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Abstract Sensory integration difficulties have been reported in autism, but their underlying brain-

circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC,
Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific

perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring

cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned

responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and
L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along

with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and

Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y

also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our

observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop

and response representation in the granule cell pathway. Our findings indicate that defects in

associative temporal binding of sensory events are widespread in autism mouse models.

DOI: 10.7554/eLife.06085.001

Introduction
In autism spectrum disorder (ASD; hereafter referred to as autism), atypical sensory processing is widely

reported starting in infancy (Leekam et al., 2007;Markram andMarkram, 2010;Dinstein et al., 2012).

In addition to early-life abnormal processing of single sensory modalities (Leekam et al., 2007), more

complex deficits become apparent as early as 2 years of age, a time when autistic children attend poorly

to natural combinations of spoken stimuli and natural visual motion (Klin et al., 2009), a circumstance

that calls upon the ability to integrate, from moment to moment, information from two sensory

modalities, hearing and vision. Abnormalities of sensory responsiveness are strongly correlated with

severity of social phenotypes in high-functioning autism patients (Hilton et al., 2010). Taken together,

these observations suggest that abnormal processing of multiple sensory modalities on subsecond time

scales might impede the acquisition of cognitive and affective capacities that are affected in autism.
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Abnormal sensory processing in autism is likely to arise in part from genetic mutations and variants

that predispose for neural circuit dysfunction. To investigate the ability to associate two near-

simultaneous sensory inputs, we used delay eyeblink conditioning, a form of learning that is found in

multiple mammalian species (McCormick and Thompson, 1984; Ivarsson and Hesslow, 1994; Boele

et al., 2010; Heiney et al., 2014). Persons with autism show alterations to delay eyeblink conditioning

(Sears et al., 1994; Oristaglio et al., 2013). Delay eyeblink conditioning depends on plasticity in the

cerebellum, a common site of anatomical deviation in patients with autism, and cerebellar gross and

cellular malformation are common features of autistic brains (Wang et al., 2014). These factors led us

to search for aberrations in the quantitative parameters of delay eyeblink conditioning.

Autism is among the most heritable of neuropsychiatric disorders (Gaugler et al., 2014), and

hundreds of autism risk loci have been identified (Abrahams and Geschwind, 2008; Devlin and

Scherer, 2012; Stein et al., 2013). We examined five mouse models that both recapitulate mutations

that occur in human idiopathic and syndromic autisms and display phenotypes reminiscent of human

autism (Abrahams and Geschwind, 2008; Banerjee-Basu and Packer, 2010; Abrahams et al., 2013;

http://gene.sfari.org). Four of the models incorporate global mutations with strong expression in the

cerebellum: Shank3+/ΔC, the C-terminal deletion model of Shank3 associated with Phelan-McDermid

syndrome (Kouser et al., 2011, 2013); Mecp2R308/Y, a mild truncation model of Mecp2 associated

with Rett syndrome (Ben-Shachar et al., 2009; Shahbazian et al., 2002a; Moretti et al., 2006; De

Filippis et al., 2010); Cntnap2−/−, a knockout of Cntnap2 associated with cortical dysplasia-focal

epilepsy syndrome (Peñagarikano et al., 2011); and patDp/+, a mouse model of the 15q(11–13)

duplication syndrome closely linked to autism (Nakatani et al., 2009; Tamada et al., 2010;

eLife digest On a windy day, hearing the sound of wind makes many individuals squint in

anticipation in order to protect their eyes. Linking two sensations that arrive within a split second of

one another, such as sound and the feeling of wind, is a type of learning that requires the cerebellum,

a region found at the base of the brain. When done in a laboratory setting, this particular form of

learning has been dubbed eyeblink conditioning.

Individuals with autism tend to have difficulties with appropriate matching of different senses. For

example, they have trouble identifying a video that goes with a spoken soundtrack. They also do not

learn eyeblink conditioning the same way that other individuals do. However, it is not known which

circuits in the brain are responsible for their difficulty. Kloth et al. now investigate this issue by asking

whether versions of genes that increase the risk of autism in humans also disrupt eyeblink

conditioning in mice. They tested five types of mouse model, each with a different genetic mutation

that has previously been linked to autism. All five of these mutations cause defects in different cell

types of the cerebellum, and all mice have abnormal social and habitual behaviors, similar to autistic

people.

The tests involved shining a bright light at the mice, which was followed, a split second later, by

a puff of air that always causes the mice to blink. After this had occurred dozens of times, the mice

started to blink earlier, as soon as the light appeared, in anticipation of the puff of air. To test

whether the mice had successfully learned to respond to just the bright light, the light was also

occasionally flashed without a puff of air.

Kloth et al. found that the mice generally performed poorly in eyeblink conditioning, although in

different ways depending on which cell types of the cerebellum were affected by the genetic

mutations. Some mice blinked too soon or too late after the light appeared; others blinked weakly or

less frequently; and some did not blink at all. This suggests that autism can affect the processing of

sensory information in the cerebellum in different ways.

This work is important because it demonstrates that a form of split-second multisensory learning

is generally disrupted by autism genes. If defects in cerebellar learning are present early in life, they

could keep autistic children from learning about the world around them, and drive their developing

brains off track. Hundreds of autism genes have been found. Linking these genes to a single brain

region identifies the cerebellum as an important anatomical target for future diagnosis and

intervention.

DOI: 10.7554/eLife.06085.002
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Piochon et al., 2014). A fifth model, a knockout of the tuberous sclerosis protein L7-Tsc1 (L7/Pcp2Cre::

Tsc1flox/+ and L7/Pcp2Cre::Tsc1flox/flox), specifically affects cerebellar Purkinje cells (PCs) (Tsai et al., 2012).

Because different circuit defects might have differential effects on the properties of eyeblink

conditioning, we analyzed learning deficits quantitatively in terms of two major features of learning:

the probability of generating a response, reflecting the learning process itself; and the magnitude and

timing of individual responses, reflecting the neural representation of the learned response.

Results
All five mouse models examined in this study have previously shown face validity for autism

(Silverman et al., 2010), with alterations in social behavior, ultrasonic vocalization, and repetitive

behaviors. Some, but not all, of these models show disruptions of gross motor function. Cntnap2−/−
mice and patDp/+ mice show enhanced performance on a gross motor task, the accelerating rotarod

(Nakatani et al., 2009; Peñagarikano et al., 2011); but the other three mouse models do not

(Shahbazian et al., 2002a; Kouser et al., 2011; Tsai et al., 2012). In addition, patDp/+ has been

tested and shown to have alterations in gait (Piochon et al., 2014). We surmised that a more refined

assay might reveal cerebellum-specific functional disruptions.

We subjected head-fixed mice to delay eyeblink conditioning (Figure 1A; Arlt et al., 2010; Heiney

et al., 2014; Piochon et al., 2014). Over the course of training with a light-flash conditioned stimulus

(CS; ultraviolet LED, 280 ms) and a co-terminating corneal-airpuff unconditioned stimulus (US; 30 ms),

a conditioned response (CR) developed with a gradually rising time course that peaked at the time of

the US onset (Figure 1C). During each training session (220 trials), a small number (10% CS-only trials)

of unpaired CS (i.e., no US) trials were used to characterize the complete CR time course, including

the onset time, the rise time, and the peak time (Figure 1B). Finally, to probe savings, an aspect of

eyeblink conditioning that depends in part on the deep cerebellar nuclei (DCN), after the 12-day initial

training period we tested extinction and reacquisition (Figure 1D; Medina et al., 2001; Robleto

et al., 2004; Ohyama et al., 2006). Extinction consisted of 110 trials of CS-only trials and 110 trials of

US-only trials over four daily sessions and led to the near-disappearance of the CR (Figure 1D). Three

sessions of reacquisition (identical to acquisition) resulted in a rapid return of the CR (Figure 1D).

In order to separate the learning process from the learned response, we analyzed session-by-session

sets of responses to distinguish the probability of generating a CS-evoked eyelid deflection from the

amplitude of the eyelid deflection on trials when a response occurred (Garcia et al., 2003). To estimate

the probability of generating a response, we used the overall distribution of eyelid movement

amplitudes (Figure 2; Kehoe et al., 2008, 2009). First, we computed frequency histograms of the

normalized eyelid movement amplitudes occurring between 100 ms and 250 ms after the CS onset

(Figure 2A; for representative data, see Figure 2B, top). A peak in the histogram consistently occurred

within the zero-amplitude bin (peak at amplitude of 0.006 ± 0.001, within the bin from −0.0125 to

0.0125), representing failure to respond to the stimulus with either closing or opening of the eyelid. We

reflected the histogram of negative-amplitude responses across the zero axis and took the integral of

the resulting distribution as the failure rate (Figure 2A, light gray). Response probability was defined as

one minus the failure rate. The average response amplitude was calculated as the center of mass of the

remaining distribution after subtracting the failure histogram (Figure 2A, black). Finally, in addition to

probability and amplitude, we calculated three timing parameters of the average learned response:

latency to onset of the blink, latency to peak, and rise time.

