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Pace mapping is commonly used to locate the origin of ventricular arrhythmias,
especially premature ventricular contraction (PVC). However, this technique relies on
clinicians’ ability to rapidly interpret ECG data. To avoid time-consuming interpretation
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hits (37/47) and fewest misses (9/47), and it narrows down the target range most, from
27.62 + 3.47 mm to 10.72 + 9.58 mm among 54 target sites. It is expected to be
applied in the real-time prediction of the origin of ventricular activation to guide the
clinician toward the target site.
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INTRODUCTION

Premature ventricular contraction (PVC) is one of the most common ventricular arrhythmias
encountered in clinical practice, occurring in 1-4% of the general population (Kostis et al., 1981).
Frequent and repetitive PVCs can increase the risk of arrhythmia-induced syncope, ventricular
dysfunction, and sudden death (Ahn, 2013). Hitherto, catheter ablation has become an important
therapy in the management of ventricular arrhythmias (Al-Khatib et al., 2018). In the last decade
(from 2000 to 2012), the annual ventricular tachycardia (VT) ablation volumes have quadrupled
(Hsia and Xiong, 2019). Also, multiple studies have shown that catheter ablation can be more
effective in reducing arrhythmia recurrence than anti-arrhythmic drugs (Sapp et al., 2016).

It is of therapeutical importance to localize the origin of abnormal ventricular activation before
catheter ablation. The localization can be done by several approaches. Activation mapping is the
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most direct technique which can be applied in patients with
frequent PVCs (Adams et al., 2012). Yet, it requires time-
consuming intracardiac mapping by moving the catheter to
different sites of the ventricles, and it can only be performed in a
small number of patients who can endure a sustained VT during
the whole mapping operation. Since the origin of PVC largely
determines the QRS morphology of 12-lead ECG (Josephson
et al., 1982), an alternative technique, known as pace mapping,
can be applied in more patients by physically stimulating multiple
ventricle sites until finding the site where pacing reproduces the
morphology of spontaneous PVC (Kobayashi, 2018). However,
this practice relies heavily on rapid and accurate manual
interpretation of ECG.

In order to automatically analyze the information of pacing
sites and progressively guide the clinician to the origin of
PVC, several methods have been developed. One method is
to train a universal model from a cohort of patients based
on machine learning methods (Sapp et al., 2017; Zhou et al,,
2019). However, due to anatomical and physiological variations
in patients, there is a limited accuracy when a universal model
is applied to a new patient. An alternative strategy is to build
patient-specific prediction models. To our knowledge, some
studies have used the image-based simulated ECG data to train
a customized prediction model for each patient (Potse et al,
2000; Yang et al., 2018) and the domain adaptation method has
newly been applied to modify the prediction model with clinical
data to account for the potential errors in the simulation data
(Alawad and Wang, 2019).

In addition to the image-based simulation method, some
simpler but less computational models based on information of
multiple pacing sites have also been investigated. Lately, the QRS
integrals (QRS-Ints) of 12-lead ECG have been used to predict
the 3D coordinate of the PVC origin directly (Sapp et al., 2017;
Zhou et al., 2018). Besides, the relationship between distance and
change in 12-lead ECG morphology has also been inspected to
assist in the localization of PVC origin (Li et al., 2017, 2018; Odille
et al.,, 2019; Dharmaprani et al., 2020).

Inspired by previous studies, in this paper, a novel model
only based on the information of pacing sites is proposed
and compared with three existing models [QRS-Int Model
(Sapp et al,, 2017), dis-E12 Model (Li et al., 2017), and dis-
corr Model (Dharmaprani et al., 2020)]. We evaluated these
models in three patients with PVC and found that the proposed
model was slightly superior to the other three models. This
method is very suitable for the location of PVC origins in non-
organic heart disease.

MATERIALS AND METHODS

Data

The data used throughout this study is obtained from the
Experimental Data and Geometric Analysis Repository (EDGAR)
database (Aras et al, 2015). The data were collected during
endocardial pacing from three PVC patients. The patients were
consented for an add-on experimental procedure involving
ventricular pacing, performed according to a protocol approved

by the ethical committee of Charles University Hospital, Prague,
Czechia (Erem et al., 2014). For each patient, there is a mean
of 25 £ 6 distinct sites of endocardial pacing with known
coordinates. For each pacing site, a mean of 28 + 8 ECG beats
are available and a representative beat is calculated by averaging
these beats. The equation is as follows:

N
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where V; and Vi(”) are the ith-lead ECG signals of representative
beat and beat n, respectively.

