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Abstract: Continuous monitoring of the fetal heart rate (FHR) signal has been widely used to
allow obstetricians to obtain detailed physiological information about newborns. However, visual
interpretation of FHR traces causes inter-observer and intra-observer variability. Therefore, this study
proposed a novel computerized analysis software of the FHR signal (CAS-FHR), aimed at providing
medical decision support. First, to the best of our knowledge, the software extracted the most
comprehensive features (47) from different domains, including morphological, time, and frequency
and nonlinear domains. Then, for the intelligent assessment of fetal state, three representative machine
learning algorithms (decision tree (DT), support vector machine (SVM), and adaptive boosting
(AdaBoost)) were chosen to execute the classification stage. To improve the performance, feature
selection/dimensionality reduction methods (statistical test (ST), area under the curve (AUC), and
principal component analysis (PCA)) were designed to determine informative features. Finally, the
experimental results showed that AdaBoost had stronger classification ability, and the performance
of the selected feature set using ST was better than that of the original dataset with accuracies of
92% and 89%, sensitivities of 92% and 89%, specificities of 90% and 88%, and F-measures of 95%
and 92%, respectively. In summary, the results proved the effectiveness of our proposed approach
involving the comprehensive analysis of the FHR signal for the intelligent prediction of fetal asphyxia
accurately in clinical practice.
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1. Introduction

Delivery is one of the most important events in women's lives and having a healthy baby is a
common desire. When the fetus suffers a pathological condition, timely intervention can prevent
permanent damage and improve the birth quality of the population. However, the fetal state is
influenced to varying degrees by several risk factors related to the pregnant woman and the external
environment, and the rate of neonatal morbidity and mortality is increased in case of prolonged and
severe reduction in oxygen supply [1]. Therefore, an effective technique used to monitor the fetal
situation when necessary is needed.

In clinical practice, cardiotocography (CTG), a technique for recording the fetal heart rate (FHR)
signal and uterine contraction (UC) activity, is currently the most routinely used method for antepartum
and intrapartum monitoring of fetal well-being [1]. CTG, also known as electronic fetal monitoring
(EFM), can assist obstetricians in identifying fetal hypoxia and thereby prevent several abnormal
outcomes, such as metabolic acidosis, congenital heart defect, and even death [2]. Unfortunately,
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FHR is interpreted visually by clinicians via the naked eye, which causes not only intra-observer
(one expert at different times), but also inter-observer (different experts at the same time) variability.
In addition, the high false positive rate of the FHR signal is considered the main reason behind the
increasing rate of caesarean sections (CSs), and unnecessary operative deliveries. To overcome the
above drawbacks, researchers have attempted to design computer-aided analysis systems for assisting
clinicians in diagnosing the fetal state, through extracting useful information from the FHR signals [3].

Different research institutes have proposed relevant guidelines that are limited and insufficient,
e.g., the International Federation of Gynecology and Obstetrics (FIGO) [4] and the National Institute of
Child Health and Human Development (NICHD) [5], etc. These guidelines barely consider (and the
interrelated systems calculate) basic morphological features of the FHR signal, namely, the baseline
estimation, detection of acceleration and deceleration pattern, and variability in short and long term.
Even though the guidelines are widely used in the delivery ward, the FHR signal is interpreted poorly
and differences in fetal state assessment among obstetricians still exist [6].

In recent decades, related studies have proved the effectiveness of analyzing features originated
from different aspects in the diagnosis of fetal distress. Krupa et al. introduced the detail coefficients
using empirical mode decomposition (EMD) and employed the support vector machine (SVM) to
classify the FHR signals with accuracy (Acc) of 87% [7]. Spilka et al. investigated the influence
of nonlinear features (complexity, entropy, and fractal dimension) on classification and obtained
sensitivity (Se) and specificity (Sp) of 73% and 76%, respectively [8]. Doret et al. applied a univariate
analysis method for the frequency domain and nonlinear parameters [9]; the former had the higher
area under the curve (AUC) value of 0.81 ± 0.07 with a 95% confidence interval (CI). Comert et al.
proposed a prognostic model, based on image-based time-frequency (IBTF) features and least square
SVM (LS-SVM), which achieved better performance than conventional feature-based methods [10].

The antenatal fetal non-stress testing (NST) and intrapartum EFM surveillance have been widely
applied in the diagnosis of fetal state by obstetricians in clinical practice. Both the approaches utilized
FHR signals, which performed well during the antepartum and intrapartum stages, respectively. Low
et al. studied 290 mature pregnancies and proved that there were relationships between the antepartum
and intrapartum FHR signals [11]. For example, there was a significant relationship in the baseline and
its variability, while there was no correlation in accelerations and decelerations. Furthermore, Low et
al. demonstrated that the analysis method used in one of them could be equally used in another stage
due to their relationships. Although many of the previous methods as described in References [7–9]
treated the antepartum signal as an analysis object, several researchers illustrated that these features
could be extensively employed in the intrapartum stage citing a freely available database consisting of
intrapartum FHR recordings since 2014 [12], which were also employed in this work.

Furthermore, inspired by the rapid development of the adult heart rate variability (HRV) field,
the fetal HRV signal has also proved to perform well in identifying fetuses at risk of diseases (e.g.,
sudden infant death syndrome (SIDS)), by providing detailed physiological information about the
fetus [13]. Recent studies involving HRV signals (obtained from electrocardiogram (ECG) directly or
CTG indirectly), have revealed that HRV can reflect fetal hypoxia and acidosis, pathological conditions
that are closely associated with the increased risk of neonatal morbidity and mortality [14].

In this work, we proposed a novel computerized analysis method using FHR signals, which
aims to provide medical decision support based on advanced signal process methods and machine
learning (ML) algorithms. The procedure is illustrated in Figure 1 and consists of the following major
steps: Signal preprocessing, feature extraction and selection (dimensionality reduction), classification,
and performance evaluation. The work has several innovative aspects: (i) We took the FHR signal
into consideration comprehensively and extracted a great number of relevant features, including
morphological, time and frequency, and nonlinear domains; (ii) feature selection algorithms were
applied to determine which features are more informative for classifying the fetal pattern; and (iii)
ensemble learning was used to discriminate between two fetal states: Normal and pathological.
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Figure 1. A schematic presentation of our proposed approach.