To test whether variation in wild-type littermates might be a source of apparent differences in

autism-model mouse eyeblink conditioning, we compared learning and timing parameters across all

wild-type control groups (Figure 1—source data 1). We found no significant difference among wild-

type cohorts in any learning parameter. In addition, we did not find statistically significant differences

in time course of extinction or reacquisition. Because of the residual possibility of undetected

variations (e.g., arising from a mixed background for the L7-Tsc1 cohort vs a C57B/6J background for

all other groups) and changes in environmental conditions over the period of this study, we used wild-

type littermates as a basis for comparison for each autism mutant group (Crawley, 2008).

Defects of CR probability
Three mouse models showed deficits in the response probability during training. In L7-Tsc1 mice

(Figure 3A), heterozygous mutant mice (L7/Pcp2Cre::Tsc1flox/+or HET, n = 18) reached a response
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probability of 32.0 ± 4.3%, significantly lower than the 51.5 ± 3.5% level reached in control littermates

(n = 16) (last four training sessions; unpaired two-sample t-test, p = 0.01; effect size, Cohen’s d′ =
1.21). Furthermore, homozygous mutant mice (L7/Pcp2Cre::Tsc1flox/+ or MUT, n = 5) completely failed

to acquire CRs (1.4% ± 0.7% in L7/Pcp2Cre::Tsc1flox/flox, n = 5; one-way analysis of variance test

(ANOVA) across all groups, p < 0.0001, F(2,35) = 19.82, with Bonferroni post hoc statistical

differences between L7/Pcp2Cre::Tsc1flox/flox and wild-type littermates, p = 3 × 10−9, Cohen’s d′ = 3.01,

and L7/Pcp2Cre::Tsc1flox/+ and wild-type littermates, p = 0.00002, d′ = 1.41). Further analysis of L7-Tsc1

mice focused on L7/Pcp2Cre::Tsc1flox/+ only.

In Cntnap2 mice (Figure 3B), homozygous mutant mice (Cntnap2−/−, n = 12) reached a response

probability of 35.1% ± 6.2%, significantly lower than the 57.2% ± 2.9% level reached in wild-type

littermates (Cntnap2+/+, n = 13) (last four training sessions; Bonferroni post hoc test after one-way

ANOVA, p = 0.007, d′ = 0.96). Notably, Cntnap2+/− mice, which show behavioral similarity to

Cntnap2+/+ mice (Peñagarikano et al., 2011), were likewise statistically indistinguishable in learning

or response amplitude from wild-type mice (n = 14 mice; Bonferroni post hoc tests after one-way

ANOVA, p > 0.5).

In Shank3ΔC mice (Figure 3C), the heterozygous mutant mice (Shank3+/ΔC, n = 17) reached

a response probability of 55.9% ± 3.7%, lower than the 67.2% ± 2.2% reached in the wild-type

littermates (Shank3+/+, n = 21) (unpaired two-sample t-test, p = 0.015, d′ = 1.10). In all three mouse

models, probability deficits were present throughout training (two-way repeated measures ANOVA,

main genotype effect; Cntnap2−/−: F(1,23) = 7.72, p = 0.01; L7/Pcp2Cre::Tsc1flox/flox: F(1,23) = 11.70,

p = 0.002; Shank3+/ΔC: F(1,25) = 4.59, p = 0.04).

Figure 1. Delay eyeblink conditioning in head-fixed mice. (A) Experimental setup. A mouse with an implanted headplate is head-fixed above a stationary

foam cylinder, allowing the mouse to locomote freely. Eyeblink conditioning is carried out by delivering an aversive unconditioned stimulus (US, airpuff)

that coterminates with a conditioned stimulus (CS, LED) to the same eye. Eyelid deflection is measured using induced current from a small magnet affixed

to the eyelid. (B) When delivered to a trained animal, the co-terminating CS and US produce an anticipatory eyelid deflection (the conditioned response,

CR) followed by a reflex blink evoked by the US. When the CS is delivered alone (blue trace), a bell-shaped CR is produced that peaks at the expected

time of the US. The onset time is the time from the onset of the CS to a change in concavity of the eyeblink. The rise time is the amount of time between

10% and 90% of the maximum amplitude of the CR (10–90% rise). (C) Over twelve training sessions, the CR (portion of trace preceding US, indicated in red)

develops in response to the US-CS pairing. One CS-alone response is shown as a blue trace. (D) Over four sessions of extinction training, the CR (red)

disappears. After three sessions of reacquisition training, the CR (red) returns. Figure 1—source data 1 provides a wild-type benchmark for the eyeblink

parameters described here, along with a statistical analysis of possible difference among wild-type cohorts (p > 0.05 in all instances).

DOI: 10.7554/eLife.06085.003

The following source data is available for figure 1:

Source data 1. Wild-type values for eyeblink conditioning parameters.

DOI: 10.7554/eLife.06085.004
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One model did not show differences in learning probability or time course: Mecp2R308/Y

heterozygotes (Figure 3D; 57.2% ± 2.9% WT vs 57.8% ± 3.6% Mecp2R308/Y, unpaired two-sample

t-test, p = 0.9; two-way repeated measures ANOVA: main genotype effect, F(1,22) = 0.10, p = 0.7).

We also applied our new analysis technique to a data set previously gathered by our group on the

15q duplication model mice (Piochon et al., 2014). We detected a significant difference in response

probability that was consistent with previously observed impairment. Throughout acquisition training,

response probability in patDp/+mice (n = 10) was smaller than wild-type littermates (n = 11) (two-way

repeated measures ANOVA: main genotype effect, F(1,19) = 19.84, p = 0.0003), culminating in

a difference at the end of training (34.2% ± 2.9% patDp/+ vs, 49.2% ± 2.6% WT, unpaired two-sample

t-test, p = 0.001, d′ = 1.46).

In summary, the five models showed a gradient of defects in probability, ranging from L7/Pcp2Cre::

Tsc1flox/flox (no learning) to Mecp2R308 heterozygotes (intact learning) (Figure 3E).

Defects of CR amplitude
To test whether learned blinks were disrupted, we measured their amplitude normalizing to an

unconditioned reflex blink amplitude of 1. After 12 days of acquisition training, three mutant models

showed deficits in response amplitude: L7/Pcp2Cre::Tsc1flox/+, Shank3+/ΔC, and Mecp2R308/Y.

L7/Pcp2Cre::Tsc1flox/+ mice generated smaller-amplitude learned blinks throughout training (two-way

repeated measures ANOVA: main genotype effect, F(1,23) = 7.71 p = 0.01) that culminated in

a difference in amplitude at the end of training (last four training sessions: 0.28 ± 0.03 in L7/Pcp2Cre::

Tsc1flox/+ vs 0.39 ± 0.05 in littermate controls, unpaired two-sample t-test, p = 0.02, d′ = 0.86)

(Figure 4A, right). In Shank3ΔC mice (Figure 4C), response amplitude was similar to wild-type for

most of training (main genotype effect, F(1,24) = 1.45, p = 0.2), but culminated in a small reduction by

the end of training (0.31 ± 0.02 Shank3+/ΔC vs 0.36 ± 0.01 Shank3+/+, p = 0.03, d′ = 0.38).

Mecp2R308/Y mice (Figure 4D; n = 11) showed consistently smaller learned responses throughout

training (two-way repeated measures ANOVA: main genotype effect: F(1,22) = 12.72, p = 0.002),

Figure 2. Analysis of the full range of detectable responses allows the separation of response probability from

response amplitude. (A) Response and non-response distributions from days 3 to 6 of training in a single animal. In

the top panel for each day, gray bars show the distribution of non-responding trials. In the bottom panel, black bars

show the remaining response distribution. The response probability is defined as the area under the response

distribution. The average response amplitude is defined as the center of mass of the response distribution. The red

line shows the fixed threshold at 0.15. (B) Representative data from a single wild-type animal. Top: scatterplot of

individual response magnitudes for every trial over 12 sessions of training. Gray dots, individual non-responding

trials. Black dots, responding trials. Middle: response probability for each session. Bottom, response amplitude for

each session.