Models

QRS-Int Model

The QRS-Int values were proposed by Sapp et al. (2017) as
predictor variables to fit the geometric coordinate system of the
heart. A statistical estimate of the coordinates %, J, and Z for
any pacing site can be obtained by fitting the multiple linear
regression equation with intercept. The equation is as follows:
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where @;, Ei, and y; are estimated regression coefficients, and I;
represents the QRS-Int. To minimize the training set of required
pacing sites, three optimal predictors (the initial 120-ms QRS-
Int of leads III, V2, and V6) were found by exhaustive search
(Sapp et al., 2017). Then, the least-square method was used to
solve 4 equations (k = 3) to obtain the patient-specific QRS
integral model (QIM). We used at least 5 pacing points to
avoid matrix singularity. The best regression coefficients can be
calculated by least-square regression (Sapp et al., 2017). Once
the regression coefficients best fitted for the training-set data are
found, they can be used for prediction of the unknown site. Here,
the initial 120-ms QRS-Int values are extracted manually from the
representative beat of each pacing site.

dis-E12 Model

The E12 value proposed by Anthony et al. (Li et al., 2017) can be
used to quantify the difference of 12-lead ECG between 2 pacing
sites.
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where V and V" represent 2 pacing beats being compared, which
are 150-ms waveforms centered on the maximum of the 12-lead
composite signal (Li et al., 2017), and Vjj and Vj; represent the
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voltages of one moment of the ECG. N is the length of the ECG
signal. i ranges from 1 to 12, representing the index of 12 leads. dis
represents the Euclidean distance between pacing sites. Similarly,
the patient-specific dis-E12 model (DEM) can be solved by
origin-constrained least-square linear regression. After that, the
E12 value between the unknown site and each known site is
calculated and then used to estimate the corresponding distance
dis' fori 1,2,---, m. Finally, by minimizing the following cost
function J, a statistical estimate of coordinates %, y, and Z for the
unknown site can be found.

] =YW E—xP+ G+ G—np— i @)
i=1
dis-Corr Model

The correlation coefficient (Corr) proposed by Dharmaprani et al.
(2020) can be used to quantify the similarity of ECG morphology
between 2 pacing sites.
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where r(X,Y) represents the Pearson correlation coeflicient
between time series X and Y. Moreover, the Corr value is the
average result of 12 leads. Similarly, the patient specific dis-
Corr model (DCM) can be solved by constrained least-square
linear regression, and the Corr value between the unknown site
and each known site can also _be calculated and transformed
into the estimated distance dis’ for i 1,2,---,m. Finally,
by minimizing the cost function J presented in Eq. (4), a
statistical estimate of coordinates X, , and Z for the unknown
site can be found.

dp-dw Model

In this study, we observed a phenomenon that there are
some connections between waveform morphology and physical
position. Figures 1, 2 show two examples based on simulation
data and real data, respectively. The simulation data were
generated by an isotropic ventricular simulation model with
electric conduction rate of 0.7 m /s (Schulze et al., 2015). As
can be observed from Figure 1, points 1, 2, 3, 4, and 5 are
almost on the same line, while points 3, 6, and 7 are almost
on another line. Figure 1B shows the splicing signal of 12-lead
ECG in accordance with positions, and Figure 1C shows the
waveform difference between each pair of positions. It seems
that the waveform differences on the same line are more similar,
while those on different lines are less similar. For example,

s31, s32, s34, and s35 are similar with each other and so
are s36 and s37, but s31 and s37 are less similar. Then the
real data are extracted from the first patient. As can be seen
from Figure 2, points LVP11, LVPI, and LVP20 are almost on
the same line, while LVP18 and LVP4 are almost on another
line. Besides, the two lines are nearly parallel. Similarly, we
observed the similarity of waveform differences on the same
line. We also observed the similarity of waveform differences
between parallel lines.

