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Abstract

Diverse plasticity mechanisms are orchestrated to shape the spatiotemporal dynamics

underlying brain functions. However, why these plasticity rules emerge and how their

dynamics interact with neural activity to give rise to complex neural circuit dynamics remains

largely unknown. Here we show that both Hebbian and homeostatic plasticity rules emerge

from a functional perspective of neuronal dynamics whereby each neuron learns to encode

its own activity in the population activity, so that the activity of the presynaptic neuron can be

decoded from the activity of its postsynaptic neurons. We explain how a range of experimen-

tally observed plasticity phenomena with widely separated time scales emerge from learning

this encoding function, including STDP and its frequency dependence, and metaplasticity.

We show that when implemented in neural circuits, these plasticity rules naturally give rise

to essential neural response properties, including variable neural dynamics with balanced

excitation and inhibition, and approximately log-normal distributions of synaptic strengths,

while simultaneously encoding a complex real-world visual stimulus. These findings estab-

lish a novel function-based account of diverse plasticity mechanisms, providing a unifying

framework relating plasticity, dynamics and neural computation.

Author summary

Many experiments have documented a variety of ways in which the connectivity strengths

between neurons change in response to the activity of neurons. These changes are an

important part of learning. However, it is not understood how such a diverse range of

observations can be understood as consequences of an underlying algorithm used by

brains for learning. In order to understand such a learning algorithm it is also necessary

to understand the neural computation that is being learned, that is, how the functions of

the brain are encoded in the activity of its neurons and its connectivity. In this work we

propose a simple way in which information can be encoded and decoded in a network of

neurons for operating on real-world stimuli, and how this can be learned using two funda-

mental plasticity rules that change the strength of connections between neurons in
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response to neural activity. Surprisingly, many experimental observations result as conse-

quences of this approach, indicating that studying the learning of function provides a

novel framework for unifying plasticity, dynamics, and neural computation.

Introduction

Synaptic plasticity mechanisms shape the spatiotemporal dynamics of neural circuits that

implement brain functions [1–4]. These plasticity mechanisms are usually divided into Heb-

bian and non-Hebbian mechanisms, where Hebbian changes in synaptic strength depend on

both presynaptic and postsynaptic activity, but non-Hebbian mechanisms do not [5]. Among

the most studied details of plasticity are its temporal characteristics, including dependencies

on precise timings of neuronal activities in spike timing dependent plasticity (STDP), for

example [6, 7]. Plasticity mechanisms operate over a diverse range of timescales, where experi-

mentally Hebbian plasticity mechanisms are typically observed to be fast, and non-Hebbian,

homeostatic mechanisms are much slower [5, 8, 9]. This is despite theoretical arguments sug-

gesting fast acting homeostatic mechanisms are required to prevent runaway changes to syn-

aptic strengths which would lead to either very high firing rates, or all activity dying out [8, 10,

11]. Further complicating this are observations of metaplasticity, whereby plasticity is modu-

lated by past activity [12–14].

The interplay of this diverse range of plasticity mechanisms with network dynamics gives

rise to complex spatial and temporal neuronal activity in which neurons fire in a very irregular

way with variable spike timing and fluctuating firing rates [8, 15–18]. Experiments indicate

that heterogeneous, approximately log-normal distributions of synaptic strengths form the

network of physical connections underlying these dynamics [19, 20]. Often this distribution of

connection strengths and spiking activity is arranged in a tight balance whereby excitatory

inputs are closely tracked by inhibitory ones [21–23]. However, the fundamental questions of

why such diverse plasticity phenomena emerge, and how their dynamics interact with neural

circuits to give rise to these complex neural dynamics remain unclear [3, 5, 22, 24].

Some studies have developed models of plasticity by fitting to these detailed experimental

results, for example the spike triplet based models [25, 26]. However, these types of models do

not explain why the observed properties of plasticity are required for brain function by deriv-

ing them from more general functional principles. Further, these plasticity models are often

combined ad-hoc to tune the dynamics in neural circuits. The resulting dynamics are often

interpreted as having a potential functional role, for example in memory or decision making,

but lack a convincing theoretical basis that would be provided by a deeper connection between

the plasticity rules and more general functional principles [23, 26–30]. To deepen our under-

standing of synaptic plasticity it is important to unravel the links between these mechanisms

and account for them in a unified way.

Plasticity mechanisms give neural circuits the ability to reorganise themselves for learning.

In theoretical models and applications, effective learning in neural networks requires that plas-

ticity mechanisms are carefully orchestrated by an overarching learning algorithm that is

linked to performing a required task [31]. As whole entities, brains perform unsupervised

learning in the sense that they do not learn with the aid of an external agent directly supervis-

ing the activity of certain target neurons. Instead, brains must learn to produce useful outputs

using information obtained from sensory input. Understanding how to perform useful unsu-

pervised learning is an important problem that is subject to ongoing investigation [32]. In

machine learning, autoencoders perform unsupervised learning by learning an encoder that
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maps an input to a representation encoded in a layer of neurons, and a decoder that recon-

structs the input from these neurons [31]. However, the usefulness of an autoencoder is not in

performing this reconstruction, rather, it is the ability to extract useful features of the input for

performing other tasks.

Here we show that diverse plasticity phenomena can emerge from a fundamental perspec-

tive of learning the function of a neural circuit. Specifically, we consider unsupervised learning

in which each neuron learns to encode its own activity in the population activity so that the

activity of the presynaptic neuron can be decoded from the activity of the postsynaptic neu-

rons. In doing so, we extend the concept of an autoencoder in machine learning to recurrent

networks [31]. Both Hebbian and non-Hebbian plasticity rules are required to account for the

spiking statistics underlying this function and we derive a precise relationship between these

rules.

We then demonstrate that a great variety of experimental observations emerge from this

function based model. For synaptic plasticity mechanisms, the model contains the classic

exponentially decaying timing dependence of STDP, as well as the frequency dependence of

both STDP [33] and non-timing based stimulation experiments [34, 35]. The derived relation

between Hebbian and non-Hebbian plasticity can be interpreted as a form of heterosynaptic

metaplasticity. This relationship fluctuates over a range of timescales and resolves the paradox

in which only slow homeostatic plasticity has been observed experimentally, but fast acting

homeostatic plasticity is required by theoretical arguments to stabilise fast, unstable Hebbian

plasticity [10, 11]. Our plasticity rules predict that classical STDP is a special case of more fun-

damental plasticity rules, and predict a spike timing dependence of non-Hebbian plasticity.

We further illustrate that when our plasticity rules are incorporated into a biologically real-

istic neural circuit of spiking neurons that are stimulated by a real-world visual stimulus, bal-

anced excitation and inhibition is self organised and related to the stability of the neural

dynamics. We show that approximately log-normal distributions of synaptic strengths emerge

and are organised into receptive fields, all while the circuit learns to encode the complex real-

world visual stimulus. These results thus present a novel, unified account of plasticity, dynam-

ics and neural computation.

Results

A functional relationship between Hebbian and homeostatic rules

Typical approaches to learning in artificial neural networks define a global error function for a

chosen set of ‘output’ neurons and compute a gradient of this error with respect to connection

strengths for use as plasticity rules [31]. However, in the brain it is not clear what this set of

output neurons might be and how they would all communicate their error globally [36].

Instead, we begin by considering the function of neural circuits, focussing on local proper-

ties of individual neurons and their spiking activity using the concept of an autoencoder in

machine learning [31]. In classical autoencoders, connections only exist between layers. How-

ever, neural circuits in brains are highly recurrent, so we consider autoencoding in a recurrent

network where the activity of neurons is encoded and decoded across time, instead of distinct

layers. This is a continuous process in time but can be visualised discretely by unfolding the

recurrent network in time so that each ‘layer’ is the state of the neurons at successive time-

points, as in Fig 1a. We use tied weights meaning that encoding and decoding use the same set

of connections.