DOI: 10.7554/eLife.06085.005
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culminating in a difference in amplitude at the end of training (last four training sessions, 0.28 ± 0.02

Mecp2R308/Y in vs 0.44 ± 0.04 WT, unpaired two-sample t-test, p = 0.002, d′ = 1.11). CRs inMecp2R308/Y

mice also reached maximum amplitude much earlier in the training period (Figure 4D).

We did not observe statistically significant differences in response amplitude or its development in

Cntnap2 mice (two-way repeated measures ANOVA: main genotype effect, F(2,32) = 0.15, p = 0.85;

0.32 ± 0.03 Cntnap2−/− vs 0.34 ± 0.02 Cntnap2+/+, Bonferroni post hoc test after one-way ANOVA,

p = 0.82) (Figure 4B, right) or in 15q duplication mice (two-way repeated measures ANOVA: main

genotype effect, F(1,19) = 1.81, p = 0.2), including at the end of training (last four training sessions

0.31 ± 0.02 WT vs 0.27 ± 0.05 patDp/+, unpaired two-sample t-test, p = 0.4; also see Piochon et al.,

2014). In summary, defects in blink amplitude ranged from large effects exceeding 1 standard

deviation (Mecp2R308/Y) to no statistically detectable difference (Cntnap2−/− and patDp/+;
Figure 4E).

Normal extinction and reacquisition of CRs
We asked whether CR extinction and savings, two learning processes that require prior eyeblink

conditioning, were affected in these five mouse lines (Figure 3—figure supplement 1). After training,

4 days of extinction led to the near-disappearance of CRs in all autism model groups (CR percentage,

day 12 acquisition vs day 4 extinction; paired t-tests, p < 0.05 for all comparisons) except for

L7/Pcp2Cre::Tsc1flox/flox, which did not acquire CRs in the first place. The time courses of extinction were

Figure 3. Probability defects are present in four mouse models. (A) Time course of response probability with acquisition training in L7-Tsc1 model mice.

Black: WT. Red: L7/Pcp2Cre::Tsc1flox/+. (B) Time course of response probability with acquisition training in Cntnap2 model mice. Black: Cntnap2+/+. Red:
Cntnap2−/−. Green: Cntnap2+/−. (C) Time course of response probability with acquisition training in Shank3ΔC. Black: Shank3+/+. Red: Shank3+/ΔC.
(D) Time course of response probability with acquisition training in Mecp2R308. Black: WT. Red: Mecp2R308/Y. In panels (A) through (D), bar plots indicate

response probability averaged over the last four training sessions. (E) Probability deficits across all groups. Dashed line: normalized wild-type littermate

level. In all panels, shading and error bars indicate SEM, and * indicates p < 0.05. n ≥ 10 mice for each group. Figure 3—figure supplement 1 shows

response probability in each group of animals during extinction and reacquisition.

DOI: 10.7554/eLife.06085.006

The following figure supplement is available for figure 3:

Figure supplement 1. Extinction and reacquisition.

DOI: 10.7554/eLife.06085.007
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not statistically distinguishable between any autism model group and its corresponding wild-type

littermates (p > 0.05 for all main genotype effects), indicating that perturbation of cerebellar cortex-

dependent and other mechanisms that are necessary for initial eyeblink conditioning (Robleto et al.,

2004) did not strongly affect overall extinction in the mouse models. In addition, the mouse models

that initially acquired CRs also successfully reacquired CRs after 3 days of retraining (Figure 3—figure

supplement 1B; paired t-tests of day 4 extinction vs day 3 reacquisition, p < 0.05 for all comparisons),

with no appreciable difference in CR percentage between groups (p > 0.05 for all instances). The

accelerated nature of this reacquisition, a process known as savings, is thought to depend in part on

plasticity in the DCN (Medina et al., 2001; Ohyama et al., 2006). In short, learning deficits in the mouse

models tested were specific to acquisition and were not observed in extinction or reacquisition.

Defects of CR timing
The cerebellum is thought to be critical for task timing, and both patients with cerebellar lesions and

autism patients show disrupted timing in cerebellum-dependent tasks, including eyeblink conditioning.

We therefore examined the timing of the CRs during unpaired CS trials, for which the entire

response time course could be analyzed (Figure 5). Two groups of mice showed differences in timing:

Shank3+/ΔC and Mecp2R308/Y. Learned responses produced by the Shank3+/ΔC mice began at the

same time (onset latency: 148.7 ± 4.9 ms Shank3+/+, vs 144.6 ± 4.4 ms Shank3+/ΔC, p = 0.5), rose

faster (rise time: 91.8 ± 0.5 ms Shank3+/+ vs 79.5 ± 0.3 ms Shank3+/ΔC, p = 0.04, d′ = 0.70), and

peaked earlier (peak latency: 317.5 ± 9.0 ms Shank3+/+ vs 287.7 ± 5.8 ms Shank3+/ΔC, p = 0.03,

d′ = 1.02) (Figure 5A, right) compared to wild-type littermates. In Mecp2R308/Y animals, learned

responses began at the same time (onset latency: 120.9 ± 4.0 ms WT vs 117.7 ± 4.9 ms Mecp2R308/Y,

p = 0.6), rose more slowly (rise time: 113.2 ± 12.4 ms WT vs 158.4 ± 15.6 ms Mecp2R308/Y, p = 0.04,

Figure 4. Amplitude defects are present in three mouse models. (A) Time course of response probability with acquisition training in L7-Tsc1 model mice.

Black: WT. Red: L7/Pcp2Cre::Tsc1flox/+. (B) Time course of response probability with acquisition training in Cntnap2 model mice. Black: Cntnap2+/+. Red:
Cntnap2−/−. Green: Cntnap2+/−. (C) Time course of response probability with acquisition training in Shank3ΔC. Black: Shank3+/+. Red: Shank3+/ΔC.
(D) Time course of response probability with acquisition training in Mecp2R308. Black: WT. Red: Mecp2R308/Y. In panels (A) through (D), bar plots indicate

response probability averaged over the last four training sessions. (E) Probability deficits across all groups. Dashed line: normalized wild-type littermate

level. In all panels, shading and error bars indicate SEM, and * indicates p < 0.05. n ≥ 10 mice for each group.

DOI: 10.7554/eLife.06085.008
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d′ = 1.04), and peaked later (peak latency: 278.3 ± 14.9 ms WT vs 328.8 ± 16.4 ms Mecp2R308/Y,

p = 0.04, d′ = 1.03) compared with wild-type littermates (Figure 5B, right). No alterations in onset

latency, peak latency, or rise time could be detected in L7/Pcp2Cre::Tsc1flox/+ (Figure 5C), Cntnap2−/−
mice (Figure 5D), or patDp/+ mice (Piochon et al., 2014) (p > 0.05 for all comparisons; summary of all

mouse lines, Figure 5E,F).

Figure 5. Timing defects are present in two mouse models. (A) Analysis of Mecp2R308/Y Mecp2R308 response timing

(rise time and peak latency). Inset: representative eyelid movement traces. Purple line: CS duration. Scale bars:

horizontal, 100 ms; vertical, 20% of unconditioned response (UR) amplitude. Arrowheads: peak times. (B) Analysis of

Shank3ΔC response timing (rise duration and peak time). Inset: representative eyelid movement traces. Purple line:

CS duration. Scale bars: horizontal, 100 ms; vertical, 20% of UR amplitude. Arrowheads: peak times. (C) Analysis

of Cntnap2 response time (rise time and peak latency). (D) Analysis of L7-Tsc1 response time (rise time and

peak latency) (E) Peak time deficits across all groups. (F) Rise time deficits. In plots (E) and (F), dashed lines

indicate normalized wild-type littermate level. In all panels, shading and error bars indicate SEM, and * indicates

p < 0.05. n ≥ 10 mice for each group.

DOI: 10.7554/eLife.06085.009
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Normal sensory responsiveness
Autism has been suggested to be a general disorder of excessive sensory responsiveness, a concept

known as the ‘intense world’ hypothesis (Markram and Markram, 2010). Potentially, our results in

these mouse models could be accounted for by alterations in sensory responsiveness, a common

feature of autism. To test this possibility, we measured responses to the US and to the pre-training CS.

In US-only trials, we found no differences in unconditioned response (UR) latency measured from US

onset (p ≥ 0.2 for unpaired comparisons for each cohort) or UR rise time (p ≥ 0.4 for unpaired two-

sample comparisons for each cohort) (Table 1, ‘Unconditioned response’) and no differences in the

correlation between UR velocity and UR magnitude (analysis of covariance group × peak interaction, p

≥ 0.2 for all cohorts). We detected no differences among wild-type cohorts for UR latency (one-way

ANOVA, p = 0.5, F(4,64) = 0.92) or velocity (one-way ANOVA, p = 0.4, F(4,64) = 1.08).