The above phenomenon may be explained by the theory of
electrocardiographic dipoles. During ventricular depolarization,
electric dipoles can be formed between depolarized and non-
depolarized regions, and the integrated vector of all dipoles
can be recorded by 12 leads from different positions and
directions. The recorded voltage on each lead at one moment
is related to the distances between the recording electrode
and the electric dipoles, and it is also related to the cosine
angles formed by the orientation of the lead axis and the
directions of myocardial depolarization. When a ventricular
premature occurs, the depolarization wave spreads from the
earliest excitation point to all sides, and the directions of
electric dipoles are the same as the directions of myocardial
depolarization. When the earliest excitation point moves along a
certain direction, the electric dipoles will change most in the same
direction, which may lead to more obvious waveform changes
in leads parallel to the direction and less obvious waveform
changes in leads perpendicular to the direction. Therefore,
there might be a certain relationship between the waveform
changes of 12-lead ECG and the position changes of the earliest
excitation point.

Based on these observations, we proposed a novel prediction
model based on the assumption that there are some counterpart
connections between the spatial domain and the morphological

domain. As Figure 3 shows, P;j and Wj; represent the vector of
position difference (dp) and the vector of waveform difference

(dw) between point i and point j, respectively. Here, W;
represents a one-dimensional vector formed by stitching 12 time-

series (each of 150-ms) of pacing site i together, and Wj; is

obtained by subtracting IX/',- from W;. Supposing Eq. (6) holds in
the spatial domain, and then Eq. (7) holds in the morphological
domain, and vice versa.

P14 =0p-P12+6; - P13 (6)
Wig =60 - Wip 401 - Wi3 (7)

Figure 4 illustrates the establishment and prediction process
of the dp-dw model (DDM). As shown in the figure, points 1, 2,
and 3 are the known sites whose 12-lead ECG signals and physical
locations are known by us, while point O is the unknown site
whose 12-lead ECG information is known by us, but its physical
location needs to be estimated by algorithm. Of course, the actual
physical location of point O is known, but we pretend not to know
that. Moreover, we use the waveform difference between point
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A View of ventricles B Splicing signal of 12-lead ECG
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FIGURE 1 | Example of connections between wave morphology and physical positions on simulation data. (A) View of ventricles. Yellow points 1, 2, 3, 4, 5, 6, and 7
are simulated paced points. Points 1, 2, 3, 4, and 5 are almost on the same line, while point 5, 6, and 7 are almost on another line. (B) Splicing signal of 12-lead
ECG. The splicing signals are one-dimensional vectors formed by stitching 12 time-series (each of 150-ms) of corresponding points. (C) Waveform difference
between two points. The waveform differences are extracted by subtracting one waveform vector from another waveform vector.
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FIGURE 2 | Example of connections between wave morphology and physical positions on real data. (A) View of ventricles. The points are paced points. (B) Splicing
signal of 12-lead ECG. The splicing signals are one-dimensional vectors formed by stitching 12 time-series (each of 150-ms) of corresponding points. (C) Waveform
difference between two points. The waveform differences are extracted by subtracting one waveform vector from another waveform vector.
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FIGURE 3 | Diagram of the counterpart connections between spatial domain

and morphological domain.

O and its adjacent points to estimate its location. The vectors of
dp and dw between each pair of known sites are calculated as

[AP] | Pi12,Pi3| and [AW] Wiz, W13 |, and the vector of

dw between the unknown site_and each known site is calculated
as [A W*] Wio, W20, W30 |. Analogously, the transfer matrix
[6] mapping [AW] to [A/VFk ] can be found by least-square
regression [Eq. (8)]. Then, by applying the same transfer matrix
[6] to the spatial domain, the estimated vector of dp between the
unknown site and each known site can be calculated as shown in
Eq. (9). Finally, a statistical estimate of coordinates %, y, and Z for
the unknown site can be calculated as Eq. (10).

[AW*] =[AW] x [0]

(10)

Figure 5 shows an example of using DDM to predict the PVC
origin. In Figure 5A, the red point represents the unknown site,
the green points represent the known sites, and the yellow point
represents the predicted position. Figure 5B shows the waveform
differences (dws) between the known sites, and Figure 5D shows
the dws between the known sites and the unknown site. By using
least-square regression, the estimated dws between the known
sites and the unknown site can be transformed from the dws
between the known sites, as Figure 5C shows. Finally, by applying
the same transfer matrix [6] in the spatial domain, the position
differences (dps) between the known sites and the unknown site
could be calculated. And by executing Eq.(10), the predicted
position was obtained.