Specifically, each neuron learns to encode and decode its own activity into and from a

period of the population activity of its postsynaptic neurons, A(t), as in Fig 1b. The encoding

of presynaptic neuron j’s spikes into postsynaptic activity, A(t), is familiar and is described by
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the neuronal and synaptic dynamics. The non-obvious part is how to describe the decoding of

presynaptic neuron j’s activity from its postsynaptic activity, A(t), and ensuring that it approxi-

mates the actual activity of neuron j.
We define r̂ jðAðtÞÞ to be the decoded estimate of presynaptic neuron j’s actual instanta-

neous firing rate, rj(A(t)), from the postsynaptic activity A(t). In a network operating in dis-

crete Δt timesteps (as is the case for simulations) we can relate this to the conditional

probability of presynaptic neuron j spiking in conjunction with the pattern of postsynaptic

activity A that happens to occur during the time window from t to t + τA, that is

DtrjðAÞ ¼ pðj spikingjAÞ. We want learning to ensure that Dtr̂ jðAÞ � pðj spikingjAÞ.
Although we have not yet defined the decoded instantaneous presynaptic firing rate,

r̂ jðAðtÞÞ, it should be encoded in the network using local properties of the network that neuron

j has access to, so that neuron j has the ability to directly encode and decode its own activity.

The purpose of learning is to modify the network so that the encoding and decoding processes

are able to (approximately) invert each other, since in any arbitrary configuration the decoding

of presynaptic neuron j’s activity from its postsynaptic activity, A(t), will likely be poor.

We continue by applying learning rules directly to the decoded instantaneous presynaptic

firing rate, r̂ jðAðtÞÞ, not the properties of the network used to encode it. Later, we specify how

the decoded instantaneous presynaptic firing rate, r̂ jðAðtÞÞ, is decoded from the connectivity,

W, and the postsynaptic activity A(t). We use this to translate the learning rules that operate

directly on the decoded instantaneous presynaptic firing rate, r̂ jðAðtÞÞ, into plasticity rules for

modifying connection strengths, W, and demonstrate learning in a spiking neural circuit with

Fig 1. Learning and autoencoding framework for recurrent spiking networks. (a) We implement autoencoding in a

recurrent network between the activity of the neurons across time, t. This can be visualised schematically where the

activity of the network is unfolded in time, and the activity of the network at these timepoints become layers.

Autoencoding between successive layers/timepoints is indicated by dotted red lines, with the same connections between

each pair of layers/timepoints. Autoencoding also occurs in the traditional sense between the separate populations. (b) A

schematic period of postsynaptic spiking activity A(t) enclosed in the red rectangle from time t to t + τA is used to

compute the expected instantaneous firing rate r̂ jðtÞ of presynaptic neuron j (green) at time t. In this example,

presynaptic neuron j spikes at t (but this does not always occur) so the Hebbian plasticity rule, ΔwH, is applied once to

each synapse from presynaptic neuron j to the postsynaptic neurons that subsequently spike between t and t + τA, for

each postsynaptic neuron’s first spike only (red dots). In applying the non-Hebbian plasticity rule, ΔwnH, in response to a

spike in postsynaptic neuron i (blue) at ti, the integration in Eq (6) is over the time period from the most recent previous

spike tk to the current spike at ti.

https://doi.org/10.1371/journal.pcbi.1006590.g001
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a real-world, complex visual stimulus. We do not model the detailed physiology of the synap-

ses represented by W and the mechanisms by which they change, but it should be noted that

the resulting neural dynamics can depend on these lower level details, for example, if synaptic

changes are presynaptically or postsynaptically expressed [37].

Given a long period of activity in a network, there are two events that need to be counted to

estimate the instantaneous presynaptic firing rate, rj(A(t)). Firstly, the number of times that

postsynaptic activity, A(t), occurs, and secondly, the number of times that presynaptic neuron

j spikes (within an arbitrarily short Δt) in conjunction with postsynaptic activity, A(t). This

second event is a Hebbian event as it consists of both postsynaptic activity, A(t), and a presyn-

aptic j spike, while the first event is non-Hebbian since it only consists of postsynaptic activity,

A(t) [4, 5]. Thus, both Hebbian and non-Hebbian learning are required to account for the sta-

tistics of the learned activity.

We apply Hebbian, RH, and non-Hebbian, RnH, learning rules to the decoded instantaneous

presynaptic firing rate, r̂ jðAðtÞÞ, in response to each of these events to iteratively learn so that

eventually the decoded instantaneous presynaptic firing rate, r̂ jðAðtÞÞ, converges to the actual

instantaneous presynaptic firing rate, rj(A(t)). After a time period in which a particular pattern

of postsynaptic activity, A(t), occurs N times, a series of iterated operations of the non-Heb-

bian, RnH, and Hebbian, RH, rules are applied to the initial value of the decoded instantaneous

presynaptic firing rate, r̂0
j ðAðtÞÞ;

r̂Nj ðAðtÞÞ ¼ ðRnH � RHÞ � ::: � ðRnH � RHÞ � r̂0
j ðAðtÞÞ; ð1Þ

where � denotes functional composition, and brackets group operations for each occurrence

of the postsynaptic activity A(t), noting that the Hebbian rule, RH, is absent if presynaptic neu-

ron j does not spike coincident with postsynaptic activity, A(t).
From the decoding target r̂Nj ðAðtÞÞ ¼ rjðAðtÞÞ, we derive a fundamental relationship

between the Hebbian and non-Hebbian learning rules;

DRnHðr̂ jÞ ¼ � Dtr̂ jDRHðr̂ jÞ; ð2Þ

where ΔRnH and ΔRH are the changes to r̂ due to each application of the non-Hebbian, RnH,

and Hebbian, RH, learning rules, respectively. This relationship describes how the Hebbian

and non-Hebbian changes should be related so that they cancel each other and no change

occurs when r̂ðAðtÞÞ, the estimate of the instantaneous presynaptic firing rate given some post-

synaptic activity A(t), equals r(A(t)), the actual presynaptic firing rate given A(t).
To ensure convergence, the non-Hebbian, RnH, and Hebbian, RH, rules must slightly

decrease and increase the decoded instantaneous presynaptic firing rate, r̂ j, respectively (for

further details of the derivation see S1 Appendix). This relationship between the learning rules

matches the statistical relationship between the Hebbian and non-Hebbian events, remember-

ing that DtrjðAÞ ¼ pðj spikingjAÞ, whereby typically Hebbian events must make larger changes

than non-Hebbian events because they occur less frequently.

Plasticity from function

Now that we have established a relationship between Hebbian and non-Hebbian learning rules

acting on the decoded instantaneous presynaptic firing rate, r̂ j, we consider how these learning

rules may be implemented in a neural circuit as plasticity rules acting on synapses (Fig 2a).

In recurrent networks it is necessary to relate learning to the stability of the network to

ensure that the network is stable [38]. Indeed, non-Hebbian, homeostatic plasticity is often

invoked in models for the purpose of stabilizing unstable Hebbian plasticity. To control the
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stability of learning in a more principled way, we choose the decoded instantaneous presynap-

tic firing rate, r̂ jðAðtÞÞ, to be such that when presynaptic neuron j spikes at t, r̂ jðAðtÞÞ is pro-

portional to presynaptic neuron j’s contribution to generating its postsynaptic spikes, as

shown schematically in Fig 1b. Thus learning the decoded instantaneous presynaptic firing

rate, r̂ jðAðtÞÞ, also controls the individual gains for each neuron in the network. Further, if

the neurons are divided into different populations, then we can compute the decoded

Fig 2. Plasticity rules. (a) Schematic of weight changes in response to a pair of spikes. Red and green indicate the

applications of the non-Hebbian and Hebbian plasticity rules respectively. When the blue and cyan neurons spike, all

their inputs are reduced via the non-Hebbian plasticity rule, ΔwnH. When the cyan neuron spikes, its connection from

the blue neuron (red/green arrow) is increased via the Hebbian plasticity rule, ΔwH. Inputs to non-spiking neurons

(black arrows) are unchanged. (b) The postsynaptic membrane potential change (black curve) from the presynaptic j
spike decays until the time of the postsynaptic i spike (black dot). This corresponds to the (Vi(tj) − VE/I)e−Δt/τ terms in r̂
and ΔwH in Eqs (3) and (4). (c) A schematic of the non-Hebbian plasticity rule (Eq (6)). The exponentially decayed

difference between the postsynaptic membrane potential, Vi, (black curve) and the synaptic reversal potential, VE/I, is

integrated over the time period between postsynaptic spikes at tk and ti. Red and blue hashing are the integral for

excitatory and inhibitory synapses, respectively. (d) For a given pattern of postsynaptic activity, A(t), the total expected

Hebbian weight change, rΔwH, (green lines) varies with the decoded presynaptic instantaneous firing rate, r̂ , but the

non-Hebbian weight change, ΔwnH, (red line) does not. When r̂ > r, then the non-Hebbian weight change is larger

than the Hebbian weight change, so the connection strength, w and r̂ decrease, and vice versa when r̂ < r. The

intersections of the red and green lines occur when r̂ ¼ r (black circles) and the Hebbian and non-Hebbian weight

changes cancel each other. Hebbian weight changes are plotted for three different presynaptic firing rates (0.1, 1, 10

Hz).

https://doi.org/10.1371/journal.pcbi.1006590.g002
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instantaneous presynaptic firing rate, r̂abj ðtÞ, for presynaptic neuron j in population α at time t,
decoded from postsynaptic neurons in population β, and therefore control the gains of interac-

tions between different populations of neurons.