As a second measure of sensory processing, on the first training day we observed robust eyelid

opening in response to the light CS within 100 ms of CS onset (Table 1, ‘Eyelid opening’). Eyelid

opening only occurred when animals had not yet begun to produce CRs, indicating that these

responses were non-associative in nature. Eyelid opening occurred on a similar fraction of trials in all

groups (p > 0.1 for unpaired comparisons between each autism model and wild-type littermates).

Wild-type groups also did not differ detectably (one-way ANOVA, p = 0.9, F(4,64) = 0.22).

In summary, sensory sensitivity was unaltered in any of the mouse models, and thus, deficits in delay

eyeblink conditioning were not accompanied by upstream alterations in sensory sensitivity or

downstream deficits in blink capability.

Absence of gross motor deficits
Motor impairments are common in autism patients (Fournier et al., 2010), and cerebellar injury leads

to both acute and long-lasting motor deficits. However, past investigations of our mouse models show

mild or no motor impairments except for gait alterations in patDp/+ mice (Piochon et al., 2014). To

extend these measurements, in three mouse models we analyzed gait, a motor function that can

proceed without learning. We measured forepaw stance, forepaw stride, hindpaw stance, and

hindpaw stride. We observed no differences between mutant and wild-type mice in Cntnap2−/−
mice, L7/Pcp2Cre::Tsc1flox/+ mice, and Shank3+/ΔC mice (two-sample t-test, p > 0.05 for all

comparisons; Table 1, ‘Gait analysis’). The L7/Pcp2Cre::Tsc1flox/+ result is consistent with previous

reports (Tsai et al., 2012). Taken together with past research, our findings indicate that gross motor

function in adult ASD mouse models is not a necessary consequence of disruption in cerebellum-

dependent learning.

Normal learning of a water Y-maze
Mouse models of autism have been shown to be impaired in fear conditioning and hippocampus-

dependent reversal (Crawley, 2008; Silverman et al., 2010). To test a second, non-cerebellar form of

learning, we subjected three of our models to initial acquisition of a water Y-maze. After four training

sessions, we did not observe any statistically detectable difference in the ability to find the platform in

Cntnap2−/− mice, L7/Pcp2Cre::Tsc1flox/+ mice, or Shank3+/ΔC mice (two-sample t-test, p > 0.05 for all

comparisons; Table 1, ‘Swimming Y-maze acquisition’). The L7/Pcp2Cre::Tsc1flox/+ finding is consistent

with previous reports of normal T-maze acquisition (Tsai et al., 2012). Therefore, the eyeblink-

conditioning deficits we have observed do not reflect a broad impairment in learning mechanisms.

Cerebellar gross anatomy and cellular morphology
Since eyeblink conditioning depends on the cerebellum, we searched for gross anatomical and

cell morphological defects in the cerebella of our mouse models. Using histological methods, in

Shank3+/ΔC, Cntnap2−/−, Mecp2R308/Y, and patDp/+ mice, we found no differences between mutant

mice and wild-type littermates in PC density, anterior or posterior granule layer thickness, and anterior

or posterior molecular layer thickness (p > 0.1, all comparisons). In L7/Pcp2Cre::Tsc1flox/+ mice, for which

alterations in PC density have been previously reported (Tsai et al., 2012), we found no difference

for anterior or posterior granule layer thickness and molecular layer thickness for L7/Pcp2Cre::Tsc1flox/+

(p > 0.1, all comparisons). In summary, with the exception of L7/Pcp2Cre::Tsc1flox/+ mice, these mouse

lines do not show gross alterations in granule or PC density.
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PC arbors are shaped by the cumulative effects of granule cell (GrC) input (Joo et al., 2014), and

therefore, would be potentially altered in their form. We used Sholl analysis to examine the

morphology of PC dendritic arbors in Shank3+/ΔC, Cntnap2−/−, Mecp2R308/Y, patDp/+, and

L7/Pcp2Cre::Tsc1flox/+ mice. Only Shank3+/ΔCmice differed from wild type, showing higher complexity

of distal dendrites (two-way repeated measures ANOVA, main genotype effect, F(1,39) = 3.50,

p = 0.07), with a significant distance × genotype interaction (F(16,624) = 2.77, p = 0.0002; Figure 6A).

Table 1. Normal sensory responsiveness, gross motor function, and non-cerebellar learning and memory in five autism mouse models

L7/Pcp2Cre::Tsc1flox/+ Cntnap2−/− patDp/+ Shank3+/ΔC Mecp2R308/Y

Unconditioned response

N 18, 16 12, 13 10, 11 17, 21 11, 12

UR latency (ms) 31.0 ± 8.6 32.6 ± 3.1 45.9 ± 8.4 34.5 ± 5.9 42.0 ± 8.7

29.9 ± 4.3 27.4 ± 5.0 30.7 ± 7.3 39.5 ± 8.2 43.1 ± 9.3

UR rise time (ms) 64.9 ± 4.7 65.7 ± 5.5 67.3 ± 4.3 62.8 ± 3.6 60.1 ± 5.5

57.5 ± 3.8 64.8 ± 5.5 72.8 ± 6.3 62.6 ± 3.8 64.8 ± 6.5

Eyelid opening

N 18, 16 12, 13 10, 11 17, 21 11, 12

Amplitude (% UR amp) 13.9% ± 3.9% 6.4% ± 1.2% 13.4% ± 4.8% 11.8% ± 3.1% 13.4% ± 5.5%

15.6% ± 5.0% 11.1% ± 3.0% 11.8% ± 7.8% 9.3% ± 2.6% 13.7% ± 5.8%

Gait analysis

N 6, 7 10, 10 – 5, 4 –

Fore stride (cm) 4.61 ± 0.21 5.01 ± 0.21 – 4.82 ± 0.31 –

4.35 ± 0.14 5.15 ± 0.46 – 4.92 ± 0.28 –

Fore stance (cm) 1.42 ± 0.06 1.39 ± 0.14 – 1.84 ± 0.12 –

1.56 ± 0.06 1.41 ± 0.07 – 1.64 ± 0.12 –

Hind stride (cm) 4.85 ± 0.27 5.22 ± 0.34 – 4.98 ± 0.27 –

4.84 ± 0.15 5.09 ± 0.42 – 5.07 ± 0.29 –

Hind stance (cm) 2.62 ± 0.17 2.20 ± 0.16 – 2.37 ± 0.12 –

2.69 ± 0.16 2.00 ± 0.17 – 2.27 ± 0.12 –

Swimming Y-maze acquisition

N 6, 7 10, 10 – 5, 4 –

Acq. 1 (% correct trials) 65.7% ± 12.9% 81.5% ± 6.3% – 65.0% ± 8.6% –

76.9% ± 7.9% 71.1% ± 11.6% – 52.0 ± 10.0% –

Acq. 2 (% correct trials) 90.0% ± 6.8% 89.0% ± 7.4% – 61.0% ± 17.2% –

75.6% ± 7.0% 91.1% ± 4.8% – 70.0% ± 17.3% –

Acq. 3 (% correct trials) 90.0% ± 6.8% 96.0% ± 2.7% – 90.0% ± 10.0% –

80.8% ± 8.2% 95.6% ± 3.0% – 95.0% ± 5.0% –

Acq. 4 (% correct trials) 80.0% ± 20.0% 98.0% ± 2.0% – 100% ± 0% –

90.0% ± 5.7% 100% ± 0% – 94.3% ± 3.7% –

Test (% correct trials) 91.3% ± 4.2% 94.8% ± 3.1% – 87.2% ± 7.9% –

93.4% ± 3.3% 99.0% ± 1.0% – 97.2% ± 2.8% –

Unconditioned response was measured in terms of latency and rise time. Eyelid opening in response to initial CS trials was scaled to the size of the

unconditioned response. Gait was measured as stride and stance (cm) for both forepaws and hindpaws. Swimming Y-maze acquisition was measured in

terms of percentage of correct trials over valid trials for four acquisition periods and a test period. For all cells, top value (roman text) indicates the mutant

mouse, while bottom value (italic text) indicates the control or wild-type littermates. All values mean ± SEM. All paired statistical comparisons yielded p-

values greater than 0.05.

UR, unconditioned response.

DOI: 10.7554/eLife.06085.010
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Further analysis of Shank3+/ΔC mice revealed that compared with wild type, the center of mass of the

Sholl distribution was farther from the soma (p = 0.03) and had a greater total number of crossings at

distances farther than 96 μm from the soma (p = 0.01).

