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Introduction

The clustered regularly interspaced short palindromic 

repeats (CRISPR)-associated protein nuclease (Cas) is a 

prokaryotic antiviral adaptive immune system, which is 

present in most archaea (~90%) and some bacteria (~50%). 

The genomic components of the CRISPR system are made 

up of trans-activating crRNA (tracrRNA), the cas operon, a 

leader sequence and arrays of short direct repeats. These 

repeats are interspersed by non-repetitive spacer sequences, 

which are acquired from mobile invasive elements mainly 

viruses and plasmids (Figure 1). The CRISPR-Cas system 

confers the organism’s resistance against foreign genetic 

elements that have previously rendered parts of their 

genome spacer sequences into the CRISPR array. CRISPR-

Cas9 system is derived from type II, the simplest and most 

commonly used system in genome editing approaches.1 

Host codon-optimized Cas9 is recruited on target site by 

designable guide-RNA (gRNA) and precisely introduces 

double strand break (DSB) ~3-base pair (bp) upstream of 

the protospapcer adjacent motif (PAM). Then, the DSB is 

repaired with either the error-prone non-homologous end 

joining (NHEJ) or homology-directed repair (HDR) 

pathways. NHEJ leaves the genome vulnerable to a lethal 

genomic mutation, by frameshifting an open reading frame 

(ORF) on the target gene. Giant viruses also have a defense 

structure reminiscent of the CRISPR-Cas system. The viral 

defense system known as the mimivirus virophage 

resistance element (MIMIVIRE) is composed of proteins 

with both nuclease and helicase activities, representing an 

adaptive immune system based on nucleic acid against 

virophages.2 Over the recent years, CRISPR-Cas 

technologies have been well-optimized in eukaryotic cells, 

particularly in human cells.  

 
Figure 1. Schematic view of the type II-A CRISPR-Cas system. The components of the CRISPR 
system ordered from 5’ to 3’. tracrRNA: trans-activating crRNA. 
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Abstract 

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 

protein nuclease (Cas) is identified as an adaptive immune system in archaea and 

bacteria. Type II of this system, CRISPR-Cas9, is the most versatile form that has 

enabled facile and efficient targeted genome editing. Viral infections have serious 

impacts on global health and conventional antiviral therapies have not yielded a 

successful solution hitherto. The CRISPR-Cas9 system represents a promising tool 

for eliminating viral infections. In this review, we highlight 1) the recent progress 

of CRISPR-Cas technology in decoding and diagnosis of viral outbreaks, 2) its 

applications to eliminate viral infections in both pre-integration and provirus stages, 

and 3) various delivery systems that are employed to introduce the platform into 

target cells. 
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Infectious viral diseases are serious global health concerns 

and despite the huge efforts invested in their eradication, 

only limited success has been achieved. Establishment of 

long-term infections leading to chronic disease and also 

development of antiviral resistant mutants are factors that 

lead to the persistent viral infections. Novel strategies are 

required to eliminate even traces of viruses within the host.3 

During the last few years, the applications of CRISPR-Cas9 

system have introduced novel antiviral therapeutic options. 

The advantage of CRISPR-Cas9 technology lies in their 

ability to directly target the viral DNA or RNA. In this line, 

the viral infection would be eliminated in the host. 

CRISPR-Cas systems have shown their efficacy in different 

viral infections in both pre-integration and provirus stages.4 

Similarly, CRISPR-Cas has generated striking insights for 

development of novel vaccination strategies in poultry 

industry. It has been reported that CRISPR-Cas9 system 

can efficiently modify the genome of duck enteritis virus 

(DEV) C-KCE strain. The envelope glycoprotein gene and 

pre-membrane proteins of duck tembusu virus (DTMUV) 

as well as the hemagglutinin gene of highly pathogenic 

avian influenza virus (HPAIV) H5N1 were inserted at the 

suited sites in C-KCE strain to develop a trivalent vaccine 

that can efficiently prevent the infection of DTMUV, 

H5N1, and DEV in ducks.5 In addition to targeting DNA 

viruses, CRISPR-Cas9 system demonstrated its feasibility 

and versatility in targeting RNA viruses. Engineered 

Francisella novicida Cas9 (FnCas9) can successfully target 

positive-sense single strand RNA hepatitis C virus in 

eukaryotic cells. In contrast to Streptococcus pyogenes 

Cas9 (SpCas9) which needs synthesized PAM-encoding 

oligomer in targeting RNA in vitro, FnCas9 targets the 

RNA virus PAM-independently. In addition, the ability of 

FnCas9 to target RNA in cytosol can reduce off-target 

activity of the system on the host DNA compared to Cas9 

which targets DNA in nuclear.6  

In the current study, we recapitulated the CRISPR-Cas9 

system impact on different kinds of viral genomes which 

can cause either detrimental acute or persistent infection in 

humans. 