The change in membrane potential of a postsynaptic neuron i caused by a presynaptic spike

in neuron j, decayed according to the leaky dynamics of the postsynaptic neuron, is well

approximated a short time after the presynaptic spike occurs by wij(Vi(t) − VE/I)e−Δt/τ/C, where

Δt is the time since the presynaptic spike and VE/I is the excitatory or inhibitory reversal poten-

tial of the synapse, τ is the decay constant of the postsynaptic neuron’s membrane potential,

wij is the synaptic conductance from presynaptic neuron j to postsynaptic neuron i, and C is

the capacitance of the postsynaptic neuron (see Fig 2b and Methods). Thus, the decoded

instantaneous presynaptic firing rate, r̂abj ðtÞ, is given by summing the contributions from the

first spike after t in the postsynaptic activity, Aβ(t), for each postsynaptic neuron in population

β. Only the first spike is considered since the reset and refractory state mean the presynaptic

spike does not contribute to further postsynaptic spikes (Fig 1b),

r̂abj ðtÞ ¼ gab
X

i2AbðtÞ

wij

C
ðViðtÞ � VE=IÞe

� ðti � tÞ=t; ð3Þ

where ti is the time at which postsynaptic neuron i first spikes after time t, and γαβ is a constant

that scales the summed voltage changes into an instantaneous firing rate. Its value will be

described in Sec. Emergent stability and balanced excitation and inhibition. Note that the

decoded instantaneous presynaptic firing rate, r̂abj ðtÞ, can be computed at any t, independent

of the activity of presynaptic neuron j, and is a local quantity, only requiring information

about postsynaptic neurons to which presynaptic neuron j has a direct connection. This

defines the decoding component of the autoencoder, describing how presynaptic activity can

be decoded from postsynaptic activity.

Hebbian plasticity

Given the expression in Eq (3) for computing the decoded instantaneous presynaptic firing

rate, r̂ jðtÞ, we now construct plasticity rules that modify the connection strengths, wij. The

collective changes to the connection strengths from all applications of these plasticity rules

implement the Hebbian, RH, and non-Hebbian, RnH, learning rule changes to the decoded

instantaneous presynaptic firing rate, r̂ jðtÞ. We distinguish Hebbian, RH, and non-Hebbian,

RnH, learning rules from their constituent lower level Hebbian, ΔwH, and non-Hebbian, ΔwnH,

plasticity rules which are comparable to plasticity experiments.

Firstly, when a presynaptic neuron j spikes at time t the Hebbian plasticity rule, DwH
ij , is

applied to the corresponding weight for each postsynaptic neuron i that subsequently spikes

within the time period τA that defines the temporal extent of the postsynaptic activity, A(t)
(Fig 1b). This time period τA is chosen so that the presynaptic spike’s contribution to the post-

synaptic neuron’s membrane potential and corresponding contribution to the decoded instan-

taneous presynaptic firing rate, r̂ jðtÞ, has decayed to be negligible after a delay of τA.

The weight change is chosen to depend on the postsynaptic neuron’s contribution to the

decoded instantaneous presynaptic firing rate, r̂abj ðtÞ, in Eq (3), see Fig 2b. This choice of credit

assignment strengthens synapses to postsynaptic neurons whose spike generation relies

strongly on the presynaptic spike from j. This creates competition between postsynaptic neu-

rons and thus diversification of neural responses, including the development of receptive fields

(see Sec. Self-organization of a spatially extended spiking neural network with complex real-
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world stimulus) [39]. So,

DwH
ij ðtj þ tAÞ ¼ ��

wijðViðtjÞ � VE=IÞe� ðti � tjÞ=t

Cr̂abj ðtjÞ
; ð4Þ

where � is a small learning rate. The negative and positive signs are for excitatory and inhibi-

tory synapses respectively and ensure that the weight change is (usually) positive, thus imple-

menting LTP.

The decoded instantaneous presynaptic firing rate, r̂ jðtÞ, requires information about all of

presynaptic neuron j’s postsynaptic neurons. We do not describe the biological mechanisms

that might implement this. However, it seems plausible that this information would be avail-

able to j by integration of signals from its postsynaptic neurons; though this is a weaker locality

than is often assumed, where locality is restricted to neurons on either end of a synapse [10].

The inclusion of the decoded instantaneous presynaptic firing rate, r̂abj , in Eq (4) modulates

the size of the Hebbian change in response to past activity and can be interpreted as a form of

metaplasticity [12–14]. This is because the decoded instantaneous presynaptic firing rate, r̂ ,

depends both on the connection strengths which change slowly over time due to accumulated

small plasticity changes in response to neural activity, and also the immediate postsynaptic

activity which evolves rapidly in time.

Other plasticity rules can be constructed that together still obey the required relationship

between the Hebbian, RH, and non-Hebbian, RnH learning rules described in Eq (2). In partic-

ular one possibility is to include r̂ in the non-Hebbian plasticity rule instead of the Hebbian

plasticity rule. Implementing this version of the non-Hebbian plasticity rule in simulations

would be computationally very expensive as it would require computing r̂ at every timestep as

part of the integral in Eq (6), rather than only at the time of presynaptic spikes when included

in the Hebbian rule in Eq (4); however, this may not be a limitation in biology.

Non-Hebbian plasticity

Based on the functional relationship between Hebbian and non-Hebbian rules in Eq (2), we

obtain a non-Hebbian plasticity rule from Eq (4),

dDwnH
ij ðtÞ
dt

¼ ��
wijðViðtÞ � VE=IÞe� ðti � tÞ=t

C
; ð5Þ

where tk< t< ti. We integrate this over the time period between subsequent postsynaptic i
spikes to yield a discrete weight change applied in response to postsynaptic neuron i spiking;

DwnH
ij ðtiÞ ¼ ��

wij

C

Z ti

tk

ðViðt
0Þ � VE=IÞe

� ðti � t0Þ=tdt0; ð6Þ

where tk is the time of the postsynaptic i spike before ti (Fig 1b), and the positive and negative

signs are for excitatory and inhibitory synapses respectively and ensure that the weight change

is (usually) negative and implements LTD, as illustrated in Fig 2c.

This non-Hebbian plasticity rule can be considered a homeostatic mechanism that scales

down synaptic strengths [4, 5, 23]. This plasticity rule is local, only using information about

neurons on either end of a synapse, and predicts a form of non-Hebbian spike timing depen-

dence, whereby the magnitude of the change depends exponentially on the timing between

subsequent pairs of postsynaptic spikes.
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In summary, the form of the combined change from both plasticity rules can be described

qualitatively by a Hebbian term ð�=r̂Þ � pre� post and a non-Hebbian term � × post,

Dw �
�

r̂
pre � r̂ð Þpost; ð7Þ

where pre indicates that the Hebbian term requires a presynaptic spike, and post indicates the

dependence on postsynaptic membrane potential and spiking as in Eqs (4) and (6). This equa-

tion has a stable fixed point at r̂ ¼ pre. Thus, these two weight changes reach a balance where

the size and frequency of each of the weight updates cancel each other on average over time so

that the learned quantity, r̂ , corresponding to the decoded instantaneous presynaptic firing

rate, approximates the actual presynaptic instantaneous firing rate, r, as shown in Fig 2d.

This weight change is similar to that presented in [23] where plasticity takes the form

Δw* �pre(post − ρ0). In [23] the fixed point occurs when the postsynaptic activity reaches the

fixed target firing rate ρ0, and so the activity of the network is directed toward this fixed firing

rate.