Closer examination of PC arbors (Figure 6B) revealed a decrease in the number of visible spines

per 10 μm on distal dendrites of Shank3+/ΔC mice (p = 0.04) and Mecp2R308/Y mice (p < 0.0001). The

remaining three models showed no differences in either PC arbors or spine density (Figure 6B,

Figure 6—figure supplement 1; p > 0.3 for main group effect and p > 0.5 for space × genotype

interactions for all comparisons; p > 0.4 for all pairwise comparisons of spine density). In summary,

differences in dendritic morphology were found specifically in Shank3+/ΔC and Mecp2R308/Y mice,

consistent with alterations in GrC input and/or PC dendritic growth mechanisms.

Discussion
Our principal finding is that five mouse models of ASD show deficits in delay eyeblink conditioning,

a learning task that requires the cerebellum (Figure 7A). The five models tested showed three major

categories of deficit (Figure 7B): in the process of acquiring the CR, in the amplitude of the CR, and in

the timing of the CR. Taken together, these findings paint a behaviorally based picture of how diverse

ASD-related genetic conditions affect a single learning process. Together with mouse studies of

neuroligin-3 (Baudouin et al., 2012) and Fragile X mental retardation 1 (Koekkoek et al., 2005) and

a valproate rat model of autism (Stanton et al., 2007; Murawski et al., 2009), our work brings to

eight the number of autism rodent models with alterations in cerebellum-dependent function.

Delay eyeblink conditioning is a more precise assay of cerebellar function than two phenotypes

that are commonly assumed to measure cerebellar function, rotarod and gait. Rotarod and gait can

reveal malfunction in a wide range of brain structures, including cerebellum (Thach and Bastian,

2004), striatum (Rothwell et al., 2014), and basal ganglia (Takakusaki et al., 2008). In contrast, delay

eyeblink conditioning (as well as another form of learning, vestibulo-ocular reflex gain modulation) has

well-mapped relationships to cerebellum and brainstem circuitry (Raymond et al., 1996; Boele et al.,

2010). Our findings suggest specific cerebellar circuit elements that can be investigated further, either

in non-human animals or in autistic patients.

Cerebellar circuitry underlying eyeblink-conditioning parameters
Our conditioning experiments quantified dysfunction in two tasks for which the cerebellum is well-

suited: associative learning between multiple senses and the detection of fine timing differences.

Figure 6. Purkinje cell dendritic arbors show structural defects in Shank3+/ΔC and Mecp2R308/Y mice. (A) Purkinje cell (PC) dendrite arborization defect is

present in Shank3+/ΔC. Left: Sholl analysis example for Shank3+/ΔC. Right: groupwise Sholl analysis for Shank3+/ΔC. Sholl analysis for other four mouse

models did not show similar arborization defects, as shown in Figure 6—figure supplement 1. (B) Spine density defects are present in Shank3+/ΔC and

Mecp2R308/Y. Left: example image of Shank3+/+ dendritic arbor. Right: spine density for Shank3+/ΔC and Mecp2R308/Y groups. In all panels, shading and

error bars indicate SEM, n.s. indicates p > 0.05, and * indicates p < 0.05. n ≥ 12 cells for each group.

DOI: 10.7554/eLife.06085.011

The following figure supplement is available for figure 6:

Figure supplement 1. Lack of difference in PC arborization in four ASD mouse models.

DOI: 10.7554/eLife.06085.012
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Two pathways—the olivocerebellar loop (Figure 7C, red pathway) and the GrC layer input pathway

(Figure 7C, blue pathway)—play key roles in the acquisition of learned eyeblink responses in

mammals (McCormick and Thompson, 1984; Yeo and Hesslow, 1998; Garcia et al., 1999; Attwell

et al., 2001; Longley and Yeo, 2014), including mice (Koekkoek et al., 2003). Information about the

aversive US is conveyed through the olivocerebellar loop, consisting of PCs in the cerebellar cortex,

the inferior olive, and the DCN (Figure 7C, red pathway). This information instructs plasticity in the

mossy fiber (mf)—GrC—PC pathway, which conveys incoming CS information. The GrC layer pathway

undergoes multiple forms of plasticity, including parallel fiber (PF)-PC long-term depression (Hansel

et al., 2001; Carey and Lisberger, 2002; Gao et al., 2012), and after training. PC output helps to

drive a well-timed and well-formed CR (Choi and Moore, 2003) and drive late-stage plasticity in the

DCN (Zheng and Raman, 2010). Thus, defects in the reliable learning and production of CRs might be

interpreted as disruption of the olivocerebellar ‘instruction’ system (Garcia et al., 1999) or the granule

cell layer ‘representation’ system (Arenz et al., 2009).

Activity in the GrC network, which receives direct mf input, is thought to represent key temporal

components to drive a well-timed response (Medina and Mauk, 2000; D’Angelo and De Zeeuw,

2009). Because PC sodium-based simple-spike output acts as an approximately linear readout of

synaptic drive (Walter and Khodakhah, 2006), the time course of CR production might be expected

Figure 7. Cerebellar learning and performance deficits co-vary with circuit-specific gene expression patterns. (A) The first four data columns show

perturbations in learning (green shading) and performance (yellow shading). The last three columns show combined gene expression (Figure 1) and

morphological (Figure 5) perturbations for the olivocerebellar (red shading) and granule cell layer (blue shading) pathways, along with extracerebellar

(dark gray) pathways. Note that Cntnap2+/−, which has been reported to be not behaviorally different from Cntnap2+/+ (Peñagarikano et al., 2011), is

shown for reference. Table 2 is an expanded tables of the phenotypes described here. (B) Response amplitude and probability in transgenic mice (open

circles) normalized to wild-type littermate (‘WT’) means for all models. Dark gray shading indicates mutants for which there were also timing defects. Error

bars indicate SEM. (C) The canonical cerebellar circuit. Input along the CS (turquoise) pathway via mossy fibers (mf) from the pontine nuclei enters the

cerebellar cortex through granule cells (GrC), which receive feedforward and feedback inhibition from Golgi cells (GoC) in the granule cell layer. GrCs

send parallel fiber (pf) projections to PC dendritic arbors. PCs also receive teaching signals along the US (gray) pathway via climbing fibers (cfs) from the

inferior olive. The output of clustered PCs (gray) converges onto neurons in the deep cerebellar nuclei (DCN), which drive downstream neurons in the

output pathway.

DOI: 10.7554/eLife.06085.013

The following figure supplement is available for figure 7:

Figure supplement 1. Expression patterns of ASD model genes in cerebellum.

DOI: 10.7554/eLife.06085.014
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to be constructed from summed patterns of activity in specific combinations of GrCs and inhibitory

neurons. Therefore, defects in response timing and amplitude might be interpreted as disruption of

synaptic transmission and/or plasticity in the MF pathway.

Putative substrates for learning defects: climbing fiber signals and PC
excitability
Four mouse models showed decreases in the CR probability: L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+ and

L7/Pcp2Cre::Tsc1flox/flox), patDp/+, Cntnap2−/−, and Shank3+/ΔC. Upon investigating patterns of gene

expression, we found that the disrupted genes in three models (L7-Tsc1, patDp/+, and Cntnap2−/−)
are expressed in PCs, inferior olive, and/or DCN (Figure 7A, light green and red [regular case],

respectively; Figure 7C, red).

In L7/Pcp2Cre::Tsc1flox/+ mice, which are PC-specific, early-life loss of Tsc1 leads to increased spine

density and decreased excitability in PCs (Tsai et al., 2012). This decreased excitability can affect

learning by interfering with climbing fiber (cf)-based instruction, either by reducing PC dendritic

excitability or by making the cerebellar cortex less effective at influencing the DCN, resulting in

inhibited IO responsiveness to the US (Schonewille et al., 2010). Reduced PC firing would also be

expected to reduce response amplitudes, which we have observed. Similarly, patDp/+ mice show cf

structural plasticity during development and deregulated PF-PC LTD in adults (Piochon et al., 2014),

echoing findings in other models (Koekkoek et al., 2005; Baudouin et al., 2012). It should be noted

that other forms of cerebellar plasticity can contribute to learning in the absence of PF-PC LTD

(Schonewille et al., 2011). Taken together, the evidence suggests that cerebellar learning defects in

autism mouse models may be strongly shaped by reduced function in the olivocerebellar circuit and

associated synaptic plasticity mechanisms.

The fourth model that showed a probability defect was Shank3+/ΔC. Shank3 is expressed

specifically at postsynaptic densities in the granule cell layer in the mouse cerebellum (Tu et al., 1999;

Böckers et al., 2004, 2005). We observed increased elaboration of the distal dendrites along with

decreased spine density (Figure 6; Figure 7A, light green and red cells [bold case]). Neurotrophin-3

(NT-3) from GrCs is required for PC dendritic morphogenesis (Joo et al., 2014), suggesting the

possibility that the Shank3+/ΔC mutation may disrupt PC dendritic function.