 

Decoding and diagnosis of the obscure viruses 

The rapid expansion of human flavivirus infections namely 

dengue virus (DENV) and Zika virus (ZIKV) have 

persuaded the research community to devise effective 

therapies against them. A recent insight about the signaling 

pathway of flaviviruses, which drives the primary steps of 

their infection has been successful in providing a schematic 

diagram of the biology of these viruses. Genome-wide 

CRISPR-Cas9 screening has identified nine host genes that 

are involved in flavivirus infectivity. The endoplasmic 

reticulum (ER) plays an indispensable role in replication, 

translation, polyprotein processing, virion morphogenesis 

and consequently, controlling the life cycle of flavivirus.7 

In this line, most of the suspicious genes were associated 

with ER. Studies have elucidated the unique dependency of 

flaviviridae on ER-associated signal peptidase complex 1 

(SPCS1) proteins. Disruption of SPCS1 processing 

pathway reduced the infection level of all flaviviridae 

members.8 Moreover, orthologous functional genomic 

CRISPR-Cas9 screening revealed various host factors 

involved in virus entry (AXL), endocytosis (RAB5C, 

RABGEF) and transmembrane protein processing and 

maturation (EMC) which are associated with the infection 

of the DENV and ZIKV.9 TLR7/8 agonist R848 strongly 

restrains ZIKV replication. It is indicated that replication 

inhibitory effect of R848 is mediated by viperin, an IFN-

inducible protein. To confirm this claim, CRISPR-Cas9 

genome editing tool was used to knock out (KO) viperin in 

human MDM cells, as a result, R848 inhibitory effect 

relieved in KO-cells.10 The emergent outbreak of ZIKV and 

the complexities of its infection highlight the need for a 

low-cost sequence-specific diagnostic platform that can be 

used in pandemic regions. Likewise, the inferior 

performance of the detection method based on antibodies 

and their limitations just as encountering problems with off-

targets and gaining false positive results of sequence-based 

diagnostics; make these conventional methods to meet 

CRISPR-Cas9 technology, as an alternative strategy.11 

Many strain-specific PAM sites in the Zika strain provide 

the opportunity to discriminate viral lineages by utilizing a 

newly established freeze-dried platform termed as ‘Nucleic 

Acid Sequence-Based Amplification (NASBA)-CRISPR’. 

As part of NASBA reaction 1) the strain-specific PAM 

sequence, 2) appropriate gRNA, and 3) the double-stranded 

DNA are produced and subjected to Cas9-mediated split. 

The presence of a strain-specific PAM leads to the 

production of truncated RNA product which lacks the 

sensor H trigger sequence. Contrary to the full-length RNA, 

the truncated RNA is unable to stimulate the sensor H 

toehold. Hence, this method could be employed for 

detecting the strain-specific lineage of the virus without any 

contamination from other flavivirus types.12 

 

The therapeutic application of CRISPR-Cas9 technology 

to human viruses 

Hepatitis B viruses 

CRISPR-Cas9 editing tool presents an alternative approach 

to uproot HBV replication and abolish its latent viral 

reservoir, i.e. a form of covalently closed circular DNA 

(cccDNA), in infected cells. Compared to other potential 

sites, conserved sequences including C, P, S, and X ORFs 

in HBV genome are more precedent in order to be used as 

potential targets for designing gRNA. Owing to minor 

concordance between the conserved sequences of HBV and 

human genome, the off-target mutations will restrain on 

host’s genome while alleviating viral infections 

simultaneously. Designed gRNAs have been shown to 

reduce the HBV DNA level from 77 to 98% in cultured 

cells.13 Likewise, designed gRNAs targeting HBV cccDNA 

in HBV-infected HepG2/NTCP cells has resulted in eight-

fold reduction in the expression of HBcAg.14 Targeting 

multiple regions of HBV genome by co-transfection of 

several gRNAs has been reported to increase the 

effectiveness of the approach.15 A number of studies have 

been designed to take advantage of introducing large 

deletions via CRISPR-Cas9 system in combination with the 

efficiency of lentivirus mediated gene transfer to effectively 
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prevent the HBV replication.16 Owing to fact that CRISPR-

Cas9 technology can affect the off-target sites, design and 

characterization of fastidious CRISPR-Cas9 system for 

more precise targeting of invasive elements should be a 

matter of focus. In this context, a more accurate form of 

CRISPR-Cas9 technology, Cas9 nickases (Cas9n), has 

been proposed for targeting conserved sequences in the S 

and X ORFs of the HBV genome. This strategy was able to 

disrupt HBV replication in chronically and de novo infected 

hepatoma cell lines as well as episomal cccDNA and 

chromosomally integrated HBV target sites.17 As a proof of 

concept, it is required to evaluate the antiviral effect of 

CRISPR-Cas9 system in more pertinent in vivo models of 

HBV infection. 