The crucial differences to the plasticity rules presented here are that firstly, here the fixed

point involves the presynaptic, not the postsynaptic activity. Secondly, the decoded instanta-

neous presynaptic firing rate, r̂ , varies and does not represent a fixed target firing rate like ρ0 as

in [23]. Instead, the actual presynaptic firing rate r can take any value and is a target for the

decoded instantaneous presynaptic firing rate, r̂ , which is modifiable and depends on the post-

synaptic activity. Thus, neuronal firing rates can fluctuate over time in response to stimuli or

other recurrent activity.

It is possible to use the same approach we have taken to develop plasticity rules that perform

supervised learning in which input connections to a neuron are learned and thus directly con-

trol postsynaptic firing rates, with a variable target postsynaptic firing rate provided by an

external agent. This supervised learning formulation leads to a weight change of the form

Dw � ð�=r̂Þpreðpost � r̂Þ. In this case, presynaptic and postsynaptic activity are swapped com-

pared to Eq (7) and r̂ becomes the target postsynaptic supervision signal, but the details of this

are left for future work. With this in mind, we can then interpret the plasticity rules presented

in [23] as implementing supervised learning, but with the postsynaptic supervision signal

being a simple fixed firing rate, ρ0.

Comparison to classical STDP

We next show that these plasticity rules (Eqs 4 and 6) reproduce the characteristics of a variety

of experimentally observed plasticity phenomena [1, 7, 33–35, 40]. First we demonstrate these

plasticity rules capture an exponential timing dependence in the classic model of STDP,

derived from experiments in which pairs of presynaptic and postsynaptic spikes with time

delay Δt are repeated at a fixed frequency [6, 7].

To reproduce the STDP-like plasticity in our model, we use the same spiking protocol with

pairs of spikes repeated at 10 Hz as in [7] (Fig 3a), and consider the changes resulting from the

plasticity rules in Eqs (4) and (6). To do this we assume that the membrane potential, V(t), and

the decoded instantaneous presynaptic firing rate, r̂ðtÞ, are constant. The magnitude of the

weight change described by our rules depends on the combination of the membrane potential,

V(t), the decoded instantaneous presynaptic firing rate, r̂ , the connection strength, w, the

learning rate, �, the capacitance, C, and the neuronal time constant, τ, in Eqs (4) and (6). The

combination of these quantities are not fully constrained by available experimental data so the

magnitude of the weight changes in Fig 3b and 3c are arbitrary, but the temporal characteris-

tics are not. The temporal characteristics depend on the relative sizes of the pair stimulation
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period and the neuronal time constant, τ, here we choose a typical value of τ = 20 ms [41], one

fifth of the 100 ms pair stimulation period.

The non-Hebbian weight change, ΔwnH, indicated by the red line in Fig 3b, is constant as it

depends only on the time between postsynaptic spikes which is fixed by the pair frequency.

The Hebbian weight change, ΔwH, decays exponentially with Δt indicated by the green lines in

Fig 3b (see Sec. STDP and triplet comparison and S1 Appendix for details). However, when

r̂ � 0:425=t, the combined weight change from both plasticity rules is qualitatively similar to

the classical form of STDP (Fig 3c), consisting of LTD for postsynaptic before presynaptic

spike timing, increasing in magnitude toward Δt = 0, and LTP for presynaptic before postsyn-

aptic spike timing, decreasing as Δt becomes large. When r̂ > 0:425=t, LTP transitions to

LTD for large positive Δt. This is consistent with reports of LTP changing to LTD for postsyn-

aptic spikes 20 ms after a presynaptic spike [42]. The relative sizes of τ and the stimulated pair

frequency are also important. When the pair frequency is much larger than τ, again LTP tran-

sitions to LTD for large positive Δt.
These results are consistent with observations in [6] which report that LTP only occurred

in STDP experiments for synapses that were initially weak, but LTD did not obviously depend

on initial synaptic strength. In the context of these plasticity rules for the LTP regime (a pre-

synaptic before postsynaptic spike ordering with a small delay), a small initial connection

strength indicates r̂ is likely to be small. When r̂ is small, the positive Hebbian weight change

exceeds the negative non-Hebbian weight change, leading to LTP. However, as the initial con-

nection strength increases, then r̂ will increase, reducing LTP for strong initial connection

strengths, consistent with the experiments. This behaviour can be seen in Fig 3b in which the

LTP regime is reduced as r̂ increases.

For postsynaptic before presynaptic spike ordering and the LTD regime, the Hebbian plas-

ticity change is small due to its exponential decay with the delay between presynaptic and post-

synaptic spiking. In this case the non-Hebbian plasticity change dominates, meaning that LTD

in this regime does not depend on initial connection strength as observed in the experiments.

This behaviour can also be seen in Fig 3b for large Δt where LTD dominates and is less affected

by changes to r̂ compared to the LTP regime.

Frequency dependence of plasticity

STDP experiments in rat visual cortex document a dependence of plasticity on the frequency

of spike pairs where LTP is promoted at high frequencies [33, 40]. Our plasticity model

Fig 3. Comparison to STDP. (a) A schematic STDP protocol where presynaptic and postsynaptic spikes are repeated

with period T and delay Δt. (b) Weight change dependence on the delay between pre and post spikes, for the Hebbian

ΔwH (green), non-Hebbian ΔwnH (red), and combined plasticity rules, ΔwH + ΔwnH (blue), assuming constant

membrane potential for simplicity. The plotted curves in (b) and (c) are for an experimental protocol of T = 5τ = 100

ms [7]. (c) The r̂ ¼ 0:425=tHebbian + non-Hebbian curve in (b), but with delays 50 to 100 ms shifted to -50 to 0 ms

for interpreting as post before pre ordering, thus resembling the common presentation of classical STDP.

https://doi.org/10.1371/journal.pcbi.1006590.g003
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reproduces this same frequency dependent promotion of LTP, as shown in Fig 4a (see Sec.

STDP and triplet comparison, and S1 Appendix for details of the model curves and Table 1 for

parameter values).

This frequency dependence is a prediction of our model strongly attributed to the spike

timing dependence of the non-Hebbian plasticity rule, see Eq (6). For presynaptic before post-

synaptic spike pair ordering with Δt = 10 ms as in [33] (Fig 4a blue curve), the frequency

dependence of our plasticity rules arises from the reduction in time between successive post-

synaptic spikes as frequency increases. This shorter time period reduces the interval of the

integral in Eq (6) and thus reduces the depressive non-Hebbian plasticity change, ΔwnH. This

frequency dependence also applies to postsynaptic before presynaptic spike pair ordering with

Δt = −10 ms as in [33] (Fig 4a red curve); however, in addition, the time between presynaptic

and postsynaptic spikes is now dependent on the time between adjacent pairs, not only Δt. At

low frequencies there is a large time delay between pairs and therefore the Hebbian plasticity

change, ΔwH, is small and the depressive non-Hebbian plasticity change, ΔwnH, dominates.

However, as the frequency increases, the time delay between pairs shortens and the Hebbian

plasticity change, ΔwH, becomes larger and dominates.

Related experiments stimulated rat CA1 presynaptic neurons at different frequencies,

inducing a postsynaptic response and plasticity [34]. The resulting plasticity changes also show

that LTP is promoted at high stimulation frequencies. These experiments do not report indi-

vidual spike timings to which we can directly apply our plasticity rules; however, the frequency

dependence can be captured by approximating the spiking activity of a pair of presynaptic and

postsynaptic neurons as a series of stimulated presynaptic spikes each followed after a Δt delay

by an induced postsynaptic spike, akin to an STDP protocol. Then, using the same assump-

tions for the STDP experiments described above, the model captures the frequency depen-

dence observed in experiment (see Sec. STDP and triplet comparison, and S1 Appendix for

details of the model curves and Table 1 for parameter values).

Fig 4. Frequency dependence of plasticity. Details of the curves and parameters are in Sec. STDP and triplet

comparison, S1 Appendix and Table 1 (a) In an STDP experimental protocol the combined Hebbian, ΔwH, and non-

Hebbian, ΔwnH, plasticity rules (curves) predict a weight change dependence on pair frequency in agreement with

experimental data (dots with error bars) from rat visual cortex [33]. Blue and red indicate pre before post and post before

pre timing respectively, with a 10 ms delay. Solid lines have identical parameters (aside from r̂), while parameters are

allowed to vary between spike orderings for dashed lines. (b) Comparison of model to experiments measuring the change

in induced response after stimulating rat CA1 at different frequencies [34]. The decoded instantaneous presynaptic firing

rate, r̂ , controls the frequency at which LTD transitions to LTP, similar to the sliding threshold in BCM. (c) Curves

showing the model’s behaviour is similar to the BCM sliding threshold mechanism [43] where the transition frequency

from LTD to LTP varies with the decoded instantaneous presynaptic firing rate, r̂ . When r̂ is small only LTP occurs so

there is no transition between LTD and LTP. As r̂ increases, LTD begins at low frequencies and increases further with r̂ .