Putative substrates for performance defects: the granule cell pathway
We observed both amplitude and timing defects in two mouse models (Figure 7B, gray circles),

Shank3+/ΔC and Mecp2R308/Y. These genes are expressed in GrCs (Figure 7A, yellow and turquoise

cells, respectively), and Mecp2 is also expressed in Golgi cells (GoCs). Shank3 encodes a scaffolding

protein that may influence MF-GrC and GrC-PC synaptic function by reducing glutamatergic

transmission and plasticity (e.g., Peça et al., 2011; Yang et al., 2012; Kouser et al., 2013), thus,

impairing cerebellar learning (Giza et al., 2010; Andreescu et al., 2011). Likewise, Mecp2 expression

is dramatically upregulated in GrCs after P21, a time when MF-GrC and PF-PC synapses are formed

and still maturing (Altman, 1972), suggesting that Mecp2 plays a role in MF-GrC synapse function

(Mullaney et al., 2004) and glutamatergic synaptic transmission and plasticity (Moretti et al., 2006).

It is notable that despite the fact that Mecp2 is also expressed in PCs (Mullaney et al., 2004),

Mecp2R308/Y mice showed no defect in probability of learning. We chose these mice for their relatively

weak motor dysfunction so that we could characterize eyeblink-conditioning deficits in detail. Other

Mecp2 mutants might show more of a probability phenotype.

Extracerebellar sites
In addition to specific cerebellar substrates, delay eyeblink conditioning also depends on processing

outside the cerebellum (Boele et al., 2010; Figure 7A, dark gray cells; Figure 7C, dark gray arrows).

Several genes in our mouse models (though not Shank3) are likely to be expressed in trigeminal

nucleus, which transmits sensory information to the pons and mf pathway, as well as the red nucleus

and facial nucleus, which ultimately drive the production of the eyeblink (Figure 7A, dark gray cells;

Figure 7C, dark gray arrows; Figure 7—figure supplement 1). The acquisition of delay eyeblink

conditioning may also be modulated by the amygdala and hippocampus (Lee and Kim et al., 2004;

Boele et al., 2010; Sakamoto and Endo, 2010; Taub and Mintz, 2010), but we did not detect two
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known consequences of such modulation, learning during the first training session and short-latency

alpha responses to the CS.

Comparison with eyeblink-conditioning phenotypes in autistic persons
Past investigations of autism (Sears et al., 1994; Oristaglio et al., 2013) and Fragile X syndrome

(Koekkoek et al., 2005; Tobia and Woodruff-Pak, 2009) have reported the percentage of CS-

responses that exceed a fixed threshold (‘% CRs’), as well as CR size averaged across all trials.

However, these measures conflate changes in the probability of learning with changes in the

amplitude of learned responses. For example, a study that examined de novo (i.e., no previous

conditioning) delay eyeblink conditioning (Sears et al., 1994) found that in high-functioning (average

IQ > 100) autistics, the %CR fraction rose more rapidly than in controls, reaching close to a half-

maximum after only two blocks of trials. In the direction of loss-of-function, impairments in delay

eyeblink conditioning have been observed in Fragile X patients (Koekkoek et al., 2005; Tobia and

Woodruff-Pak, 2009); in this case, PC-specific knockout of the Fragile X protein Fmr1 in mice was

sufficient to cause eyeblink-conditioning defects, suggesting that learning was specifically perturbed.

For comparison with the work reported here, future human eyeblink-conditioning studies would have

to distinguish changes in learning from changes in response amplitude.

A second promising domain for investigations of ASD patients is eyeblink response kinetics.

Variations in response kinetics may depend on the specific genetic background. In idiopathic autism

(Sears et al., 1994), CRs came approximately 50 ms earlier, as measured using both the time to CR

onset and the time to CR peak. Similarly, after two sessions of trace conditioning (Oristaglio et al.,

2013), delay conditioning initially leads to a decrease in response onset and latency of approximately

50 ms, followed by a convergence toward normal performance as training continues. In contrast,

Fragile X patients show no differences in timing in early training sessions (Koekkoek et al., 2005;

Tobia and Woodruff-Pak, 2009), but after average CR amplitude reaches a plateau, the peak latency

to CR decreases by approximately 30 ms (Tobia and Woodruff-Pak, 2009). Changes of 30–50 ms are

comparable in size to the effects we have observed in mice with granule cell pathway perturbation. In

addition, in a valproate-based rat model of autism (Arndt et al., 2005), prematurely timed eyeblink

responses were found for long interstimulus intervals (Murawski et al., 2009). In summary, past

findings suggest that perturbation of cerebellar granule cell layer activation may be common in both

idiopathic and syndromic autism. The general observation of shortened latency is consistent with our

findings in Shank3+/ΔC mice, suggesting this line as a model for the timing deficits observed in

autistic persons.

Finally, although past measurements have been done in older children post-diagnosis, eyeblink

conditioning can be assayed in subjects as young as 5 months of age (Claflin et al., 2002). The

possibility of early testing suggests that delay eyeblink conditioning could be a biomarker (Reeb-

Sutherland and Fox, 2015) for identifying pre-diagnosis perturbations in cerebellum-dependent

learning.

The cerebellum in cognition and autism
Eyeblink-conditioning defects appear more often in mouse autism models than other non-autism-like

phenotypes (Table 2). This specific dissociation (i.e., the absence of correlation with non-cerebellar

phenotypes) suggests that cerebellar plasticity and autism’s cognitive deficits might be related in some

specific manner. The cerebellum arises repeatedly in the study of autism (Wang et al., 2014). In an

analysis of gene–phenotype associations (Meehan et al., 2011), autism-related genes were found to

be associated with a cluster of phenotypes that included social defects, abnormal motor behavior, and

cerebellar foliation. A number of ASD genes are co-expressed in the cerebellum (Menashe et al.,

2013), and ASD patients show differences in many cerebellar cell types (Bauman and Kemper, 1985;

Fatemi et al., 2002; Whitney et al., 2008; Wegiel, et al., 2010) as well as gross cerebellar structure,

starting at an early age (Hashimoto et al., 1995; Abell et al., 1999; Stanfield et al., 2008; Courchesne

et al., 2011). Therefore, ASD genes are highly likely to shape cerebellar circuit function. Effects on

cerebellar function could even have downstream consequences for function of distal brain regions of

known cognitive significance to which the cerebellum supplies information (Wang et al., 2014).

However, our results must also be reconciled with a recent study that started not from ASD genes,

but from specific perturbations to cerebellar function (Galliano et al., 2013). That work revealed little
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effect on a variety of standard non-motor tasks, including social, navigational, and memory tasks.

Those tasks differ from current tests of autism model face validity. For example, the social assay

involved consecutive presentation of mouse/object stimuli, as opposed to the simultaneous choice

that occurs in the three-chamber test (Yang et al., 2011). Likewise, no test was given for perseveration

such as maze reversal or grooming duration (Tsai et al., 2012). We suggest that rigorous evaluation of

cerebellar involvement in non-motor function will require tasks of greater difficulty and complexity

than past practice.

Subsecond sensory integration and the etiology of autism
We have shown that mouse autism models have difficulty in a cerebellum-dependent form of

associating sensory stimuli that are spaced closely in time. The integration of closely timed events

across sensory modalities could be critical for statistical learning. Statistical learning can encompass

the association of an auditory or visual stimulus to predict some other event, a capacity that is likely to

be at the core of the acquisition of language (Ferguson and Lew-Williams, 2014) and other cognitive

capacities (Dinstein et al., 2012). Such learning is commonly assumed to require neocortical plasticity

via Hebbian uninstructed learning. In addition, statistical learning from unexpected events is also

efficiently supported by instructed plasticity (Courville et al., 2006), a phenomenon for which

cerebellar circuit architecture is well-suited (Marr, 1969). Since the neocortex and cerebellum

communicate with one another bidirectionally, these two brain systems might play complementary

roles in learning from experience. Projections to forebrain are present in early postnatal life (Diamond,

2000), and early childhood disruption of the cerebellum affects the development of social cognition

and language (Riva and Giorgi, 2000; Steinlin, 2008; Bolduc et al., 2012). In this context, eyeblink

conditioning is an example of learning from the close timing of two events of different sensory

modality, and defects in it may reflect broader difficulties in subsecond temporal sensory association.

If such difficulties are present in early stages of autism, the cerebellum may be a potential target for

early-life therapeutic intervention.