 

Human immunodeficiency virus 

Human immunodeficiency virus (HIV-1) is a major global 

health problem for which no effectual vaccine is available. 

The latent reservoir of HIV-1 can persist for as long as 60 

years in CD4+ T cells. Purging of HIV-1 reservoirs is the 

effective cure to obviate the expansion of the virus into 

healthy cells in patients. Two main strategies are currently 

followed to cure the HIV-1 infection: 1) a functional cure, 

in which the viral replication is controlled while latent 

reservoir still remains; e.g. the impairment of the CCR5 

receptors, and 2) a sterilizing cure, in which even viral 

traces are eliminated from the infected cells.18 Individuals 

carrying a 32-bp deletion in their CCR5 gene (CCR5∆32) 

are instinctively resistant to HIV-1 infection. By 

transplanting CCR5∆32 hematopoietic stem cells, one can 

easily devise a sterilizing cure strategy. However, tropism 

shift to CXCR4 can occur to cope with the impairment of 

CXCR5. Exploiting CRISPR-Cas9 system can overwhelm 

this hurdle, because this system has the potential to disrupt 

CXCR4 without affecting the cell propagation.19 

Introduction of the homozygous CCR5∆32 mutation in 

induced pluripotent stem cells (iPSCs) using the 

combination of CRISPR-Cas9 system and a PiggyBac 

transposon caused a significant resistance to HIV infection. 