A time delay of 15 ms between presynaptic and postsynaptic activity is assumed.

https://doi.org/10.1371/journal.pcbi.1006590.g004
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Additional experimental results have found this frequency dependence is shifted to lower

frequencies when rats or mice are raised in darkness, compared to a normal light/dark cycle

[1, 35]. This has been interpreted as evidence for the sliding threshold mechanism in the Bien-

enstock, Cooper and Munro (BCM) model of plasticity, by associating dark rearing with

reduced postsynaptic activity [43]. In our model the frequency at which the transition between

LTD and LTP occurs changes with the decoded instantaneous presynaptic firing rate, r̂ , (Fig

4b and 4c) because r̂ determines the ratio of the positive Hebbian changes to the negative non-

Hebbian changes as described in Eq (2). When the decoded instantaneous presynaptic firing

rate, r̂ , is low the transition frequency is low, promoting LTP and inducing increased postsyn-

aptic activity. As the decoded instantaneous presynaptic firing rate, r̂ , increases, the transition

frequency increases promoting LTD and constraining postsynaptic activity. In the context of

light and dark rearing, we predict that the decoded instantaneous presynaptic firing rate, r̂ , val-

ues will be higher for a normal light/dark cycle, indicating a better encoding of information

than for dark rearing. Thus, we expect the transition between LTD and LTP to occur at lower

frequencies in animals raised in darkness, as is found experimentally.

Spike triplet protocols

Work on STDP has been extended experimentally and in models beyond pairs of spikes to

consider triplets of spikes consisting of either two presynaptic spikes and one postsynaptic

spike, or one presynaptic spike and two postsynaptic spikes [25–27, 44]. We use the same trip-

let protocols as in [44] to compare model predictions with experimental data of synaptic

changes resulting from spike triplet stimulation experiments. These consist of two presynaptic

Table 1. Parameter values used in the comparisons to experimental data.

Fig. Eq. Description Parameter Values

Fig 4a STDP frequency dependence: Δt = 10 ms

�n ðVi � VE=I Þ

C ¼ 16:4 ms� 1

τ = 40 ms

(9) pre before post (solid line) r̂ ¼ 0:69=t

(10) post before pre (solid line) r̂ ¼ 0:56=t

Fig 4a (9) STDP frequency dependence: Δt = 10 ms

pre before post (dashed line) �n ðVi � VE=I Þ

C ¼ 14:6 ms� 1

τ = 57.8 ms

r̂ ¼ 0:88=t

Fig 4a (10) STDP frequency dependence: Δt = 10 ms

post before pre (dashed line) �n ðVi � VE=I Þ

C ¼ 21:0 ms� 1

τ = 20 ms

r̂ ¼ 0:25=t

Fig 4b (9) Induced response stimulation frequency dependence Δt = 15 ms

�n ðVi � VE=I Þ

C ¼ 4389 ms� 1

τ = 20 ms

r̂ ¼ f0:49; 0:54; 0:6g=t

Fig 5a �n ðVi � VE=I Þ

C ¼ 0:41 ms� 1

τ = 50 ms

(11) post, pre, post triplets r̂ ¼ 0:05=t

(12) pre, post, pre triplets r̂ ¼ 0:37=t

https://doi.org/10.1371/journal.pcbi.1006590.t001
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spikes and one postsynaptic spike, or one presynaptic spike and two postsynaptic spikes,

repeated at a frequency of 1 Hz and with delays between spikes varying for different trials.

Using the same assumptions as for the STDP comparison in Sec. Comparison to classical

STDP (see Sec. STDP and triplet comparison, S1 Appendix for details of the model curves and

Table 1 for parameter values), our model predicts plasticity changes that are consistent with

the experimental results, aside from the (5, 15) ms presynaptic, postsynaptic, presynaptic trip-

let, see Fig 5. This is similar to the triplet model in [25] which also fit well to these same experi-

mental data, aside from this same data point.

Our plasticity rules are not triplet based; however, a single application of both the Hebbian

and non-Hebbian plasticity rules involves three spikes. Two postsynaptic spikes are involved

in the non-Hebbian rule. One of those postsynaptic spikes, plus an additional presynaptic are

involved in the Hebbian rule.

Self-organization of a spatially extended spiking neural network with

complex real-world stimulus

We now demonstrate that these plasticity rules can be used in recurrent neural populations to

encode a high dimensional, rapidly time varying, complex real-world stimulus, approximating

the sensory encoding task that real brains must perform. In the process of learning this task,

the interplay of our plasticity rules with neural activity gives rise to realistic properties of the

circuit dynamics and connectivity. We apply the Hebbian and non-Hebbian plasticity rules in

Eqs (4) and (6) to a biologically plausible neural circuit composed of leaky integrate and fire

(LIF) neurons with conductance based synapses arranged in a 2D spatial grid consisting of an

excitatory and an inhibitory population [17]. These neural populations receive input from a

stimulus population whose spiking activity is given by an event based, complex, real-world

Fig 5. Comparison of experimental weight changes with model predictions for neurons stimulated using triplet

protocols with a range of delays between spikes, (Δt1, Δt2). Blue error bars are experimental data from [44], red crosses

are model predictions. For details of the model predictions see Sec. STDP and triplet comparison, S1 Appendix and

Table 1. (a) Postsynaptic, presynaptic, postsynaptic spike ordering. (b) Presynaptic, postsynaptic, presynaptic spike

ordering.

https://doi.org/10.1371/journal.pcbi.1006590.g005
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visual stimulus collected using a Dynamic Vision Sensor (DVS) (see Fig 6a, Table 2 and Meth-

ods) [45].

Due to the initialisation of strong connections from the stimulus (see Table 2), the initial

spiking activity of the neural populations is characterised by very high firing rates, hri = 53.3

Hz and hri = 53.6 Hz for the excitatory and inhibitory populations, respectively (Fig 6b). We

choose the initial connectivity to highlight the ability of the plasticity rules to stabilise and bal-

ance the network, even from a poor initial configuration.

Over time the plasticity rules reduce the initially strong connections from the stimulus to

the neural populations and increase the strength of the excitatory and inhibitory recurrent

Fig 6. Spiking statistics of the stimulus and neural populations. (a) The demonstration network consists of populations of

excitatory (red dots), inhibitory (blue dots) and stimulus neurons (black dots). Each neuron connects to neighbours within a fixed

range indicated by black circles. Example input connections to single neurons are shown from excitatory (red lines), inhibitory (blue

lines) and stimulus (black lines) populations. All synapses are plastic. (b), (c), (d) Spike statistics recorded during a single pass

through the dataset for the stimulus (black), excitatory (blue) and inhibitory populations (red), at the beginning of the simulation

(dashed lines) and after a 3100 seconds of learning (solid lines). At the beginning of the simulation the network is initialised with

very strong synapses from the stimulus which leads to very high firing rates and low variability. After learning variability increases

and firing rates decrease. All distributions are across neurons in each population. (b) Distributions of population coefficients of

variation of interspike intervals. (c) Distributions of population firing rates. (d) Population Fano-factors after 3100 seconds of

learning.

https://doi.org/10.1371/journal.pcbi.1006590.g006
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feedback. The initial stimulus driven, high firing rate, low variability spiking activity is replaced

by activity driven by recurrent excitation and inhibition as well as the stimulus, so that the

spike statistics of the neural populations are variable with moderate firing rates; hCVISIi = 2.0

(Fig 6c) and hri = 6.0 Hz (Fig 6b) for the excitatory population, and hCVISIi = 1.9 (Fig 6c) and

hri = 5.9 Hz (Fig 6b) for the inhibitory population, while the Fano-Factor increases monotoni-

cally from about one using a 50 ms window to 1.8 using a 500 ms window for all populations

(Fig 6d), indicating greater variability than Poisson spiking. Such variable spike timing with

fluctuating firing rates have been widely observed in the cortex [17, 18, 46]. The fluctuations of

the neural populations are related to that of the stimulus driving them (Fig 7). Locally, the

Table 2. Numerical values of the parameters used in the simulation. D, E and I denote the stimulus, excitatory and

inhibitory populations respectively.