Emulation of Clinical Protocols

Target Site Selection

Two target site selection schemes were adopted for different
purposes. First, in order to evaluate the hit rate (a hit occurs when
the predicted site is within 15 mm of the target), the target site is
defined as the site with at least 5 adjacent sites which are greater
than 15 mm and less than 35 mm away from it, and a total of 47
pacing sites meet the conditions. Secondly, in order to evaluate
the efficiency of different models in narrowing down the target
range, the target site is defined having at least 5 adjacent sites
within the range of 35 mm of it, and a total of 54 pacing sites
meet the requirement. Once a target site is selected, its adjacent
sites that meet the corresponding definition serve as potential
modeling sites. In this study, the modeling sites are those whose
physical locations and corresponding 12-lead ECG signals are
known, while the target sites are those whose 12-lead ECG signals
are known, but their physical locations need to be estimated
by the algorithm.

0] = (AW]T x [AWD ™! x [AW]T x [AW*]  (8)
[AP*] = [AP] x [0]

[AP*] = [P0, P, P] 9)
20 30

011

= 921

031

Morphological domain

FIGURE 4 | Establishment and prediction process of DDM.
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FIGURE 5 | An example of using DDM to predict the PVC origin. (A) View of ventricles. The green points represent known sites, the red point represents the
unknown site, and the yellow site represents the predicted site. (B) Vector of waveform differences between known sites. For example, W12 is extracted by
subtracting the waveform of point 1 from the waveform of point 2. (C) Mapping process. By least-square regression, the estimated waveform differences between
the known sites and the unknown sites can be transformed from the waveform differences between the known sites. Then by applying the same transfer matrix in
the spatial domain, the position differences between the known sites and the unknown site can be calculated. (D) Vector of waveform difference between known
sites and unknown site. The ground-truth waveform differences are shown with solid lines, while the estimated waveform differences are shown with dotted lines.
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FIGURE 6 | Flowchart of modeling and prediction.

Modeling and Prediction
Figure 6 shows the flowchart of the process of modeling and
prediction. It can be divided into the following six steps.

Step 1: Initialize modeling sites. The 3 or 5 farthest unused
potential modeling sites (3 for DEM, DCM, and DDM, and 5
for QIM) from the target site are selected as initial modeling

sites, and they will be removed from the list of unused potential
modeling sites. For example, supposing point 0 is selected as
the target site, and its adjacent points 1, 2, 3, 4, 5, and 6 match
the definition of potential modeling sites. Therefore, the initial
list of unused potential modeling sites is (Kostis et al., 1981;
Adams et al., 2012; Ahn, 2013; Sapp et al., 2016; Al-Khatib et al.,
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2018; Hsia and Xiong, 2019). We first pick out three farthest
modeling sites to predict the coordinates of point 0. Assuming
points 1, 2, and 3 are selected, then we will remove them from the
list of potential modeling sites that have never been used, so as
not to select the duplicate modeling sites next time. Hence, the
list will be updated to Adams et al. (2012), Sapp et al. (2016),
Hsia and Xiong (2019).

Step 2: Train the models mentioned above to predict
the target site.

Step 3: Termination judgment. If there are no unused potential
modeling sites left, terminate. If the predicted site hits the
target, terminate.

Step 4: Evaluate predicted site. If the predicted site is outside
35 mm of the target site, it is not credible, skip to step 6.

Step 5: Pick out a nearest site from the unused potential
modeling sites if it is within 15 mm of the predicted site, then
remove it from the list of unused potential modeling sites and
skip to step 2. Otherwise, there is no unused potential modeling
site that can replace the predicted site, turn to the next step.

Step 6: Pick out a site that is farthest from the geometric center
of current modeling sites to obtain as much spatial information as
possible, and remove it from the list of unused potential modeling
sites and skip to step 2.