Materials and methods

Animals
Cntnap2 mice were bred at Princeton University on a heterozygote–heterozygote strategy using

breeding pairs obtained from the Geschwind laboratory at the University of California, Los Angeles

(Peñagarikano et al., 2011). These animals were originally generated by the Peles laboratory

(Weizmann Institute of Science, Israel) through the replacement of the first exon of Caspr2 (Cntnap2)

using gene-targeting techniques in mice with the imprinting control region (ICR) background (Poliak

et al., 2003). The mice were then outbred on the C57BL/6J background for at least 10 generations

and characterized behaviorally (Peñagarikano et al., 2011). For behavioral experiments, 39 animals

from 17 litters were used.

Shank3+/ΔC mice were bred at Princeton University on a heterozygote–heterozygote strategy

using breeding pairs acquired from the Worley laboratory at Johns Hopkins University. These mice

were generated by the conditional deletion of exon 21 of Shank3 to excise its C-terminal domain,

including the Homer-binding domain (Kouser et al., 2013; http://jaxmice.jax.org/strain/018389.html).

The mice were generated on a mixed background and backcrossed on a C57BL/6J background for at

least five generations. Only heterozygotes of the C-terminal mutation were used (Durand et al.,

2007). For behavioral experiments, 38 animals from 16 litters were used.

Mecp2R308/Y mice were bred at Princeton University on a heterozygote-wild-type strategy using

a breeding pair acquired from Jackson Laboratories (B6.129S-Mecp2tm1Hzo/J, stock no.: 005439). Mice

on the 129/SvEv background have a truncating mutation ofMecp2 introduced through the insertion of

a premature stop after codon 308 (Shahbazian et al., 2002a). These mice were backcrossed on the

C57BL/6J background for at least 10–12 generations. Because these mice show a regressive

phenotype, they were tested at 16–20 weeks, an age at which the mice begin showing cognitive

symptoms and minor motor dysfunction (‘early symptomatic’ to symptomatic phase: Shahbazian

et al., 2002a; Moretti et al., 2006; De Filippis et al., 2010). For behavioral experiments, 28 animals

from 11 litters were used.

The Tsc1 mice were bred at Princeton University from breeding pairs on a mixed (C57BL/gJj, 129

SvJae, BALB/cJ) background acquired from the Sahin laboratory at Boston Children’s Hospital,
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Harvard Medical School (Tsai et al., 2012). These mice were originally generated by crossing L7/Pcp2-

Cremice with Tsc1flox/flox mice (Tsai et al., 2012). For the present study, the offspring of this cross were

crossed to produce the L7/Pcp2Cre::Tsc1flox/+ (heterozygous) and L7/Pcp2Cre::Tsc1flox/flox (homozygous)

animals. Littermate controls were pooled from Tsc1+/+ (pure wild-type), Tsc1flox/+, L7Cre;Tsc1+/+

(L7Cre), and Tsc1flox/flox (flox) mice. For behavioral experiments, 34 animals from 18 litters were used.

patDp/+ (15q11-13 duplication) mice were acquired from the Hansel laboratory at the University of

Chicago and the Takumi laboratory at Hiroshima University and tested as previously reported

(Nakatani et al., 2009; Piochon et al., 2014). Data from the eyeblink conditioning experiments

described in Piochon et al. (2014) are available upon request from the corresponding author.

For all experiments, we used 2- to 4-month-old males with matched littermates unless otherwise

indicated. To ensure that the ages of the mice did not affect the results, we corrected our statistical

tests of average CR performance, response probability, and response amplitude across sessions 9–12

and the CR timing parameters, using analysis of covariance tests with age (days) as a covariant with

post hoc Tukey’s tests (Piochon et al., 2014). This analysis produced no changes in statistical

significance of the findings reported throughout this paper (Tukey’s test, p > 0.05 in all instances).

Mice were group-housed (at ≥ 8 weeks of age) and maintained on a 12-hr reverse light–dark cycle

with ad libitum access to food and water. All experiments were performed according to protocols

approved by the Princeton University Institutional Animal Care and Use Committee.

Eyeblink conditioning
Each mouse was head-fixed above a stationary, freely rotating foam wheel, which allowed it to

locomote throughout the experiment (Figure 2A). In this position, the US (airpuff) could be delivered

from a consistently to the eye through a blunted 27-gage needle. The eyelid deflection was detected

using a Hall effect sensor (AA004-00, NVE Corporation, Eden Prairie, MN) that was mounted above

the same eye (Koekkoek et al., 2002). Prior to placement in the experimental apparatus, each mouse

was briefly anesthetized with isoflurane and a small neodymium magnet (3 mm × 1 mm × 1 mm,

chrome, item N50, Supermagnetman, Birmingham, AL) was attached to the lower eyelid with

cyanoacrylate glue (Krazy Glue, Westerville, OH). The sensor provided a readout of eyelid position by

linearly converting a change in magnetic field due to the displacement of the magnet relative to the

sensor a change in voltage. The CS (ultraviolet LED) was also delivered to the ipsilateral eye.

The animals were allowed to habituate to this apparatus for at least 195 min over 3–5 days.

Following habituation, acquisition training took place over 12 training sessions (1 session/day, 6 days/

week), during which the animals received 22 blocks of 10 trials each. CSs (ultraviolet light, 280 ms)

were paired with an aversive US (airpuff delivered by a blunted needle to the cornea, 30–40 psi, 30 ms,

co-terminating with the CS). Ultraviolet light is in the sensitive range of laboratory mice (Jacobs et al.,

2001). Each block contained 9 paired US-CS trials and 1 unpaired CS trial, arranged pseudorandomly

within the block (Figure 2B). Each trial was separated by an interval of at least 12 s (see below).

Following acquisition training, the mice received extinction and reacquisition training. Extinction

training took place over 4 sessions (1 session/day) consisting of 22 blocks of 10 trials each. Each block

contained five unpaired CS trials and five unpaired US trials, arranged pseudorandomly within the

block. Reacquisition training took place over 3 sessions, and the animals received the same training

sequence as in acquisition training.

Data processing and analysis for eyeblink conditioning
Trials were triggered automatically using a custom MATLAB (Mathworks, Natick, MA) graphical user

interface. Stimuli were triggered by Master-8 (AMPI, Inc., Jerusalem, Israel) via the data acquisition

system (National Instruments, Austin, TX). (Scripts for data collection and analysis along with sample

data are available at https://github.com/akloth0325/eyeblink-conditioning.) The Master-8 controlled

the stimulus timing and sent square signals to an ultraviolet LED and a Toohey Pressure System IIe

spritzer (Toohey Co., Fairfield, NJ) to generate the CS and US, respectively. The output from the

Master-8 was returned to the data acquisition system. The voltage output of the Hall-effect sensor was

filtered and amplified (band-pass filtered from 0.01 Hz to 4 kHz, gain adjusted to signal quality) and

sent to the data acquisition system.

The beginning of an individual trial was subject to the following criteria. First, at least 12 s must

have elapsed since the last trial. Time was added to the interval between any two consecutive trials
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according to the stability of the eyelid position signal: if the eyelid position signal (the ‘baseline’ signal)

strayed outside an experimenter-determined range during 1 s prior to the planned delivery of the CS,

an additional 1 s was added to the intertrial interval until this criterion was met, after which the trial was

initiated. The experimenter used the voltage range of UR (baseline to peak) during 3–12 unpaired US

trials delivered at the beginning of the session to determine an acceptable voltage range for baseline

activity prior to the beginning of each trial; typically, this range was ±10% of the average size of the UR.

The data from each trial were normalized prior to analysis. For the paired US-CS trials, the eyelid

position was normalized to the range between the baseline and the peak amplitude of the UR during

the trial. For the unpaired CS trials, the eyelid position was normalized to the range between the

baseline and the UR peak for the most recent US-CS trial. Then, the response probability and

response amplitude for a single training session were calculated. This normalization scheme yielded

results that were not significantly different from those acquired by normalizing to a sessionwide

average UR (paired t-tests within groups for CR performance, response probability, and response

amplitude on session 12, p > 0.05 in all instances).

The analysis method was inspired by brain slice recording of single-synapse plasticity (O’Connor

et al., 2007) to analyze the full range of detectable responses to a CS (Figure 2). The peak response

size for the period between 100 ms and 280 ms after the onset of the CS was collected for every trial

during each session, and a probability distribution was computed from these data. The part of the

probability distribution that lay below a peak response size of 0 was considered the ‘non-response

distribution’. This part of the distribution plus a reflection of this distribution for a positive peak

response size was subtracted from the original probability distribution. The remaining distribution was

the ‘response distribution’. The response probability for the given session was the area under the

response distribution. The response amplitude was computed as the center of mass for the response

distribution. Response timing was analyzed from the unpaired CS trials. The normalized response

during the CS scored as a CR if it exceeded 0.15 between 100 ms and 400 ms after the onset of the CS

and remained below 0.05 between 0 ms and 99 ms. (Again, trials for which the responses exceeded

0.05 between 0 ms and 99 ms after the onset of the CS were excluded.)