Model Parameter Symbol Value

r̂ scaling factor: stimulus to excitatory γDE 6.83 × 10−4 mV−1 ms−1

r̂ scaling factor: stimulus to inhibitory γDI 2.73 × 10−3 mV−1 ms−1

r̂ scaling factor: excitatory to excitatory γEE 1.67 × 10−3 mV−1 ms−1

r̂ scaling factor: excitatory to inhibitory γEI 6.67 × 10−3 mV−1 ms−1

r̂ scaling factor: inhibitory to excitatory γIE 2.78 × 10−4−3 mV−1 ms−1

r̂ scaling factor: inhibitory to inhibitory γII 1.11 × 10−3 mV−1 ms−1

learning rate: stimulus to excitatory �DE 1.25 × 10−6 μS mV−1

learning rate: stimulus to inhibitory �DI 1.25 × 10−6 μS mV−1

learning rate: excitatory to excitatory �EE 5.12 × 10−7 μS mV−1

learning rate: excitatory to inhibitory �EI 5.12 × 10−7 μS mV−1

learning rate: inhibitory to excitatory �IE 1.13 × 10−6 μS mV−1

learning rate: inhibitory to inhibitory �II 1.13 × 10−6 μS mV−1

learning noise: stimulus pDnoise 0

learning noise: excitatory pEnoise 0.75

learning noise: inhibitory pInoise 0.5

initial connection strength: stimulus to excitatory WDE
init 2.20 × 10−2 μS ms

initial connection strength: stimulus to inhibitory WDI
init 2.20 × 10−2 μS ms

initial connection strength: excitatory to excitatory WEE
init 1.67 × 10−5 μS ms

initial connection strength: excitatory to inhibitory WEI
init 4.17 × 10−6 μS ms

initial connection strength: inhibitory to excitatory WIE
init 2.20 × 10−4 μS ms

initial connection strength: inhibitory to inhibitory WII
init 5.50 × 10−5 μS ms

temporal length of A(t) τA 140 ms

membrane capacitance C 1 nF

leak conductance gL 50 nS

leak reversal potential VL −70 mV

excitatory reversal potential VE 0 mV

inhibitory reversal potential VI −80 mV

spike threshold potential Vth −55 mV

reset potential Vrt −70 mV

refractory period τref 5 ms

excitatory synaptic rise time tEr 0.5 ms

excitatory synaptic decay time tEd 2 ms

inhibitory synaptic rise time tIr 0.5 ms

inhibitory synaptic decay time tId 7 ms

simulation timestep Δt 0.1 ms

https://doi.org/10.1371/journal.pcbi.1006590.t002
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activity of a region of a neural population is partly driven by the activity of the corresponding

local region of the stimulus. Thus, the variability of the neural populations tends to reflect that

of the stimulus.

Comparison of the actual stimulus with the estimates of the stimulus decoded from the

activity of the neural populations (Fig 8 and S1 Video) illustrates that the circuit has learned its

autoencoder function. In the decoded stimulus, the outline of the moving objects in the time

varying input are visible and align with the actual stimulus, whereas in the poor initial configu-

ration before learning, the decoded stimulus is not similar to the actual stimulus.

The resulting synaptic strengths are distributed approximately log-normally (Fig 9a), as has

been indicated experimentally [19, 20, 47]. During learning, competition between nearby neu-

rons leads to the development of receptive fields in which the connections from the stimulus

to individual neurons adapt so that nearby neurons receive inputs from and respond to differ-

ent local features of the stimulus (Fig 9b). The development of receptive fields is necessary

from a theoretical perspective as these receptive fields indicate that neurons encode features of

the input, creating a more useful representation for performing other tasks.

Emergent stability and balanced excitation and inhibition

Experiments indicate that the excitatory and inhibitory input currents to an individual neuron

are close to equal in magnitude or balanced, when averaged over a long time period. Further,

tight balance occurs when the currents track each other [16, 21, 48].

Fig 7. Variability of firing rates. The plasticity rules do not fix the firing rate of neurons, instead firing rates vary in

response to the DVS stimulus and recurrent activity. (a) Raster plot of the spiking activity of a sample of excitatory

neurons. (b) The firing rate of an excitatory neuron over one pass through the DVS stimulus dataset. The firing rate is

obtained by convolving the spike train with a 200 ms standard deviation Gaussian kernel.

https://doi.org/10.1371/journal.pcbi.1006590.g007

Functional mechanisms of plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006590 November 12, 2018 16 / 27

https://doi.org/10.1371/journal.pcbi.1006590.g007
https://doi.org/10.1371/journal.pcbi.1006590


We now describe how balanced excitatory and inhibitory currents can emerge using these

plasticity rules by first considering stability. When a neural population is stable, on average

each new spike that occurs will contribute toward the net production of one further spike dis-

tributed amongst its postsynaptic neurons. Thus, if we observe a period of activity containing

a combined sE, sI, sD excitatory, inhibitory and stimulus spikes respectively, then we require

that the net contribution from all of these spikes to further spikes be equal to the change in

membrane potential required to produce them. Recalling that r̂abj ðtÞ is proportional to the

summed changes in membrane potential of its spiking postsynaptic neurons (Eq 3), this

Fig 8. Decoding of the stimulus from each of the neural populations after learning, at one point in time. The stimulus is a

recording of a man juggling, viewed front on. An outline of the juggler’s body and the juggling balls are visible in the stimulus itself

and in each of the decodings. This shows that the neural populations have learned to encode the stimulus in their activity. This figure

is available as a video in S1 Video. (a) DVS stimulus spikes (rD) smeared exponentially in time with membrane potential time

constant τ, corresponding to the best possible decoding from the neural populations. (b) Decoding of the stimulus instantaneous

firing rate from the activity in the excitatory population, r̂DE. (c) Decoding of the stimulus instantaneous firing rate from the activity

in the inhibitory population, r̂DI .

https://doi.org/10.1371/journal.pcbi.1006590.g008

Fig 9. Learned connectivity with DVS stimulus. (a) Long tailed, approximately log-normal, distributions of synaptic

strengths. Black curves are excitatory synapses from the stimulus population. Red curves are excitatory synapses from

the excitatory population. Blue curves are inhibitory synapses from the inhibitory population. Solid lines indicates

synapses with excitatory postsynaptic neurons, dotted lines indicate synapses with inhibitory postsynaptic neurons. (b)

Receptive fields (connection strengths from the stimulus to individual neurons) of six excitatory neurons displaying

learned selectivity for different features. Red indicates strong synapses, blue indicates weak synapses. Synaptic

strengths have been normalized for each neuron.

https://doi.org/10.1371/journal.pcbi.1006590.g009
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condition is described by

Vssb ¼ sE
hr̂Ebi
gEb
þ sD
hr̂Dbi
gDb
� sI
hr̂ Ibi
gIb

; ð8Þ

where Vs = VT − VR is the change in membrane potential from reset to threshold that is

required to produce one spike, and hr̂abi is the average of the decoded instantaneous presynap-

tic firing rate, r̂ab, over each neuron in the α population at their spike times. Each of the terms

on the right hand side describe the expected contribution to spikes in β from spikes in each of

the inhibitory, excitatory and stimulus populations.

The stability condition described by Eq (8) configures learning to produce balanced excit-

atory and inhibitory currents if the scaling factors, γαβ, are chosen so that the changes in mem-

brane potential caused by the excitatory and inhibitory currents are large compared to their

difference. In S1 Appendix we demonstrate that the learning of this tight balance using our

plasticity rules converges because it can be viewed as a gradient descent in a firing rate model.

In the demonstration circuit stimulated with the DVS stimulus, the plasticity rules are con-

figured by choosing the scaling factors, γαβ, to satisfy Eq (8) so that the total amount of excita-

tion from the stimulus population is approximately equal to the total amount of excitation

from the excitatory population, and this combined excitation is closely tracked and balanced

by inhibition (Fig 10a), with a small 1.5 ms delay evident in their cross-correlation (Fig 10b),

as found in neural recordings [16].

Discussion

Relation to other work

There is a growing body of work attempting to describe and understand the diverse range of

experimentally observed features of plasticity, for example [3, 5, 10, 11, 23, 24, 49]. Some past

studies combine experimentally motivated plasticity rules and apply them to neural circuits.