The rest of the paper is organized as follows: Section 2 presents the database and a detailed
description of the overall methodology for FHR signal, especially feature analysis. Section 3 gives
the corresponding results of the different steps and Section 4 discusses the classification results of the
dataset. Section 5 concludes the work and proposes the direction of future work.

2. Materials and Methods

2.1. Data Description

The data used in the study were obtained from CTU-UHB, an open-access intrapartum CTG
database comprising a subset of 9164 intrapartum CTG recordings that were acquired between the
years 2009 and 2012 in the obstetrics ward of the University Hospital in Brno, Czech Republic [12,15].
Chudáček et al. elaborately selected the final 552 CTG signals to constitute this database with clinical
as well as technical considerations. Three sets of 102, 412, and 35 records were acquired by means of
scale electrode (ECG), ultrasound pressure (CTG), and both, respectively. The last three records of
this database contained unavailable information. The main types of information and their respective
distributions are depicted in Table 1 and interested readers can refer to a more detailed characterization
in Reference [12]. All records were sampled at 4 Hz using a recording device. In this work, we chose a
signal length of 20 min (4800 samples) for continuous processing.

Two common types of annotation are widely accepted according to References [16,17]: (i) The pH
or BE (base deficit) of neonatal umbilical artery blood measured immediately after the delivery can be
viewed as an objective annotation; (ii) both expert evaluation of the fetal pattern and measurement
of the newborn (e.g., Apgar score in 1st and 5th min) in the delivery ward are subjective annotations.
In this work, pH was selected as the gold standard to assign the fetal state into one of two classes to
reduce subjective error. A pH below 7.15 was agreed as pathological and a pH greater than or equal to
7.15 was classified as normal; thus, the database contained 447 normal and 105 abnormal (pathological)
FHR recordings.
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Table 1. An overview of the information available in the open access CTU-UHB cardiotocography
(CTG) database.

Information Mean Min Max

Maternal age (MA, year) 29.6 18 46
Gestational age (GA, week) 40.0 37 43

pH 7.23 6.85 7.47
BDecf (mmol/L) 4.60 −3.40 26.11

pCO2 7.07 0.70 12.30
BE −6.38 −26.80 −0.20

Apgar 1 min 8.3 1 10
Apgar 5 min 9.1 4 10

Gravidity 1.4 1 11
Parity 0.4 0 7

Diabetes No = 515, Yes = 37
Birth weight (BW, g) 3401 1970 4750

Infant sex Male = 286, Female = 266
Delivery type Vaginal = 506, Cesarean section = 46

2.2. Software Interface

In this work, the user-friendly CAS-FHR (computerized analysis software of the FHR signal)
software interface was developed by means of the MATLAB graphical user interface development
environment (GUIDE) and allowed the researchers to interact with the software through several edit
boxes and buttons. The built-in-functions (BIFs) were independent and involved different analysis
stages, including data import, signal preprocessing and feature extraction (morphological, time and
frequency domain and nonlinear features). Moreover, the users could arbitrarily set and adjust input
parameters as required. Then, the result was displayed on the interface in various forms (i.e., as a
digital table and a figure) and could be saved for further study along with the information regarding
the pregnant woman (MA, GA, etc.). Figure 2 shows the software interface with the advanced settings.
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Figure 2. The graphical user interface of the computerized analysis software of the FHR signal
(CAS-FHR) is divided into five segments: (1) Main menu; (2) Data import; (3) Signal browser;
(4) Analysis options (Parameter settings); and (5) Results viewer. The results viewer can be further
divided into morphological, time and frequency domain and nonlinear results.
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2.3. Signal Preprocessing

In clinical practice, during the recording process using Doppler ultrasound, the FHR signal
contains many artifacts or spikes due to maternal and fetal movements or transducer displacement [1].
Therefore, before further analysis, we eliminated noise to obtain a relatively pure signal for more
accurate results, as described in Reference [18]. In this work, we employed a preprocessing algorithm
involving three steps. Assume x(i) is an FHR signal with unit of beats per min (bpm) and a sample
frequency of 4 Hz, where i = 1,2, ..., N and N is the number of samples.

1. A stable segment is chosen as the starting point; in such a segment, five adjacent samples do not
differ by more than 10 bpm, and missing data are excluded when the length of x(i) = 0 is equal to
or more than 10 s.

2. Values of x(i) ≤ 50 or x(i) ≥ 200 are considered data spikes and are removed using
linear interpolation.

3. We interpolate x(i) using spline interpolation again when the difference of x(i) and x(i− 1) exceeds
25 bpm, a value used to define an unstable segment.

Twenty minutes (N = 4800 samples) of signal length was the target used for further continuous
processing in this paper. Taking the signal labeled No. 1001 as a typical example, the result of this
artifact removal scheme is presented in Figure 3.
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(a) Original FHR signal; (b) Denoised FHR signal.

2.4. Feature Extraction

As shown in Figure 1, feature extraction after signal preprocessing was the most important step
in analyzing FHR signal and assessing fetal state. To the best of our knowledge, the extracted features
used in this work represented an almost complete collection of features that have been employed for
the automatic evaluation of the FHR signal in previous studies.

2.4.1. Morphological

According to the common FIGO guidelines motivated by the routine application of the FHR signal
by obstetricians and midwives in recent decades, baseline, acceleration, deceleration and variability
are basic morphological features [4]. Given they represent macroscopic properties of the FHR pattern
and are easily visible to the naked eyes of experts, these four features are most frequently used in
clinical settings.
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Baseline (BL) is generally considered the important feature used in FHR pattern recognition
because the other morphological features rely on its value [19]. BL can also be considered the resting
level of the FHR, i.e., the mean level of the signal when it is stable, and acceleration and deceleration
are absent [4,20]. The BL is classified as reassuring, non-reassuring and abnormal when the mean of
the BL is in the ranges of 110–160 bpm, 100–109 bpm or 161–180 bpm, and less than 100 bpm or more
than 180 bpm, respectively [4,20]. Accelerations (ACCs) are temporary increases in the FHR above
the BL by 15 bpm or more, for 15 s or longer. Decelerations (DECs) are temporary decreases in FHR
below the BL by more than 15 bpm, for 15 s or longer. DECs can be classified into three types based on
duration time: Mild, prolonged, and severe are defined as less than 120 s, between 120 and 300 s, and
more than 300 s, respectively [4,20].

