive centroids in the downstream clustering step. Reads are assigned to viral
genomes by nucleotide and translated alignments resulting in a set of reads per
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genome. Genomic read sets are then filtered by Jaccard distance if high numbers of
non-unique read membership are observed relative to larger sets. Each nucleotide
and amino acid entry associated with a non-filtered genome is individually
reconstructed using a naive pileup assembly. Reconstructed protein coding
sequences are tiled on top of their originating genome via their annotated CDS
positions. Disagreements within an assembly are masked. If there are disagree-
ments between the nucleotide and amino-acid mapping assemblies, precedence is
given to the nucleotide call. The entire process creates a pseudo-assembled
nucleotide super-scaffold representing coherently assembled viral information.
VirMAP’s mapping reconstruction performs well even in situations where an
underlying genome has both low read depth and high divergence from the nearest
known databaszae entry. For the de-novo arm, the full read set undergoes a multi-
kmer de-novo assembly using either MEGAHIT21,22 or Tadpole19, or both. This
step can provide secondary confirmation of the pseudo-constructed contigs and
can allow viral genomes without any nearby database entry to potentially be
constructed if coverage is sufficient.

Iterative assembly improvement. All constructed contigs are mapped to a custom
database described in the Taxonomic determination section. Contigs that map out-
side the viral superkingdom are filtered. Filtering is accomplished with the same
technique used in the taxonomic determination step described below. Dereplicated
reads are mapped to the remaining contigs and a continuous cycle of merging,
mapping, piling up, and re-assembling is carried out until all contigs converge.
Merging is accomplished by iteratively mapping the contigs to themselves and joining
any two with significant overlap. Reassembly is accomplished using a naive pileup
mapping assembly of the dereplicated, non-normalized read set. After convergence,
the reads are mapped to the final set of contigs and read abundance is calculated.

Taxonomic determination. To determine the taxonomic origin of a contig, Vir-
MAP employs a two-pass taxonomic scoring algorithm that considers alignments
in terms of maximum bit-score per base achieved by a subject taxon for each
contig, as well as the relative bit-score per base for each subject entry per taxon
weighted against the best scoring taxon at each position. Pass one calculates a
maximum achieved bit score per base for each subject taxon by dividing the bit
score by the aligned length for each alignment event and applying the fractional
score to the subject taxon across the bases covered. Top scores per taxon and
globally across all taxa are tracked for every covered base position. The top scores
for each subject taxon across all positions covered by the taxon’s alignment events
are summed up and represent a taxon’s best potential alignment independent of
subject contiguity. In pass two, once the global top scores per position are known,
each subject alignment’s bit score per base is weighted against the global top score
per position. All second pass weighted scores per subject entry are summed up for
each taxon across all base positions. This second pass creates a secondary store of
information akin to an aggregate overall identity of a taxon’s database entries
relative to the contig in question. Essentially, the scoring algorithm considers the
best possible alignment of a query against an individual taxon (pass one), as well as
the aggregate relative accuracy of all alignments achieved by a taxon (pass two) as
two independent scores per query. This helps in events where a small amount of
misclassified entries in a taxon are slightly closer to the contig in question relative
to the true taxon of origin. By using the secondary database “volume,” misclassified
entries have a much lower chance of causing a contig classification error as all of
the neighboring entries in their taxon will contribute much lower amounts of
“volume.” All scores are independently calculated from nucleotide and translated
alignments of the improved contigs to a comprehensive Genbank database span-
ning 16 separate divisions (Supplementary Note 4). Pass two nucleotide scores are
weighed down exponentially while protein scores are weighed down tetrationally.
Since protein sequences are generally more conserved, any mismatch in amino acid
alignment is penalized more heavily. A contig is filtered if its top scoring pass one
taxon is not in the superkingdom virus, or if > 50% of its aligning bases do not
resolve to the superkingdom virus. All pass one taxa scoring within a dynamically
calculated radius per contig are considered in a rank-wise lowest common ancestor
(LCA) algorithm. The radius varies based on the best scoring taxon relative to a
hypothetical maximum scoring self-alignment as well as the total bits of infor-
mation possible given the maximum self-score. In the LCA engine, each taxon
contributes its pass two score to its parent taxon if there is no taxon scoring above a
dynamically calculated majority threshold at the current rank. The threshold is
calculated by the total amount of database “volume” calculated in pass two across
all taxa entering the LCA. As the total input database volume increases, the amount
of database volume required above a 50% majority decreases. Thus, if a viral taxon
is poorly represented in the database, a higher threshold is required to assign
taxonomy. Conversely, if a taxon is very well represented, only a slight majority is
required. If no taxon exceeds the threshold, the contig is assigned to the taxon that
maximizes pass two score (“volume”) above the viral superkingdom. Pass one
scores are only used as a barrier to entry for the LCA engine

Code availability. The VirMAP software is open-source and available online at
https://github.com/cmmr/VirMAP. VirMAP is implemented in Perl. For questions,
comments, and notification of software updates, users can follow the VirMAP
GitHub page. A document titled VirMAP_program_usage_and_options_table.xlsx

describing command line options and a description of the software components
used is available through GitHub.

Data availability. The raw sequence datasets generated and analyzed during the
current study are available through the Sequence Read Archive as follows: Viral
Mock Community, BioProject ID PRJNA431646; NetoVir mock community,
BioProject: PRJNA319556; Influenza dataset, BioProject ID PRJEB7888; Brazil
dataset, BioProject ID PRJNA395784. The authors declare that all other data
supporting the findings of this study are available within the article and its sup-
plementary information files, or are available from the authors upon request.
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