The parameters of these models are then tuned in order to produce behaviour that is then

argued to support some kind of function such as memory or decision making [23, 26–30].

Fig 10. Balance of excitation and inhibition. (a) After learning in the simulation using the DVS stimulus, the

excitatory (red) and inhibitory (blue) currents into an example neuron are tightly balanced, with inhibition lagging

slightly behind excitation. (b) Cross-correlation between the excitatory and inhibitory currents in (a). The inset

corresponds to the central peak with the same axes units. The currents are strongly correlated with a small time lag of

1.5 ms.

https://doi.org/10.1371/journal.pcbi.1006590.g010
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However, this approach does not adequately connect plasticity to the broader, more important

picture of why plasticity exists at all; perhaps most importantly, for learning function. In theo-

retical models, learning implemented via plasticity requires carefully constructed plasticity

rules whose properties are governed by an overarching learning algorithm. Thus, an adequate

theoretical understanding of plasticity requires a description of its functional role in an over-

arching learning algorithm. In contrast to previous observation driven models, we have pro-

posed an approach that explicitly links the learning of function to the underlying plasticity

phenomena. We started by considering how to learn function and then find that this leads to

plasticity rules that have properties similar to that observed experimentally, thus directly

explaining and connecting these plasticity phenomena to their functional roles in learning.

More specifically, we have investigated a description of plasticity derived from extending

the classical autoencoding function used in machine learning to recurrent networks in which

individual neurons learn to encode their own activities into the population activity. This neces-

sitates both Hebbian and non-Hebbian plasticity rules as they each account for the spiking sta-

tistics required for autoencoding, contrasting with a variety of other plasticity models [5, 24]

where the use of Hebbian and non-Hebbian rules is motivated primarily by stability consider-

ations [23] and to align with experimental observations, for example [25, 50].

These Hebbian and non-Hebbian rules are related by the presynaptic neuron’s instanta-

neous firing rate decoded from the population activity. This relationship entails a dependence

on past activity. In many past studies, for example [12–14], the dependence of plasticity rules

on past activity has been termed metaplasticity. Thus, in this context the relationship can be

considered a form of metaplasticity. However, it should be noted that the relationship is inte-

gral to the plasticity rules themselves and is not separate from them, as the term metaplasticity

may imply. This extends the existing understanding of metaplasticity by theoretically describ-

ing its interaction with plasticity, learning and function, whereas previously metaplasticity has

mostly been investigated from an experimental perspective and considered as a mechanism to

regulate synaptic strengths and prevent them from saturating [12–14].

The decoded instantaneous firing rate varies at short timescales with changes in postsynap-

tic activity, but also varies at longer timescales with the gradual, accumulated changes in con-

nection strengths due to plasticity. These variations at multiple timescales explain how fast but

unstable Hebbian plasticity can be stabilised by homeostatic plasticity that experimentally

appears slow, but also works at faster timescales. This resolves the paradox of the theoretical

need for fast homeostatic plasticity to stabilise unstable Hebbian plasticity with experimental

observations of considerably slower homeostatic plasticity evolving over hours or days [5,

10, 11].

The form of our plasticity rules capture the exponential spike timing dependence of classi-

cal STDP as well as the frequency dependence of both STDP and non-timing based stimulation

experiments, including a sliding threshold like mechanism in which the decoded instanta-

neous firing rate controls the frequency at which LTD transitions to LTP. Spike-triplet models

have also been investigated as a means of providing a spike timing based account of BCM [51],

and have been investigated for possible functional roles, such as maximising information

transmission [52, 53], or bounds on differences between target and model distributions [54].

In our model of plasticity, the stability of recurrent neural circuits is linked to their function

because the learned quantity for each neuron, its decoded instantaneous firing rate, is propor-

tional to the gain of that neuron. Furthermore, gains between populations can be controlled in

this same way by decoding from each population separately. When our plasticity rules are

implemented in a neural circuit, balancing these gains between excitatory and inhibitory pop-

ulations at a network level leads to tightly balanced excitatory and inhibitory currents into

individual neurons, which has been observed in experiments [21]. Other models of plasticity
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have produced this balance [23, 55], but have not made the connection to a range of other plas-

ticity phenomena, as described above.

This tight balance is thought to explain variability in spiking activity of individual neurons

because spikes are generated by an imbalance over short time windows. Consistent with exper-

imental observations of spiking variability, we also find that these plasticity rules are able to

shift a network from a deliberately poor initial regime of very strong stimulus input driving

high firing rates, to a balanced regime driven by recurrent activity in conjunction with a much

weakened stimulus input. In this regime, firing rates are reduced and neurons exhibit variable

spiking. The plasticity rules do not enforce a fixed firing rate, unlike other models [23], rather

firing rates fluctuate in response to the stimulus and recurrent dynamics so that the neurons

can perform their autoencoding function.

The self-organising process in the interplay between the neural circuit and its plasticity

mechanisms also accounts for other salient features of neural dynamics including approxi-

mately log-normal distributions of connection strengths, as has been indicated experimentally

[19, 20]. Neurons develop receptive fields that extract features optimised for the particular

stimulus used in this study. These emergent receptive fields enable the complex, real-world

visual stimulus to be accurately decoded from the neural populations, indicating that the origi-

nal function underpinning these plasticity rules was learned.

Our plasticity rules are directly applicable to implementing autoencoder learning in neural

circuits stimulated with complex, real-world data. The function of the neural circuit can be

directly observed by decoding the circuit’s activity. This is unlike many other models that

apply plasticity rules that are not derived from function, or are derived from functional princi-

ples but are not linked to a task and therefore have an unclear relationship between their

resulting neural dynamics and implementing brain functions [23, 26–30].

Experimental predictions and limitations

These results provide theoretical motivation for revisiting previous plasticity experiments to

more closely examine past interpretations, as expressed elsewhere [24, 40, 56]. In particular,

these results imply that classical STDP is a special case of a combination of more fundamental

plasticity rules, and that non-Hebbian plasticity should also exhibit a spike timing dependence

on postsynaptic spikes in individual neurons. This non-Hebbian spike timing dependence can

explain the frequency dependence of plasticity, though we are not presently aware of any exist-

ing attempts at directly observing non-Hebbian spike timing dependence.

To date, many plasticity experiments tend to focus on controlling a single variable, often

spike timing, and measuring synaptic changes. However, it is very likely that many neuronal

and synaptic variables, not just spike timing, are strongly implicated in brain function and

therefore in learning and plasticity. Thus, plasticity rules are likely to depend on a range of var-

iables that are not usually simultaneously reported for individual neurons in experimental

work. In the case of our model, since our Hebbian plasticity rule strongly depends on the

decoding of the presynaptic activity, to compute this it is necessary to measure the connection

strengths, membrane potentials and spiking activity of all postsynaptic neurons to gain a more

comprehensive understanding of synaptic plasticity. These properties are likely to vary greatly

between individual neurons, thus without such measurements, comparing our model to data

requires making assumptions about these unmeasured variables and introducing uncon-

strained parameters. Further, the potential variability between neurons may mean that averag-

ing across a small number of neurons could be misleading and a potential source of conflicting

observations [1, 6, 7, 44, 57]. More complete experimental characterisations of plasticity will

require fewer assumptions to be made when comparing to models.
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Further to this, fewer experiments have studied plasticity of inhibitory synapses than excit-

atory ones; however, these experiments show an inconsistent range of different timing based

behaviours of inhibitory synapses that differ to those observed for excitatory synapses [58].

Thus, further experiments are required to determine if these differences between excitatory

and inhibitory plasticity observations are a result of different experimental designs or differ-

ences in the underlying plasticity rules. The plasticity rules we present apply to both excitatory

and inhibitory synapses, meaning that broadly they share the same timing and frequency fea-

tures, but the synaptic reversal potential changes depending on the synapse type, thus excit-

atory and inhibitory plasticity have a different dependence on postsynaptic membrane

potential.

Plasticity rules must be local, meaning that modifying a synapse does not require detailed

information about distant parts of the network. It is often assumed that plasticity rules can

only use information about neurons on either end of a synapse [10]; however, from a func-

tional perspective this assumption is very restrictive as it limits the ability of connections to

organise collectively. In contrast, our Hebbian rule involves the decoded instantaneous firing

rate which is computed using information about all postsynaptic spiking neurons. Thus, our

plasticity rules while still local, have locality relaxed to include information not only about

both the presynaptic and postsynaptic neurons on either end of a synapse, but also other neu-

rons that are postsynaptic to the presynaptic neuron.