According to the definition described above, the software implemented one-dimensional filtering
and applied a sliding window to the FHR sequence. This filtering replaced the center value in the
window with the average value of all the points within the window.

Therefore, the first set of extracted features was as follows:

Set_1: {meanBL, sdBL, minBL, maxBL, ACC, DEC_mild, DEC_prolong, DEC_severe}.

As mentioned above, the basic features of the FIGO guidelines are considered important and
necessary for the development of computerized systems for the automatic prediction of the fetal
state [21]. In addition, other features originated from the adult HRV signal of different domains have
proven to be equally useful. The mutual relationship between the sympathetic nervous system (SNS)
and the parasympathetic nervous system (PSNS) of the fetus can be reflected in clear variations in
the fetal HRV signal. More specifically, regarding the pathological state of the fetus, stimulation of
the SNS results in a decrease in heart rate (HR), while stimulation of the PSNS results in an increase
in HR [22]. During the periods of stress, such as the prolonged DEC or at the time of UC, the fetal
heart pumping activity would be improved due to the SNS serving as a compensatory mechanism, as
reflected in the FHR signal variations. Unlike an adult HRV using the ECG signal, the FHR obtained
from CTG recording has no real RR (beat-to-beat) interval [23]. Thus, before extracting linear and
nonlinear features derived from the adult HRV parameters, we firstly needed to change the FHR
signal to epoch-to-epoch variation (i.e., fetal HRV signal), with a unit of millisecond like others
(e.g., Reference [24]), expressed as Equation (1).

RR =
60, 000
FHR

(1)

2.4.2. Time Domain

When the fetus does not have a pathological heart condition, all beats can be considered normal,
and the distance between two normal beats is described as NN. Inspired by commonly used parameters
in the field of adult HRV, we computed several statistical measures of the fetal HRV signal in the time
domain [13]. The maximum, minimum, mean and median values of the RR interval were four basic
attributes. Other parameters include the standard deviation of the NN (SDNN), calculated on the
chosen HRV segment, which reflects all the cyclic components responsible for variability in the period
of recording and has two variants (SDANN and SDNNi with the same fractional segments); the root
of the mean squared differences (RMSSDs) of consecutive RR intervals; NNx, which computes the
number of successive NN pairs that differ by more than x ms; pNNx, which gives the percentage
of NNx to the total number of beats; Tri, which represents the HRV triangular index and calculates
the samples in a bin and the location of the bins using histogram analysis; and TINN, the triangular
interpolation of the NN interval histogram. Many researches have recently been proposed to prove the
effectiveness of such parameters and have been provided as a clinical basis. For example, Torres et al.
designed a case-control study to analyze the HRV signal at rest and during aerobic exercise in healthy
people and cardiac patients using time domain parameters [25]. The experimental result demonstrated
that the healthy group showed a significant decrease in SDNN and pNN50. Other features reflect
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slight changes in fetal behavior that are difficult to observe using the naked eye, including short-term
variability (STV), interval index (II), long-term irregularity (LTI), delta value and total delta value. The
corresponding calculation formula can be found in reference [26]. A total of 17 linear time domain
attributes were extracted from the HRV signal and used for classification.

Therefore, the second set of extracted features in the time domain of HRV was as follows:

Set_2: {meanRR, minRR, maxRR, medianRR, SDNN, SDANN, SDNNi, RMSSD, NNx, pNNx,
STV, II, LTI, delta, delta_total, Tri, TINN}.

2.4.3. Frequency Domain

For adult HRV, several spectral methods have been proposed [27]. However, there is no generally
acknowledged use of frequency bands in the analysis of the FHR signal. In this work, we adopted
suggestions from Reference [28] for use in frequency partitioning. The frequency range was divided
into 4 bands, and the power spectral of the signal in each one of these was computed as follows:
Very low frequency (VLF, 0–0.03 Hz) band, which is related to very low control mechanisms and
presents nonlinear characteristics; low frequency (LF, 0.03–0.15 Hz) band, which is mainly associated
physiologically with neural sympathetic fetal activity; movement frequency (MF, 0.15–0.50 Hz) band,
which is correlated with physical activity (e.g., fetal movements and maternal breathing); and high
frequency (HF, 0.50–1.00 Hz) band, which reflects fetal breathing. Motivated by the ratio of LF/HF in the
field of adult HR, the ratio of energies in the bands was also computed as: Ratio_Band = LF/(MF + HF),
which is believed to quantify the balance of activity between the two-autonomic nervous system (ANS)
branches (SNS and PSNS) [29]. In this work, the software provided three ways to calculate the power
spectral density (PSD), including Fast Fourier Transform (Welch), the auto-regressive (Burger) model,
and Lomb Scargle (LS). The analysis parameters of frequency domain could be set arbitrarily in the
software interface.

Therefore, the third set of extracted features in the frequency domain of HRV was as follows,
where Power_VLF represented the energy of the VLF band using PSD, Percent_VLF represented the
percentage of VLF in the total energy band, and the other three features had the same meanings:

Set_3: {Power_VLF, Power_LF, Power_MF, Power_HF, Power_Total, Percent_VLF, Percent_LF,
Percent_MF, Percent_HF, Ratio_Band}.

2.4.4. Nonlinear

The nonlinear parameters extracted from the fetal HRV signal were chosen based on adult HRV
studies [8,30].