RESULTS

Hits and Misses

A total of 47 target sites are used to evaluate the hit rate of
four models. As Figure 7A shows, the proposed DDM presents
with the most hits (37/47), the fewest misses (9/47), and one
early termination. Here an early termination means that the
reduction of estimated error is interrupted by lack of potential
modeling sites. Then, slightly inferior to DDM, DEM performs
with 35 hits, 11 misses, and one early termination. Finally,
inferior to DDM and DEM, QIM and DCM achieve with 31 hits,
14 misses, one early termination and 29 hits, 18 misses, and no
early termination, respectively. In addition, when the number of
modeling sites is 5, DDM has much more hits than other models.

Estimated Error

Figure 7B presents the trend of estimated errors of four models
with the increase of modeling sites. It must be noted that for
each target site, the estimated error remains unchanged after
minimization. As can be observed from the figure, with the
increase of modeling sites, the estimated errors of four models
tend to decrease, especially when the number of modeling
sites is less than 8 when most of the samples remained non-
minimization (see Figure 7A). In terms of decline velocity of
estimated error, DCM and DDM perform better than QIM and
DEM when number of modeling sites is less than 5. Also, in
terms of final estimated error, DEM and DDM perform better
than QIM and DCM.

Reduced Distance
The reduced distance is equal to the minimum distance between
the modeling sites and the target site minus the estimated

error, and a positive reduced distance indicates a reduction in
the unknown range of the target by modeling and prediction.
Figure 7C shows the reduced distances of four models with the
increase of modeling sites. For each number of modeling sites,
samples that have reached the minimum estimated error are not
counted. As the figure shows, for different numbers of modeling
sites, the mid-values of reduced distances of four models are
almost positive, indicating that four models tend to reduce the
unknown range of the target. When the number of modeling
sites is 5, QIM has the largest mid-value of reduced distances
and the corresponding hit rate also rises rapidly (see Figure 7A).
However, due to the cumulative reduction of distances in the
previous two rounds, DDM still has the highest hit rate.

Target Range

A total of 54 target sites are used to evaluate the efficiency of
different models in narrowing down the target range. Figure 8
shows two examples of the predicted sites of four models with
the increase of modeling sites. The initial target range (marked in
orange in Figure 8) is defined by the maximum radius of adjacent
sites, and the final target range is defined by the minimum
estimated error. As the figure shows, the first target site has
an initial radius of 32.92 mm; after modeling and prediction,
the radius is reduced to 8.51, 3.34, 9.86, and 5.19 mm with 4
models, respectively. Similarly, the radius of the second target
is reduced from 33.13 to 8.80, 9.34, 10.98, and 7.39 mm with 4
models, respectively.

Table 1 lists the statistical results of 54 target sites. Among
the four models, DDM narrows down the target range most,
from 27.62 + 3.47 mm to 10.72 £ 6.22 mm, and DEM uses
the fewest modeling sites (5.98 £ 2.49) to minimize the target
range. In addition, t tests show that the estimation errors of
DCM and DDM have a significant difference (P = 0.046), and the
numbers of modeling sites of QIM and DEM, QIM and DDM
have a significant difference (P = 0.007, P = 0.045), indicating
that DCM has the worst estimated error and QIM used the
most modeling sites.

DISCUSSION

This work proposed a novel model for the localization of
PVC target sites based on the mapping between the spatial
domain and the morphological domain. In our study, the pacing
sites are not as adjacent as those generated by clinical pace
mapping, so we selected modeling sites from a larger range to
predict the target site step by step. For inexperienced doctors,
the results obtained by our method may provide a reference
location, so that they can simply determine the most likely
ablation site as soon as possible and shorten the mapping
procedure. We compared our model with three existing models
and found that the proposed model was slightly superior to
other models by achieving the most hits, the smallest estimated
errors, and the biggest reduced distances. Especially when the
number of modeling sites is small, the advantages of our
model are more obvious. By observation of Figure 7, it can
be found that the proposed DDM tends to have more hits,
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FIGURE 7 | Comparison of four models. (A) Accumulation curves of hits and misses for four models. A hit occurs when the predicted site is within 15 mm of the
target. (B) Estimated errors of four models with the increase of modeling sites. The estimated error is the distance between the predicted site and the target. (C)
Reduced distance of four models with the increase of modeling sites. The reduced distance is equal to the minimum distance between the modeling sites and the

smaller estimated errors, and bigger reduced distances than
the other methods when the number of modeling sites is
less than 6.