We do not yet have a mechanistic description of how these plasticity rules are imple-

mented in biology. Discovering a mechanism by which postsynaptic signals can be integrated

and distributed to synapses would be an important step in demonstrating the biological plau-

sibility of this relaxed locality. Further to this, a detailed description of the underlying biolog-

ical mechanisms would enable a more informed comparison to experiment. For example,

some plasticity experiments isolate target neurons by removing surrounding neurons to

which the target neurons are likely connected [44]. At present it is not clear if removing these

neurons is equivalent to their connections never being present at all, or if underlying mecha-

nisms are disrupted in this process, leading to spurious results. Further, it is not clear if exter-

nal control over the activity of neurons disrupts these underlying mechanisms, for example

as in STDP experiments.

Conclusion

In conclusion, based on the function of neurons learning to encode their activity into the

population activity so that neural circuits learn to act as recurrent autoencoders, we present

a novel, unified account of synaptic plasticity, dynamics and neural coding that explains

a great variety of plasticity features and neural dynamics. This unified account thus repre-

sents a significant advance toward understanding the working mechanisms of cortical cir-

cuits. Further explanations of how such emergent plasticity rules and their interplay with

neural circuits can explain cognitive functions would be an important direction for future

studies.

Methods

STDP and triplet comparison

To compare our model to STDP and triplet experiments we apply the plasticity rules in Eqs (4)

and (6) according to the timings of the spikes, as described in S1 Appendix. The resulting

equations describing the expected weight change are as follows.
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A spatially extended, conductance-based spiking neural circuit

The spiking neural circuit model is based on that used in [17] and is summarised in Tables 2

and 3. We consider a 2D network of 300 × 300 coupled, conductance-based leaky integrate-

and-fire neurons consisting of 80% excitatory and 20% inhibitory neurons, as well as a popula-

tion of stimulus neurons whose spiking activity is controlled by an external data source (Fig

6a). Both excitatory and inhibitory neurons are evenly spaced, with the spacing between inhib-

itory neurons twice the spacing between excitatory neurons. Connections exist between all

pairs of neurons within 15 grid units of each other.

We denote the membrane potential of a neuron i at time t as Vi(t), with dynamics given by

the following:

C
d
dt
ViðtÞ ¼ � gL½ViðtÞ � VL� � gEi ðtÞ½ViðtÞ � VE� � gIi ðtÞ½ViðtÞ � VI�; ð13Þ

Table 3. Simulation model summary.

Populations Excitatory stimulus (D), excitatory (E), and inhibitory (I)

Topology 2D square Cartesian grid without periodic boundaries. Each population is overlaid on the same

300 × 300 grid unit 2D plane, with the spacing of neurons in each population adjusted so that each

population covers this space evenly.

Excitatory stimulus population forms a 128 × 128 grid of 16 384 neurons

Excitatory population forms a 300 × 300 grid of 90 000 neurons

Inhibitory population forms a 150 × 150 grid of 22 500 neurons

Connectivity All neurons are connected in both directions to neurons in their own and all other populations

within a 15 grid unit radius, aside from E to D and I to D connections, which do not exist.

Neuron

model

E and I populations: Leaky integrate-and-fire neurons with a fixed threshold and refractory period,

see Eq (13). Stimulus (D) population spiking activity is taken from the DVS dataset.

Synapse

model

Conductance-based, difference of exponentials synapses, see Eq (15)

Plasticity Hebbian, see Eq (4). Non-Hebbian, see Eq (6).

https://doi.org/10.1371/journal.pcbi.1006590.t003
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where the capacitance C = 1 nF, the leak conductance gL = 50 nS, and the reversal potentials

are VL = −70 mV, VE = 0 mV, and VI = −80 mV for the leak, excitatory, and inhibitory conduc-

tance, respectively [41]. If the membrane potential of a neuron reaches the threshold of VT =

−55 mV, a spike is generated and the membrane potential is reset to the reset potential VR =

−70 mV for a refractory period τref = 5 ms. The synaptic conductances are as follows:

gE=Ii ¼
X

j

wE=I
ij

X

k
GE=Iðt � tkÞ; ð14Þ

where E and I indicate excitatory and inhibitory respectively, and tk is the time of the k-th

spike emitted by the presynaptic neuron j. The time course of the postsynaptic conductance is

given by the following:

GE=IðtÞ ¼
e� t=t

E=I
d � e� t=t

E=I
r

t
E=I
d � t

E=I
r

ð15Þ

with rise times tEr ¼ 0:5 ms and tIr ¼ 0:5 ms, and decay times tEd ¼ 2:0 ms and tId ¼ 7:0 ms.

The denominator is a normalisation factor such that
R1

0
GE=IðtÞdt ¼ 1. The network model is

simulated using a time step of 0.1 ms.

The plasticity rules described by Eqs (4) and (6) are applied to all connections with the

parameters listed in Table 2. All connections from the stimulus population to both neural pop-

ulations are initialised to be very strong, while all connections between the neural populations

are initialised to be very weak (Table 2). In this configuration the network activity is driven

strongly by the stimulus with little contribution from recurrent connectivity within and

between the neural populations.

Code for these simulations is available at https://github.com/BrainDynamicsUSYD/

SpikeNet. The file /SpikeNet/cases/generate_learning_config.m is a MatLab script that can be

used to generate a configuration file that will instruct the simulator to implement these plastic-

ity rules. Further information on installing and running the simulator can be found in the

readme /SpikeNet/README.md.

DVS dataset

In this neural circuit we include a 128 × 128 population of stimulus neurons whose spiking

activity is controlled by an external data source. This population connects feedforward to both

the excitatory and inhibitory populations. The stimulus dataset used in this work was recorded

using a Dynamic Vision Sensor (DVS) [45]. The DVS is a retina inspired imaging device that

captures events rather than frames as in traditional video cameras, and provides a natural spik-

ing stimulus for SNN models, where each pixel corresponds to one neuron. The DVS used to

collect the dataset has a resolution of 128x128 pixels, and 1 μs temporal precision, with a mini-

mum 15μs between sequential events for each pixel. This ability to record events at fast time-

scales makes it much more suitable as a visual input to a SNN model than conventional frame

based video cameras whose frame updates are typically every few tens of milliseconds and are

much slower than the neuron dynamics that evolve significantly over millisecond timescales.

Each pixel in the DVS records an event when the light intensity on that pixel changes above

a threshold value. The DVS is therefore sensitive to movement, changes in lighting or changes

in reflective properties of objects. The absence of events means that there has been no change,

not that the visual scene is empty. The dataset was obtained from https://www.ini.uzh.ch/

*tobi/dvs/ and is a recording of a person juggling, viewed front on.
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Using noise to reduce over-fitting

Dropout is a simple and effective technique used to reduce over-fitting in artificial neural net-

works by adding noise to the network through probabilistically deactivating neurons. Dropout

can be thought of as a form of model averaging and leads to better generalisation [59].

Here, we also inject noise into the learning scheme to reduce over-fitting; however, unlike

in dropout we do not probabilistically omit the transmission of spikes between neurons, but

only omit spikes from the learning scheme by omitting applications of plasticity rules involv-

ing dropped spikes. Because of this no rescaling of weights is required after learning as in drop-

out, thus this form of regularisation can be implemented online and is biologically plausible.

All spikes are communicated between neurons so this does not represent synaptic failure; how-

ever, it would be possible to modify the form of noise or synaptic dynamics to investigate

effects like synaptic failure or short term depression and how they may enhance or degrade

learning.

Supporting information

S1 Appendix. Further derivations. Additional details underlying the relation between Heb-

bian and non-Hebbian rules, stability of learning rules, comparisons to STDP and its fre-

quency dependence, spike triplets and the organisation of tightly balanced currents.

(PDF)

S1 Video. Video version of Fig 8. Decoding of the stimulus from each of the neural popula-

tions after learning, at one point in time. The stimulus is a recording of a man juggling viewed

front on. An outline of the juggler’s body and the juggling balls are visible in the stimulus itself

and each of the decodings. (a) Stimulus spikes smeared exponentially in time with time con-

stant τ, corresponding to the best possible decoding from the neural populations, rD. (b)

Decoding of the stimulus from the excitatory population, r̂DE. (c) Decoding of the stimulus

from the inhibitory population, r̂DI .
(MPG)
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