The fractal dimension (FD) is one of the useful estimators of HRV kinetics, and several techniques
for estimating the waveform FD have been proposed [31,32]. The Higuchi method was chosen in this
work and calculates the FD from the chosen length of the HRV signal [33]. Assuming an original signal
x(1), x(2), ..., x(N) of length N, a new signalXm

k is constructed as follows: X(m), X(m + k), X(m + 2k),
..., X(m + [(N − m)/k]) (m = 1,2, ..., k), where [] denotes the Gauss’ notation, m defines the initial time,
and k is the time interval. k represents the time displacement, and the number of new created subsets
is equal to k. Then, for each m, the length Lm(k) of Xm

k is computed. The length of the curve for time
interval k is <L(k)>, which is defined as the average value over k sets of Lm(k). The computed curve
length <L(k)> for a different value of k is related to the FD D by the exponential formula <L(k)>∝k−D.
The FD (noted as FD_Hig) is estimated as the slope of a fitted regression curve to the log-log plot of
<L(k)> versus k [10].

< L(k) > =
k

∑
m = 1

Lm(k)
k

(2)

The entropy index denotes the behavior of a nonlinear signal and quantifies the underlying
randomness [34]. The approximate entropy (ApEn) and the sample entropy (SampEn) are most
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frequently used and are effective in deciding the fetal state [35,36]. The former approximately equals
the average of the natural logarithm of the conditional probabilities that sequences of length m are close
to each other, within a tolerance r. The latter is a slightly modified version of ApEn and overcomes the
inherent disadvantages. This is mainly used because conditional probabilities are not estimated by
a template approach and self-matches are excluded. This procedure requires that only one template
finds a match of length m + 1. In this work, the parameters used for ApEn and SampEn estimation
were the embedding dimension m = 2 and the tolerance r = 0.15 × SD (the standard deviation of the
RR time series). The values of m and r could be set arbitrarily in the software interface. A discrete
signal xn of length N is separated into a subset of m length vectors um(i), and the numbers of vectors
um(i) and um(j), which are close to each other in a Euclidean sense d[um(i), um(j)] ≤ r, are conveyed by
the number nm

i (r). The following equations are shown as (3) to (6).

ApEn(m, r, N) = lim
N→∞

[Φ m(r)−Φm+1(r)
]

(3)

Φm(r) =
1

N −m + 1∑N−m+1
i = 1 ln Cm

i (r) (4)

Cm
i (r) =

nn
i

N −m + 1
(5)

SampEn(m, r, N) = lim
N→∞

− ln
Cm+1(r)

Cm(r)
(6)

One of the important nonlinear parameters is the Lempel Ziv Complexity (LZC) [37,38]. This
method examines recurring patterns that are obtained in the continuous signal irrespective of time.
A random signal has rarely repeated individual patterns; thus, the signal complexity is high. The
opposite is true for the periodic signal. A time series, x(1), x(2),...,x(n), is first encoded to constitute
a sequence S such that the values of signals are equal; x(i + 1) = x(i) is encoded by 2 and increases,
x(i + 1) > x(i) is encoded by 1 and decreases, x(i + 1) < x(i) is encoded by 0, where the quantification
level p = 0. The second step is computing the distinct patterns in S; the complexity c(n) is increased by
1 for each new pattern. When the last element of S is reached, c(n) is still increased by 1; obviously
c(n) depends on the number of data points n. Finally, the normalization form is designed to avoid the
dependence on the length of the original sequence. The normalized C(n) is described by Equation (7).
The primary purpose of ternary encoding is to avoid a dependence of the results on the normalization
procedures and quantification criteria.

C(n) =
c(n)× log2(n)

n
(7)

In addition, the Hurst parameter for intrapartum fetal HRV analysis [9]; the short/long scale
exponent (alpha) of the detrended fluctuation analysis (DFA) [39]; and the average acceleration capacity
(AAC), the acceleration phase-rectified slope (APRS), the average deceleration capacity (ADC) and the
deceleration phase-rectified slope (DPRS) as obtained from the phase-rectified signal average (PRSA)
are also extracted from the HRV signal [40,41]. Furthermore, a Poincare plot is used to represent the
correlation of the signal itself and to aid clinicians in determining outliers and the overall quality of the
signal [42]. Each RR interval is plotted as a function of the previous interval (the relationship between
x(i) and x(i + 1)) and the standard deviation of two axes (SD1, SD2) is motivated by the geometric HRV
representation. Due to space limitation, details were omitted but can be found in the cited publications.

Therefore, the fourth set of extracted features in the nonlinear field of HRV was:

Set_4: {FD_Hig, ApEn, SampEn, LZC, Hurst, alpha, AAC, ADC, APRS, DPRS, SD1, SD2}.

After extracting the comprehensive features, we needed to do some preprocessing on the obtained
dataset consisting of 47 features (from Set_1 to Set_4, marked as Set_Complete) before further analysis.
For the fetal heart rate pattern (HRP) functional signal in the prenatal period, Hoyer et al. demonstrated
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that there existed a clear relationship between the gestational age (GA) and the extracted parameters
from FHR signals [43]. We considered the fact that the parameters should be adjusted to eliminate
the bias. Therefore, to obtain reliable results, we normalized all the parameters by performing linear
regression based on GA, which is available in the open-access database (Table 1), inspired by the
work of Magenes et al. [44]. Further, we also conducted the normalization process using the common
minimum-maximum scaling method and compared their performance.

2.5. Feature Selection/Dimensionality Reduction and Classification

2.5.1. Feature Selection/Dimensionality Reduction

The above feature extraction algorithms created a dataset combined with many features (47). Some
of the features may have not been as informative as expected and have even conveyed overlapping
information. In other words, not all the extracted features were necessary for classification or for aiding
the obstetrician’s assessment of fetal state. Therefore, feature selection (or dimensionality reduction)
is used to determine the features that contain more valuable information for the application of the
classification problem [45].

From the clinician’s point of view, all features were submitted to the Mann-Whitney-Wilcoxon
statistical test (ST), and we determined the significant differences according to the p-value [46].

The feature selection algorithm could then be used to decrease the training time for building
a classifier and simultaneously retain the class discriminatory information. That is, the choice of
a suitable subset of the features could increase computational efficiency and reach near-optimal
performance regarding assessment of the fetal state. In this work, we ranked the features based on the
value of the area under of the ROC (receiver operating characteristic) curve (AUC) and determined the
best individual features [47]. Dimensionality reduction has the same effect, and principal component
analysis (PCA) is generally used in biomedical applications [48].