Also, downstream lineage, the monocytes and the 

macrophages derived from these engineered iPSCs, 

represented the same resistance. Therefore, these new 

established cells could be considered as a source for 

autologous therapy in HIV infection.20 To overcome little 

activity of CRISPR system in CD4+ T cells, it is possible to 

utilize a dual gRNA approach for inducing biallelic deletion 

in CCR5 gene and consequently, improve the disruption of 

CD4+ T cells and CD34+ HSPCs.21 Recently, Cas9 

ribonucleoprotein (RNP) complex has been used to target 

host factors that are involved in HIV infection. As a result, 

a tropism-dependent resistance to HIV infection is pointed 

out in CXCR4 or CCR5 disrupted T-cells. Remarkably, 

simultaneous targeting of CXCR4 and CCR5 by CRISPR-

Cas9 system, significantly decreased tropic-dependent 

HIV-1 in CXCR4- and CCR5-modifed cells (TZM-bl cells, 

Jurkat T cells, and human CD4+ T cells) without any 

cytotoxic effects on cells viability.22 Moreover, targeting 

the factors that are involved in later stages of initial HIV 

infection, such as LEDGF or TNPO3, represented a 

tropism-autonomous diminution in infected T-cells.23 

Furthermore, CRSPR-based genetic screen discovered that 

three host dependency factors (TPST2, SLC35B2, and 

ALCAM) play vital roles in HIV infection in primary CD4+ 

T cells.24 In order to target the proviral DNA efficiently, it 

is utterly crucial to eradicate the viral remnant sequences 

from cells completely. Long terminal repeat (LTR) is an 

important element in augmenting transcription of 

potentially toxic proteins in HIV infectivity. To eliminate 

the entire viral genome, recruiting Cas9 simultaneously to 

5’ and 3’ LTR will untwist HIV genome from infected 

cells.25 Recently, it was reported that HIV-1 genome can be 

eradicated from the host genome in 2D10 CD4+ T-cells, 

where CRISPR-Cas9 system was delivered by lentiviral 

vector to target LTR U3 regions.26 In a further attempt, 

recombinant Adeno-associated virus 9 delivery of SaCas9, 

a shorter variant of Cas9 derived from Staphylococcus 

aureus, was adapted to excise segments of integrated HIV-

1 by targeting within the 5′-LTR and the gag gene in 

transgenic mouse and rat. This was the first report that 

clarified the promising results of CRISPR-cas9 system for 

in vivo studies.27  

What would happen if we design gRNAs targeting non-

conserved regions in HIV-1 genome? The question was 

answered recently in CD4+ T cells expressing Cas9 and 

gRNA ceaselessly. It is elucidated that targeting non-

conserved regions resulted in noticeable obstacle of the 

infection in transient assays but after a variable time all 

targeted infections came up with a high level of HIV-1 

production. Moreover, after a longer time, targeting 

conserved regions in HIV-1 genome showed an escape as 

well. Genome sequencing of escaped viruses has disclosed 

that the gRNA binding site and PAM region in HIV-1 

genome were eradicate by some mutations that were 

introduced by error-prone NHEJ repair pathway.28 Several 

approaches can be used to vanquish HIV-1 escape 

including multiplex targeting by designing strong gRNAs 

to direct Cas9 on conserved regions,29 utilizing Cas9 

variants that recognize different PAM formats,30 using 

CRISPR-like enzyme such as Cpf1 that introduces cut in 

the distal site of the binding site,31 and abrogation of NHEJ 

by chemical drugs for instance SCR7.32 Table 1 shows 

CRISPR-Cas9 targeting sites in other virus infections. 

 

Delivery of CRISPR-Cas9 components 

Despite investing considerable effort in gene therapy during 

the last decades, limited success has been achieved due to 

the shortcomings of existing viral and non-viral gene 

delivery approaches. Generally, viral delivery systems can 

be categorized into four main classes 1) adenoviruses, 2) 

adeno-associated viruses (AAV), 3) retroviruses, and 4) 

lentiviruses. Lentiviruses are derived from HIV-1 and have 

the potential to cause undesirable modifications in long-

term expression cell lines. Thus, integrase-defective 

lentiviruses which are replication incompatible or at least 

single-cycle replicable are more preferred. This preference 

is more prominent in the case of genome editing that 

requires long-term expression of the genome editing 

components and engages an increased risk of unwanted off-
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target changes.33 CRISPR-Cas9 system packaged with 

lentiviral vectors has shown promising results in 

eliminating latent HIV-1 infection. Moreover, prepackaged 

Cas9 in a transient form of virus-like particles that target 

CCR5 represents a reduced off-target effect in target cells.34 

Recombinant AAV vectors have low pathogenicity and low 

immunogenicity compared to other viral vectors, but their 

main obstacle is their limited packaging size. The size 

limitation of AAV vectors can be overcome by exploiting 

SaCas9 (3.3 kb) or by using split-Cas9 approaches.35 In vivo 

genome editing generally requires an effective method to 

deliver the components of editing tools appropriately. For 

the first time, it was demonstrated that delivering multiplex 

saCas9/sgRNA, targeting two LTR sites and two structural 

proteins, in an all-in-one AAV–DJ/8 vector can be applied 

to precisely excise HIV-1 proviral from pre-clinical mouse 

models.36 This strategy is a promising approach to eradicate 

even trace of proviral in different organs by simultaneously 

introducing indels and large deletions at HIV-1 reservoirs. 

Despite the high productivity of viral vectors, certain 

limitations such as immunogenicity and random integration 

of conventional viral vectors led the studies to fluctuate 

delivery approaches with a view to non-viral gene 

delivery.37 So far, different classes of non-viral vectors have 

been introduced. Non-viral expression plasmid is the most 

convenient delivery approach that can express CRISPR-

Cas system in a safe mode. However, random integration of 

the plasmids and difficulty in controlling their timeframe 

expression are the main obstacles. To address these 

drawbacks, CRISPR mRNA delivery system has been 

employed, which illustrates great refinement in decreasing 

the risk of off-target activity by controlling the amount of 

Cas9 protein and gRNA level.38 Besides, rapid deterioration 

of plasmid and mRNA by serum nucleases is another major 

hurdle that must be resolved. The use of RNPs is another 

approach to delivering Cas9-gRNA with higher control on 

editing timeframe. Delivering RNPs by using 

electroporation method has showed promising results in 

targeting host factors that are involved in HIV-1 infected 

CD4+ T cells.23 However, some complications such as the 

negative charge of RNAs, flimsy structure, and the large 

molecular size of proteins limit the diffusion rate of RNPs 

across the cell membrane. To overcome reduced delivery 

efficiency of non-viral delivery platforms, positively-

charged nano-carriers can be employed as an ideal delivery 

system. Yarn-like DNA nano-clew is a form of cationic 

nano-carriers which can be loaded with CRISPR-Cas9 

technology to shuttle Cas9-gRNA into the target cell. This 

method provides stability between binding and discharge of 

the CRISPR-Cas9 system.39 Microfluidic membrane 

deformation (MMD) through the transient disruption of the 

cell membrane has been exploited as a Cas9-gRNA 

delivery platform. Similar to microinjection, MMD can 

deliver payload across different cell types even hard-to-

transfect cells, but in an easier manner with a higher yield. 