Then, as can be observed from Table 1, considering the
minimum estimated error, DDM, and DEM perform better than
QIM and DCM. Compared with DDM and DEM, QIM only uses

the information of three-lead ECG, which may account for its
less satisfying result. Though DCM also uses full information
of 12-lead ECG, according to reference (Li et al., 2017), in
contrast to Corr, E12 theoretically has no upper limit and,
therefore, can provide better quantification of the morphology
difference than Corr.
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in the annotated order.
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In addition, there is a certain relationship between DDM and
DEM. In essence, DEM is to establish a scalar model through
the relationship of the module length between dp and dw, while
DDM directly uses the relationship between dp and dw to build

TABLE 1 | Comparison of four models in narrowing down the target range.

Models Radius of neighboring  Estimated error Number of modeling
sites (mm) (mm) sites used

QM Mean: 27.62 Mean: 12.41 Mean: 7.28*2 *3
Std: 3.47 Std: 8.05 Std: 2.43
Mid: 27.53 Mid: 10.05 Mid: 7

DEM Mean: 27.62 Mean: 11.08 Mean: 5.98*2
Std: 3.47 Std: 6.03 Std:2.49
Mid: 27.53 Mid: 9.71 Mid: 5.5

DCM Mean: 27.62 Mean:13.03*" Mean: 6.80
Std: 3.47 Std: 5.67 Std: 2.47
Mid: 27.53 Mid: 12.21 Mid: 6

DDM Mean: 27.62 Mean: 10.72*" Mean: 6.37*3
Std: 3.47 Std: 6.22 Std: 2.22
Mid: 27.53 Mid: 9.58 Mid: 6

1,42 and *® represent statistically significant differences between groups.

a vector model. When the number of modeling sites is less
than 5, the prediction effect of DEM is worse than that of
DDM, which is likely due to the lack of direction information.
However, when the number of modeling sites increases, the

TABLE 2 | Summary comparison of four models.

Model Principles Properties Performance

QM Using QRS-Ints as Less computation, Second least hits and
predictors using information of second least reduced
3-lead ECG and target range
containing direction
information
DEM  Based on the More computation, Second most hits and
relationship between using information of second most reduced
distance and 12-lead ECG and lack target range
morphology difference  of direction information
DCM Least hits and least
reduced target range
DDM  Based on the mapping Moderate computation, Most hits and most

between spatial domain using information of

and morphological 12-lead ECG and

domain containing direction
information

reduced target range
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lack of direction information is gradually compensated by more
and more complete distance network between points, and DEM
achieves a similar result to DDM.

Finally, in terms of computational complexity, QIM, and
DDM are simpler since the fitted models can be used for
prediction directly, while DEM and DCM are more complex
due to the additional search for optimal solution that can
minimize the cost function J. Table 2 lists a summary
comparison of four models.

However, there still exist some limitations in this study. First,
the way of picking out modeling sites is relatively random.
Theoretically, the next modeling site should be the predicted
result if it is reliable; otherwise, the next modeling site is selected
by the doctor. Limited by the actual distribution of pacing sites,
we take the second place and replace the predicted site with the
nearest one among the unused potential modeling sites, which
may cause the randomness in modeling site selection due to the
different prediction results of four models, for example, when
we design a fixed modeling site selection scheme, in which we
choose a furthest site from the remaining potential sites in each
round. Consequently, QIM, DEM, DCM, and DDM achieve
32, 35, 28, and 33 hits, respectively, indicating that the way of
modeling site selection has a certain impact on the research
results and the proposed DDM is more suitable for selecting
modeling sites by referring to the predicted positions. Because
collecting multiple-pace data in clinical practice will increase the
risk of patients during operation, this kind of data is difficult to
obtain. Therefore, we mainly used the data in the open database
collected from three volunteers provided by Charles University
in accordance with the strict experimental process. From the
perspective of the number of individual patients, our sample is
still relatively small, but the total number of test sites used in
this paper is relatively large. In the future research, we can also
consider the application of four methods to animal experimental
data or retrospective clinical data analysis.

CONCLUSION

To conclude, it is a desirable goal to develop an automated
algorithm for the localization of PVC origins. This work provided
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