2.5.2. Classification and Performance Evaluation

In this work, we used the WEKA (Waikato Environment for Knowledge Analysis) data mining
software to execute the final classification stage [49]. Many ML algorithms have been experimented
to compare their performance, e.g., Naïve Bayes, k nearest neighbor, discriminate analysis, etc.
However, due to the space restriction, and more importantly, the primary goal of the work was
the comprehensive feature analysis method; we only selected three representative algorithms which
possessed stronger classification capacity among the numerous tested ML algorithms, including C4.5
decision tree (DT) [50], SVM [51], and adaptive boosting (AdaBoost) [52].

Citing the low number of instances in the pathological class (105 of the total of 552), a ten-fold
cross validation (CV) was applied to obtain more reliable results. The training set contained 497
(402 normal and 95 pathological) recordings, while the test set contained 55 (45 normal and 10
pathological) recordings.

Finally, the confusion matrix and some measurements (such as Acc, Se, and Sp) calculated from
the elements were conventionally used in medical field [53], as shown in Table 2. Unfortunately, due to
the existence of a high imbalance between the fetal classes for the used database (105 normal and 447
pathological cases), we chose other alternative indicators to evaluate the classification performance.

1. F-measure (FM, Harmonic mean):

FM =
2 · Precision · Recall
Precision + Recall

(8)

2. Balanced error rate (BER):

BER =
1
2
·
(

FP
FN + TP

+
FN

FP + TN

)
(9)
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3. Quality index (QI, Geometric mean):

QI =
√

Se · Sp (10)

4. Matthews correlation coefficient (MCC):

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

Table 2. Performance measurements for binary classification computed from a confusion matrix.

Positive Negative Evaluation Focus

Predicted as positive TP FP /

Predicted as negative FN TN /

Acc TP+TN
TP+FP+FN+TN The overall efficiency of a classifier

Se (Recall) TP
TP+FN

The efficiency of a classifier to categorize positively
labeled data

Sp TN
TN+FP

The efficiency of a classifier to categorize negatively
labeled data

Precision TP
TP+FP

The data with positive labels correctly classified by
the classifier

Note: Positive = normal, negative = pathological; TP = true positive, FP = false positive, FN = false negative,
TN = true negative.

3. Results

The obstetricians were able to utilize the computerized software to analyze the FHR signals and
obtain all the mentioned features automatically. Figure 4 shows a comprehensive list of the extracted
features of the different domains in the form of tables and graphs.

J. Clin. Med. 2018, 7, x FOR PEER REVIEW  10 of 20 

 

4. Matthews correlation coefficient (MCC): 

TP TN- FP FN
M CC =

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

 
 (11) 

Table 2. Performance measurements for binary classification computed from a confusion matrix.  

 Positive Negative Evaluation Focus 

Predicted as positive TP FP / 

Predicted as negative FN TN / 

Acc 
TP+TN

TP+FP+FN+TN
  The overall efficiency of a classifier 

Se (Recall) 
TP

TP+FN
 

The efficiency of a classifier to categorize positively 

labeled data 

Sp 
TN

TN FP
 

The efficiency of a classifier to categorize 

negatively labeled data 

Precision 
TP

TP+FP
 

The data with positive labels correctly classified by 

the classifier 

Note: Positive = normal, negative = pathological; TP = true positive, FP = false positive, FN = false 

negative, TN = true negative. 

3. Results 

The obstetricians were able to utilize the computerized software to analyze the FHR signals and 

obtain all the mentioned features automatically. Figure 4 shows a comprehensive list of the 

extracted features of the different domains in the form of tables and graphs. 

 
(a) 

Figure 4. Cont.



J. Clin. Med. 2018, 7, 223 11 of 20
J. Clin. Med. 2018, 7, x FOR PEER REVIEW  11 of 20 

 

 
(b) 

Figure 4. The results of the feature extraction algorithm of No. 1001 FHR recording (internel database 

number) using CAS‐FHR. (a) The results are viewed in the software interface, inlcuding the 

morphological, time and frequency domain and nonlinear features; (b) The results are saved in txt 

format for further analysis. 

For the CTU‐UHB database, Tables 3 and 4 present the distribution of four feature subsets for 

two classes before normalization. We considered p < 0.05 to indicate significance between each 

feature and fetal states, and the results showed that the features of meanBL, minBL, and maxBL of 

Set_1; meanRR, minRR, maxRR, and STV of Set_2; and FD_Hig, LZC, and DFA_alpha of Set_4 had 

statistical significance in identifying different fetal conditions with a 95% CI. Therefore, the ST 

reduced the original 47 features to the above 9 features, which were combined as Set_A. 

Table 3. Features extracted from the FHR signals for the normal and pathological groups (Set_1: 

Morphological; Set_2: Time domain). Key: Values are given as the mean (standard deviation). 

p‐values were calculated using the Wilcoxon‐Mann‐Whitney nonparametric test with a significance 

level of 0.05. 

Set Parameter (Unit) Normal (447) Pathological (105) p 

Set_1 

meanBL (bpm) 136.0 (14.4) 142.0 (16.2) 0.004 

sdBL (bpm) 2.4 (1.3) 3.2 (2.6) 0.318 

minBL (bpm) 132.0 (15.2) 135.9 (17.2) 0.008 

maxBL (bpm) 140.7 (14.7) 148.0 (16.6) 0.002 

ACC 1.45 (2.24) 2.24 (3.10) 0.185 

DEC_mild 1.40 (1.84) 2.0 (1.85) 0.098 

DEC_prolong 0.07 (0.30) 0.17 (0.47) 0.657 

DEC_severe 0.03 (0.19) 0.00 (0.00) 1.000 

Set_2 

meanRR (ms) 447.4 (43.3) 431.0 (52.2) 0.005 

minRR (ms) 370.4 (31.8) 349.9 (27.2) 0.019 

maxRR (ms) 640.5 (158.2) 654.1 (165.8) 0.341 

medianRR (ms) 439.3 (40.6) 418.5 (50.2) 0.002 

SDNN (ms) 42.6 (27.8) 51.4 (32.7) 0.896 

SDANN (ms) 29.7 (24.1) 38.3 (27.4) 0.983 

SDNNi (ms) 25.1 (14.5) 28.9 (18.1) 0.879 

RMSSD (ms) 10.7 (5.4) 12.0 (7.3) 0.912 

Figure 4. The results of the feature extraction algorithm of No. 1001 FHR recording (internel
database number) using CAS-FHR. (a) The results are viewed in the software interface, inlcuding the
morphological, time and frequency domain and nonlinear features; (b) The results are saved in txt
format for further analysis.