As sensory and motor tests, motor function was analyzed using unpaired US trials from the first

session of training. Peak time, rise time, and onset time were calculated on smoothed individual traces

as described above, within 75 ms of US onset. Photic eyelid opening was analyzed during the first

session of eyeblink conditioning, during which no conditioned eyeblink was generated. Using the

normalized individual eyelid deflection traces, deflections that were more than 5% below the baseline

70–250 ms after the CS onset—but not before—were counted.

Water Y-maze acquisition
Mice underwent one session of habituation training (1 day), four sessions of acquisition training (the

next day), and two sessions of testing (the following day) in a water Y-maze (custom made: 32 cm arms

positioned at 120˚ from one another, made of semitransparent polycarbonate) filled with opaque water

(non-toxic white tempera paint was added to achieve opacity). On the habituation day, mice were

dropped into 10 cm of water in order to measure their swimming ability. The habituation day consisted

of three 60-s trials, each trial starting from one arm of the maze. No platform was hidden beneath the

surface of the water during this phase of training. During acquisition, the mice were randomly sorted

into leftward-going or rightward-groups; this selection determined in which arm the platform would be

hidden beneath the surface of the opaque water for each mouse. For five trials per training session, the

mice were dropped into the arm closest to the experimenter and were given 40 s to find the platform.

On the following day, the animals underwent two more sessions of the same protocol to test memory.

The swimming trajectories of the mice were captured on video and were processed by a custom

Python script (available at https://github.com/bensondaled/three-chamber) to determine whether the

animal found the platform on a given trial. Excursions to the wrong arm of the maze were counted as

incorrect. Results were reported the fraction of correct trials to valid trials, where valid trials included all

trials on which the animal successfully to swam to either the left or the right arms of the Y-maze.

Gait analysis
Mice videotaped during two runs along a 100-cm track over a plexiglass surface. Each run was

initiated with an airpuff to the hindlimb. Runs were videotaped (iPhone 6, 40 frames/s) from below,
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and light was sourced from below. After being separated using a custom MATLAB scripts, JPEG

stacks were analyzed using FIJI Manual Tracker (LOCI, Madison, WI) for the centroid of each paw.

Stance and stride parameters were calculated from four paw centroid trajectories (≥10 strides per run)

for each animal.

Surgery
Mice were fitted with a 1′′ × ½′′ × 1/32′′ custom titanium headplate (Ozden et al., 2012; Heiney

et al., 2014). During the surgery, each mouse was anesthetized with isoflurane (1–2% in oxygen, 1 l/

min, for 15–25 min) and mounted in a stereotaxic head holder (David Kopf Instruments, Tujunga, CA).

The scalp was shaved and cleaned, and an incision was made down the midline of the scalp. The skull

was cleaned and the scalp margin was kept open with cyanoacrylate glue (Krazy Glue). The center of

the headplate was positioned over bregma and attached to the skull with quick-drying dental cement

(Metabond, Parkell, Edgewood, NY). Following the surgery, the mice received a non-steroidal anti-

inflammatory drug (0.1 ml, 50 mg/ml Rimadyl [carprofen, Zoetis, Florham Park, NJ]) subcutaneously

and were allowed to recover for at least 24 hr.

Tissue processing and analysis
Tissue from separate groups of mice for each cohort was used to analyze the morphology of the

cerebellum. For Nissl staining and immunohistochemistry, the mice were anesthetized with 0.15 ml

ketamine-xylazine (0.12 ml 100 mg/ml ketamine and 0.80 ml mg/ml xylazine diluted 5× in saline) and

transcardially perfused with 4% formalin in Delbucco’s phosphate buffered saline (PBS). The brain was

extracted and stored at 4˚C in 4% formalin in PBS overnight. Then, the brains were split into

hemispheres. The hemispheres used for Nissl staining were stored in 0.1% sodium azide in PBS at 4˚C

until vibratome sectioning. The hemispheres used for immunohistochemistry were prepared for

cryosection. These hemispheres were stored in 10% sucrose in PBS at 4˚C overnight and were blocked

in a solution of 11% gelatin/10% sucrose. The block was immersed in a mixture of 30% sucrose/10%

formalin in PBS for 2 hr and then stored in 10% sucrose in PBS at 4˚C for up to 2 weeks.

For Golgi-Cox staining, the mice were anesthetized with 0.15 ml ketamine-xylazine (0.12 ml of 100

mg/ml ketamine and 0.80 ml mg/ml xylazine diluted 5× in saline) and decapitated immediately. The

brain was removed quickly in ice-cold PBS and processed using the FD Rapid GolgiStain kit (FD

Neurotechnologies, Inc., Columbia, MD), according to the kit instructions.

Brain hemispheres used for Nissl staining were blocked sectioned sagittally on a vibratome at

a thickness of 70 μm. The sections were mounted on Fisherbrand SuperFrost microscope slides (Thermo

Fisher Scientific, Waltham, MA) and allowed to dry at room temperature overnight. Then, they were

Nissl stained with cresyl violet according to standard procedures and coverslipped with Permount

(Thermo Fisher Scientific, Waltham, MA). The sections were imaged at 5× magnification and ‘virtual

slices’ were constructed from serial images captured by the MicroBrightField software Stereo

Investigator (MBF Biosciences, Williston, VT). The thicknesses of the molecular layer and the granule

layer were measured on anterior and posterior portions of vermal sections of the cerebellum at 150-μm
intervals using ImageJ (National Institutes of Health, Bethesda, MD).

Brains used for Golgi-Cox staining were sectioned sagittally on a vibratome at a thickness of

120 μm. The sections were mounted on slides and allowed to dry in the dark at room temperature

overnight. Then, they were processed for Golgi staining according to the instructions for the FD Rapid

GolgiStain kit and coverslipped with Permount. The sections were imaged at 20× and 40× and images

of Golgi-stained PCs and captured by the MicroBrightField software Stereo Investigator. The cross-

sectional area of the soma and the maximum height, maximum width, and the cross-sectional area of

the PC dendritic arbor were measured using ImageJ. In addition, the complexity of the PC dendritic

arbor was determined using Sholl analysis (Sholl, 1956) using ImageJ; briefly, the number of

intersections of the dendritic arbor with concentric circles drawn at 12-μm intervals from the soma was

counted (e.g., see Figure 5D). Spines on the distal dendrites were counted in an unbiased manner

from these cells (e.g., see Figure 5D). The spines on distal dendrites of every fifth branchlet (random

starting point) were counted and the dendrite length was measured.

Brain hemispheres used for immunohistochemistry were sectioned sagittally on a cryotome (−20˚C)
at a thickness of 30 μm and stored in PBS. Sections were immunostained with rabbit anti-calbindin

(1:2000, Invitrogen, Waltham, MA) as the primary antibody and donkey anti-rabbit AlexaFluor 488
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(1:300, Invitrogen, Waltham, MA). Sections were counterstained with 4’,6-diamidino-2-phenylindole

(DAPI, 1:100, Invitrogen, Waltham, MA). The sections were mounted on Fisherbrand SuperFrost

microscope slides (Thermo Fisher Scientific, Waltham, MA) slides and coverslipped with VectaShield

without DAPI (Vector Labs, Burlingame, CA). The sections were imaged at 10× magnification on an

epifluorescence microscope and ‘virtual slices’ were constructed from serial images taken by the

MicroBrightField software Stereo Investigator. PCs were counted and the length of the PC layer was

measured for each sample using ImageJ.

Statistics
All data and samples were analyzed with by an experimenter who was blinded to genotype. All

pairwise statistical tests were unpaired two-sample t-tests unless otherwise noted. Time course data

were analyzed using two-way ANOVAs with repeated measures; main genotype effects were reported

regardless of significance, whereas main session effects (which would indicate a learning effect

through time) are significant and session × genotype interactions are not significant unless otherwise

indicated. When comparing a single measurement across more than two groups, one-way analyses of

variance were performed with Bonferroni post hoc tests with planned comparisons. Correction for

potentially confounding variables (i.e., age) was performed using analysis of covariance tests with the

confounding variable as the covariant and followed by Tukey’s post hoc tests. Tests were performed

using GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA) and SPSS 21 (IBM, Armonk, NY). All

data are displayed as mean ± standard error of the mean (SEM) unless otherwise noted in the text or

legend. Where significant differences were discovered with pairwise comparisons, effect sizes are also

reported as Cohen’s d′.
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