Moreover, MMD has portrayed more cell viability than 

electroporation method. Collectively, MMD seems to 

warrant a precise and efficient genome editingapproach.40 
 

Table 1. CRISPR-Cas9 targeting sites in different virus infections. Applying CRISPR-Cas9 technology to target virus genomes and to find 
signaling pathways that are involved in virus infections 

Virus 
Gene target site in 

virus/Human 
Model Delivery Reference 

EBV 

EBNA1, LMP1, EBNA3C Burkitt’s lymphoma cell lines Raji cell Transfection 41 

BVRF1 Gastric Cancer Cell line, SUN719 and YCCEL1 Transfection 42 

BART5, BART6, or BART16 gastric carcinoma cell line SNU-719 Transduction 43 

HTLV1 
pX region ED T-Cell Transduction 44 

RNF8 HeLa cells Electroporation 45 

JCV 
T-antigen Human oligodendroglioma cell line, primary human fetal glial cells Transfection 46 

NCCR-a and VP1-b glial derived SVG-A cells and human fetal kidney derived hTERT transformed HuK(i)G10 cells Transduction 47 

HPV 

E6 SiHa and CaSki cells (cervical carcinoma cell lines) Transfection 48 

E7 SiHa and Caski cells Transfection 49 

E7 HeLa cells Nano-micelle 50 

HSV 

UL8, UL29, and UL52 Vero cells Transduction 43 

ICP0 HEK293T cells Transduction 51 

UL7 HEK293T cells, Vero cells and BALB/c mice Transfection 52 

HCV 

5′-UTR and 3′-UTR regions Huh-7.5 cells Transfection 6 

ISG15 U2OS cells Transfection 53 

miR-122 Huh-7.5 cells Transfection 54 

miR-122/hcr locus hepatoma cells Transfection 55 

EBV: Epstein–Barr virus, HTLV1: Human T-lymphotropic virus 1, JCV: JC virus, HPV: Human papilloma virus, HSV: Herpes simplex virus, 
HCV: Hepatitis C virus, EBNA1: Epstein–Barr Nuclear Antigen 1, LMP1: Latent Membrane Protein 1, EBNA3C: Epstein–Barr nuclear 
antigen 3C, BVRF1: DNA packaging tegument protein UL25 of EBV, BART5, BART6, or BART16: BamHI-A rightward transcript 5, 6 or 16, 
pX region: A region of HTLV1 genome which encodes regulatory and accessory genes, RNF8: Ring Finger Protein 8, T-antigen: Large 
tumor Antigen, NCCR-a: non-coding control region-a, VP1-b: Viral Protein 1, E6 and E7: Early proteins 6 and 7, UL8, UL29, UL52 and 
UL7: Unique Long 8, 29, 52 and 7, ICP0: Infected-Cell Protein 0, 5′-UTR and 3′-UTR: 5′ and 3′ Untranslated Region, ISG15: Interferon 
Stimulated Genes 15, miR-122 : microRNA-122, hcr locus: hepatocellular carcinoma related locus 
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Conclusion  

The versatility and feasibility of the CRISPR-Cas9 

system remove some of the impediments that has 

challenged gene therapy approaches and introduce new 

opportunities in antiviral therapies. Despite the massive 

growth spurt of CRISPR-Cas9 technology over the last 

years, major efforts are needed to address the remaining 

impediments and develop CRISPR-Cas9 based safe 

delivery technologies. Further studies are required to 

investigate the immune responses to exogenously 

expressed CRISPR-Cas9 system and devise strategies to 

mask this system and thus reduce their immunogenicity. 

High-fidelity Cas9 variants introduced their efficacy in 

the field of genome editing by reducing off-target 

effects.1 Application of these variants to eradicate viral 

infection from host genome may bring forth new 

perspective. Viral and non-viral delivery systems have 

their own drawbacks when applied in gene therapy 

approaches. Recent studies have shown that by 

combining lipid nanoparticle-mediated delivery of Cas9 

mRNA and AAVs encoding gRNA and donor template, 

efficient in vivo restoration of > 6% can be achieved in a 

mouse model of human hereditary tyrosinemia.37 The 

combination of these two conventional delivery methods 

could pave the way for curing viral infections in clinical 

settings. 
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