For the CTU-UHB database, Tables 3 and 4 present the distribution of four feature subsets for
two classes before normalization. We considered p < 0.05 to indicate significance between each feature
and fetal states, and the results showed that the features of meanBL, minBL, and maxBL of Set_1;
meanRR, minRR, maxRR, and STV of Set_2; and FD_Hig, LZC, and DFA_alpha of Set_4 had statistical
significance in identifying different fetal conditions with a 95% CI. Therefore, the ST reduced the
original 47 features to the above 9 features, which were combined as Set_A.

Table 3. Features extracted from the FHR signals for the normal and pathological groups (Set_1:
Morphological; Set_2: Time domain). Key: Values are given as the mean (standard deviation). p-values
were calculated using the Wilcoxon-Mann-Whitney nonparametric test with a significance level of 0.05.

Set Parameter (Unit) Normal (447) Pathological (105) p

Set_1

meanBL (bpm) 136.0 (14.4) 142.0 (16.2) 0.004
sdBL (bpm) 2.4 (1.3) 3.2 (2.6) 0.318

minBL (bpm) 132.0 (15.2) 135.9 (17.2) 0.008
maxBL (bpm) 140.7 (14.7) 148.0 (16.6) 0.002

ACC 1.45 (2.24) 2.24 (3.10) 0.185
DEC_mild 1.40 (1.84) 2.0 (1.85) 0.098

DEC_prolong 0.07 (0.30) 0.17 (0.47) 0.657
DEC_severe 0.03 (0.19) 0.00 (0.00) 1.000

Set_2

meanRR (ms) 447.4 (43.3) 431.0 (52.2) 0.005
minRR (ms) 370.4 (31.8) 349.9 (27.2) 0.019
maxRR (ms) 640.5 (158.2) 654.1 (165.8) 0.341

medianRR (ms) 439.3 (40.6) 418.5 (50.2) 0.002
SDNN (ms) 42.6 (27.8) 51.4 (32.7) 0.896

SDANN (ms) 29.7 (24.1) 38.3 (27.4) 0.983
SDNNi (ms) 25.1 (14.5) 28.9 (18.1) 0.879
RMSSD (ms) 10.7 (5.4) 12.0 (7.3) 0.912

NNx 12.5 (16.0) 17.5 (22.2) 0.596
pNNx 1.1 (1.3) 1.5 (1.9) 0.596

STV (ms) 12.1 (8.7) 14.1 (17.6) 0.005
II 0.9 (0.2) 0.9 (0.2) 0.079
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Table 3. Cont.

Set Parameter (Unit) Normal (447) Pathological (105) p

LTI (ms) 640.5 (158.2) 654.1 (165.8) 0.732
delta (ms) 82.5 (42.3) 92.9 (55.2) 0.746

delta_total (ms) 270.1 (154.6) 304.2 (158.3) 0.927
FHRVTi 6.2 (2.6) 6.6 (2.8) 0.394
TINN 81.7 (40.6) 81.9 (37.7) 0.978

Table 4. Features extracted from the FHR signals for the normal and pathological groups (Set_3:
Frequency domain; Set_4: Nonlinear). Key: Values are given as the mean (standard deviation). p-values
were calculated using the Wilcoxon-Mann-Whitney nonparametric test with a significance level of 0.05.

Set Parameter (Unit) Normal (447) Pathological (105) p

Set_3

Power_VLF (ms2) 1477 (2747) 2708 (4734) 0.757
Power_LF (ms2) 639 (998) 927 (1464) 0.359
Power_MF (ms2) 180 (233) 201 (300) 0.527
Power_HF (ms2) 105 (139) 120 (173) 0.536

Power_Total (ms2) 2401 (3707) 3956 (5989) 0.498
Percent_VLF (%) 86.3 (8.4) 87.5 (8.3) 0.513
Percent_LF (%) 11.1 (7.0) 10.1 (6.9) 0.256
Percent_MF (%) 1.8 (1.2) 1.8 (1.2) 0.935
Percent_HF (%) 0.8 (0.7) 0.7 (0.5) 0.382

Ratio_Band 4.6 (1.7) 4.4 (1.5) 0.340

Set_4

FD_Hig 1.54 (0.09) 1.52 (0.11) 0.005
ApEn 0.41 (0.00) 0.41 (0.00) 0.168

SampEn 2.44 (0.38) 2.37 (0.35) 0.102
LZC 1.13 (0.11) 1.14 (0.12) 0.046

Hurst 0.93 (0.04) 0.94 (0.03) 0.099
alpha 1.32 (0.12) 1.32 (0.13) 0.006

ACC (ms) 8.95 (8.97) 8.54 (8.74) 0.603
ADC (ms) −8.10 (8.88) −8.35 (8.21) 0.449

APRS 2.98 (2.24) 2.78 (2.56) 0.774
DPRS −2.77 (2.29) −2.45 (2.73) 0.856

SD1 (ms) 8.45 (5.56) 8.76 (5.21) 0.579
SD2 (ms) 54.57 (44.59) 55.13 (46.32) 0.548

In clinical practice, we wanted to know which features could better predict the fetal state as the
independent variable. Consequently, it was necessary to rank the importance of features based on
visual inspection. This study performed the ranking stage based on the value of the AUC, and the result
is displayed in descending order, as shown in Figure 5a. More specifically, Figure 5b represents the
ROC curve of the four 'best' features with an AUC value greater than 0.71 (medianRR, STV, meanRR,
and FD_Hig). Therefore, this method reduced the original 47 features to the above 4 features, which
were combined as Set_B. Furthermore, Figure 6 shows the distribution of the four non-normalized
features for the two categories, and the differences in the median between two fetal classes were
significant (p < 0.05, Wilcoxon rank sum test).



J. Clin. Med. 2018, 7, 223 13 of 20
J. Clin. Med. 2018, 7, x FOR PEER REVIEW  13 of 20 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ranking

A
U

C
 v

a
lu

e

 

Figure 5. The result of feature selection using area under the curve (AUC). (a) The AUC value of a 

total of 47 individual features for classifying the fetal state in descending order; (b) The receiver 

operating characteristic (ROC) curve for the top four features used in the diagnosis of a pathological 

situation: MedianRR, AUC = 0.73 (95% CI, 0.62–0.86), p = 0.001; meanRR, AUC = 0.72 (95% CI, 

0.60–0.84), p = 0.003; STV, AUC = 0.71 (95% CI, 0.60–0.83), p = 0.003; FD_Hig, AUC = 0.71 (95% CI, 

0.59–0.83), p = 0.005. 

400

500

600

Normal Pathological

m
ed

ia
nR

R
/m

s

(a)

300

350

400

450

500

Normal Pathological

m
ea

nR
R

/m
s

(b)

100

120

140

160

180

Normal Pathological

S
T

V
/m

s

(c)

1.7

1.72

1.74

1.76

Normal Pathological

F
D

__
H

ig

(d)

 

Figure 6. The distribution of normal and pathological classes for the four most highly ranked 

features (medianRR, meanRR, STV, and FD_Hig) using box plots. 

As a typical dimensionality reduction method, PCA has demonstrated its power in pattern 

recognition before classification involving biological signals. Although PCA is a form of linear 

unsupervised technology, it continues to have a higher level of competitiveness when applied to 

real‐life data for advanced schemes. Figure 7a shows that the first five principal components (PCs) 

were determined to have more than 95 percent contribution rates. Therefore, this method reduced 

the original 47 dimensions to 5 dimensons of the above PCs, which were combined as Set_C. And 

Figure 8b presents the distribution between the first PC and second PC for two fetal classes. 

Figure 5. The result of feature selection using area under the curve (AUC). (a) The AUC value of a total
of 47 individual features for classifying the fetal state in descending order; (b) The receiver operating
characteristic (ROC) curve for the top four features used in the diagnosis of a pathological situation:
MedianRR, AUC = 0.73 (95% CI, 0.62–0.86), p = 0.001; meanRR, AUC = 0.72 (95% CI, 0.60–0.84), p = 0.003;
STV, AUC = 0.71 (95% CI, 0.60–0.83), p = 0.003; FD_Hig, AUC = 0.71 (95% CI, 0.59–0.83), p = 0.005.
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Figure 6. The distribution of normal and pathological classes for the four most highly ranked features
(medianRR, meanRR, STV, and FD_Hig) using box plots.

As a typical dimensionality reduction method, PCA has demonstrated its power in pattern
recognition before classification involving biological signals. Although PCA is a form of linear
unsupervised technology, it continues to have a higher level of competitiveness when applied to
real-life data for advanced schemes. Figure 7a shows that the first five principal components (PCs)
were determined to have more than 95 percent contribution rates. Therefore, this method reduced
the original 47 dimensions to 5 dimensons of the above PCs, which were combined as Set_C. And
Figure 8b presents the distribution between the first PC and second PC for two fetal classes.
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pathological).

In summary, according to the components of Set_A, Set_B, and Set_C, we discovered that the ST,
AUC, and PCA methods reduced the original 47 dimensions to 9, 4, and 5 dimensions, respectively,
which reflected the effectiveness of dimensionality reduction.

Regarding the four measurements (FM, QI, MCC and BER), the first three showed a positive
relationship with performance (higher values correspond to better classifiers); however, the higher
the value of BER, the lower the performance was. Therefore, instead of the value of BER, we chose
1-BER as the measurement to transform this to a positive relationship to performance, as for the other
three indicators.

To prove the effectiveness of our proposed software, we compared the classification performance
using different feature subsets based on various combinations of the four feature domains of the FHR
signals. We concluded the following from Figure 8:

• Different feature domains contained different amounts of information regarding the fetal state.
• A combination of several feature domains could improve the performance, and the original

feature set (Set_Complete) achieved the best performance.
• The classification capacity of AdaBoost was better than DT and SVM.
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J. Clin. Med. 2018, 7, 223 15 of 20

Moreover, we also experimented with three datasets consisting of selected features, as illustrated
in Figure 9. The following conclusions could be drawn:

• The feature selection algorithms of ST and AUC improved the performance while the
dimensionality reduction method of PCA reduced the performance.

• The classification abilities of the three classifiers ranked in the following order:
AdaBoost > SVM > DT.

J. Clin. Med. 2018, 7, x FOR PEER REVIEW  15 of 20 

 

Moreover, we also experimented with three datasets consisting of selected features, as 

illustrated in Figure 9. The following conclusions could be drawn: 

 The feature selection algorithms of ST and AUC improved the performance while the 

dimensionality reduction method of PCA reduced the performance. 

 The classification abilities of the three classifiers ranked in the following order: AdaBoost > 

SVM > DT. 

1 1.5 2 2.5 3 3.5 4
0.5

0.6

0.7

0.8

0.9

1

Set

F
M

(a)

 

 

DT

SVM

AdaBoost

1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

1
-B

E
R

1 1.5 2 2.5 3 3.5 4
0.5

0.6

0.7

0.8

0.9

1
(c)

Q
I

1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(d)

M
C

C

 

Figure 9. Comparison of the averaged performance evaluation indicators using different datasets 

obtained from ST, AUC and PCA based on three classifiers across ten folds. The x‐axis shows Set_A, 

Set_B, Set_C, and Set_Complete. 

Finally, based on the same dataset (Set Complete) and classifier (AdaBoost), we conducted the 

comparative experiment regarding the effect of different data normalization methods on 

classification performance. It can be observed from Figure 10 that the GA‐based data normalization 

method achieved better performance than common min‐max scaling, and demonstrated the 

relationship between the GA and FHR parameters. 

FM 1-BER QI MCC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measurement

 

 

GA-based

Min-max scaling
0.90

0.94

0.71
0.68

0.85 0.84

0.62 0.61

 

Figure 10. Comparison of the averaged performance evaluation indicators using different data 

normalization methods (GA‐based and min‐max scaling) based on the Set_Complete and AdaBoost. 

Figure 9. Comparison of the averaged performance evaluation indicators using different datasets
obtained from ST, AUC and PCA based on three classifiers across ten folds. The x-axis shows Set_A,
Set_B, Set_C, and Set_Complete.

Finally, based on the same dataset (Set Complete) and classifier (AdaBoost), we conducted the
comparative experiment regarding the effect of different data normalization methods on classification
performance. It can be observed from Figure 10 that the GA-based data normalization method achieved
better performance than common min-max scaling, and demonstrated the relationship between the
GA and FHR parameters.
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4. Discussion

In this study, a comprehensive set of useful parameters originating from different domains
(morphological, time and frequency, and nonlinear features) was extracted from the FHR signals using
CAS-FHR. These features contained as much of the detailed physiological information as possible that
could be associated with the fetal state. Several feature selection and ML algorithms were proposed to
achieve the optimal classification performance in assessing fetal state.

The experimental results proved the effectiveness of our proposed approach, and several obvious
conclusions were reached:

• Each feature domain reflected physiological information to different degrees: Nonlinear > time
domain > frequency domain > morphological.

• The more features we used, the better the performance. A combination of 47 features yielded
better performance than other combinations of individual feature subsets.

• The suitable feature selection algorithms (ST and AUC) improved the performance, but the
dimensionality reduction approach (PCA) reduced the performance.

• The classification capacity of the ensemble learning algorithm (AdaBoost) was more powerful
than common base classifiers (DT and SVM).

• Due to the relationship between the FHR parameters and GA, the GA-based data normalization
method achieved better performance than common min-max scaling method.

In recent decades, many studies have attempted to predict fetal state accurately using the FHR
signal, as shown in Table 5. It is difficult to compare these studies with each other due to the many
factors involved, such as differences in the fetal diseases, databases and annotations. Fortunately, since
the CTU-UHB became open access and available from PhysioNet several years ago, researchers have
used this public database to test the performance of their respective methods. Table 5 shows that our
proposed approach achieved better performance than the others by extracting comprehensive features
and applying the ST and AdaBoost algorithms.

Table 5. Summary of recent work on the discrimination of fetal pathological conditions using FHR
signals. (N = normal, P = pathological, FE = feature extraction, FE: Feture selection, C: Classifier).

Reference
(Year) Database Distribution (N/P) Method Performance (%)

[7] (2011) Private Imbalance (30/60) FE: Empirical mode decomposition
C: Support vector machine Acc = 87

[8] (2012) Private Imbalance (123/94)
FE: 12 (nonlinear)
FS: Information gain
C: Support vector machine, naïve Bayes, C4.5

Se = 73
Sp = 76
FM = 71

[54] (2014) Private Balance (255/255)
FE: 64 (morphological and linear)
FS: genetic algorithm
C: Support vector machine

Se = 83
Sp = 66

[9] (2015) Private Imbalance (30/15) FE: Ratio and Hurst
C: Statistical test (p-value) AUC = 81

[55] (2014) CTU-UHB Imbalance
(175/377)

FE: 33 (morpholical, linear and nonlinear)
C: Latent class analysis+random forest

Se = 72
Sp = 78

[56] (2017) CTU-UHB Imbalance (508/44)
FE: 42 (morpholical, linear and nonlinear)
FE: Relevance in estimating features
C: Least square support vector machine

Se = 72
Sp = 65

[10] (2018) CTU-UHB Imbalance
(439/113)

FE: Image-based time-frequency features
FS: genetic algorithm
C: Least square support vector machine

Se = 63
Sp = 66

Current work CTU-UHB Imbalance
(447/105)

FE: 47 (morpholical, linear and nonlinear)
FS: Statistcal test, AUC
C: Adaptive boosting

Acc = 92
Se = 92
Sp = 90

AUC = 91



J. Clin. Med. 2018, 7, 223 17 of 20

5. Conclusions

FHR recording allows obstetricians to monitor fetal status and adopt timely medical intervention
before permanent damage is done to the newborn during pregnancy and delivery. Unfortunately, the
visual interpretation of FHR traces using the naked eye may not be objective and reproducible for
obstetricians. Therefore, computerized analysis represents a major advance in the early identification
of prenatal pathologies. In addition, many ML and data mining techniques have been employed to
classify FHR signals.

In this work, we proposed a novel software package to analyze FHR signals by means of extracting
comprehensive features, including morphological, time and frequency domain and nonlinear features.
Several feature selection (ST and AUC) and dimensionality reduction (PCA) methods were then
designed to select the optimal features. The fetal state was classified by ML algorithms (DT, SVM, and
AdaBoost). An open-access database was employed, and the umbilical artery pH was chosen as the
objective criterion to classify the fetal state (normal or pathological). Compared to other approaches,
our proposed approach (using ST and AdaBoost) yielded better performance in assessing fetal state
with an Acc of 92%, a Se of 92%, a Sp of 90% and an FM of 95%.

In summary, the highlights of the work are as follows: (i) The CAS-FHR software is proposed
to analyze the FHR signal automatically and to extract features comprehensively; (ii) a suitable
feature selection algorithm was proved to improve the performance; (iii) ensemble learning has a
more powerful classification capacity; (iv) the GA-based data normalization method can improve
performance; and (v) the result of this work can be considered a baseline for extracting more informative
features and designing stronger classifiers.

As the paper title indicated, the primary innovative point of this work was proposing a
comprehensive feature analysis method using FHR signal. We only selected three classifiers for
the intelligent assessment of fetal state. Therefore, the research direction of future work is to explore
the influence of different ML algorithms on the classification performance. In addition, we will
integrate the ML algorithm in the CAS-FHR software to implement a medical decision support system,
which can assist obstetricians in assessing the fetal state objectively and accurately in clinical practice.
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