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a b s t r a c t 

Increasingly large MRI neuroimaging datasets are becoming available, including many highly multi-site multi- 

scanner datasets. Combining the data from the different scanners is vital for increased statistical power; however, 

this leads to an increase in variance due to nonbiological factors such as the differences in acquisition protocols 

and hardware, which can mask signals of interest. 

We propose a deep learning based training scheme, inspired by domain adaptation techniques, which uses an iter- 

ative update approach to aim to create scanner-invariant features while simultaneously maintaining performance 

on the main task of interest, thus reducing the influence of scanner on network predictions. We demonstrate the 

framework for regression, classification and segmentation tasks with two different network architectures. 

We show that not only can the framework harmonise many-site datasets but it can also adapt to many data 

scenarios, including biased datasets and limited training labels. Finally, we show that the framework can be 

extended for the removal of other known confounds in addition to scanner. The overall framework is therefore 

flexible and should be applicable to a wide range of neuroimaging studies. 
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. Introduction 

The ability to combine datasets in neuroimaging between scanners

nd protocols is vital to achieve higher statistical power and is especially

mportant when studying neurological conditions where limited data is

vailable. Although some large scale neuroimaging projects now exist,

uch as the UK Biobank ( Sudlow et al., 2015 ), most studies remain small

nd many of the larger studies are multi-site, such as ABIDE ( Di Mar-

ino et al., 2013 ) and ADNI ( Jack et al., 2008 ). Pooling data across

canners and sites leads to an undesirable increase in non-biological

ariance, even when attempts have been made to harmonise acquisi-

ion protocols and use identical phantoms across imaging sites ( Yu et al.,

018 ). Multiple studies have confirmed this variation caused by scanner

nd acquisition differences including scanner manufacturer ( Han et al.,

006; Takao et al., 2013 ), scanner upgrade ( Han et al., 2006 ), scanner

rift ( Takao et al., 2011 ), scanner strength ( Han et al., 2006 ), and gra-

ient nonlinearities ( Jovicich et al., 2006 ). The ability to identify the

resence of this variability has been further confirmed by several works
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pplying the ‘Name the Dataset’ game ( Torralba and Efros, 2011 ) to neu-

oimaging datasets ( Glocker et al., 2019; Wachinger et al., 2020 ). 

The removal of this scanner-induced variance is therefore vital for

any neuroimaging studies. Many existing methods are based on Com-

at ( Johnson et al., 2007 ), an empirical Bayes method originally de-

eloped to remove ‘batch effects’ in genetics, which has been applied

or harmonising values derived from structural ( Fortin et al., 2017a;

omponio et al., 2019; Wachinger et al., 2020 ), diffusion ( Fortin et al.,

017b ) and functional MRI ( Yu et al., 2018 ), successfully removing

on-biological variance while preserving biological associations. Com-

at uses multivariate linear mixed effects regression to account for both

he biological variables and the scanner, to allow the modelling of the

maging features. For each site, a site-specific scaling factor 𝛿 is cal-

ulated, yielding a model that adjusts for additive and multiplicative

ffects. Furthermore, ComBat uses empirical Bayes to learn the model

arameters, which assumes that model parameters across features are

rawn from the same distribution; this improves the estimation of the

arameters where only small sample sizes are available. ComBat has

een further developed to include a term explicitly to model for vari-

bles of interest to preserve after harmonisation ( Wachinger et al.,

020 ), model covariances ( Chen et al., 2020 ), the incorporation of a
 December 2020 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2020.117689
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117689&domain=pdf
mailto:nicola.dinsdale@dtc.ox.ac.uk
https://doi.org/10.1016/j.neuroimage.2020.117689
http://creativecommons.org/licenses/by/4.0/


N.K. Dinsdale, M. Jenkinson and A.I.L. Namburete NeuroImage 228 (2021) 117689 

g  

c  

s  

h  

d  

t  

D  

t  

M  

o

 

m  

F  

2  

i  

2  

l  

M  

i  

r  

t  

w  

s  

M

 

M  

h  

(  

2  

l  

f  

n  

g  

‘  

g  

a  

l  

t  

(  

i  

o  

o  

c

 

c  

g  

t  

t  

w  

a  

t  

t  

t  

f  

m  

d  

t  

T  

a  

a  

b  

f  

f  

b  

f  

t  

i  

o

 

s  

i  

s  

i  

w  

t  

d  

s  

l  

s  

m  

b  

w

 

v  

b  

p  

m  

w  

t  

t  

f  

d  

l  

c  

o  

t  

t  

d  

a  

o  

g  

v  

w  

t  

a  

i  

s  

e  

t  

D  

i

 

i  

t  

i  

m  

c  

a  

c  

w  

f  

l  

f  

n  

2  

p  

t  

o

 

p  

f  

p  
eneralized additive model (GAM) into the model, extending it to in-

lude nonlinear variations ( Pomponio et al., 2019 ), and longitudinal

tudies ( Beer et al., 2020 ). ComBat, however, is usually applied to the

armonisation of image-derived values and defined associations. Ran-

om forests have also been used to approach the problem similarly, with

he approach demonstrated for harmonising structural ROIs ( Garcia-

ias et al., 2020 ). Other models also approach the harmonisation task

hrough finding scaling factors for the raw image values, for instance

ICA ( Wrobel et al., 2019 ), which estimates nonlinear transformations

f the voxel intensity values. 

Harmonisation has been explored more for diffusion MRI than other

odalities ( Blumberg et al., 2019; Cetin Karayumak et al., 2019; 2018;

ortin et al., 2017b; Huynh et al., 2019; Mirzaalian et al., 2017; 2016;

015; Moyer et al., 2020; St-Jean et al., 2019 ) with many methods us-

ng spherical harmonics to harmonise the data ( Mirzaalian et al., 2017;

016; 2015; Moyer et al., 2020; St-Jean et al., 2019 ) which greatly

imits the ability of these methods to be applied to other modalities.

oyer et al. (2020) adopt variational autoencoders to produce scanner-

nvariant representations of the data for diffusion MRI. These feature

epresentations can then be used to reconstruct the input images so

hat they are minimally informative of their original collection site. This

ork shows that using deep learning techniques to create feature repre-

entations that are invariant to scanner presents a strong candidate for

RI data harmonisation. 

In addition to the variational autoencoders used in

oyer et al. (2020) , other generative models have been used to

armonise MRI, largely based on deep learning models including U-Net

 Ronneberger et al., 2015 ) based models and cycleGAN ( Dewey et al.,

019; Zhu et al., 2017 ) based models ( Zhao et al., 2019 ). These are

imited by needing either paired or ‘travelling heads’ data for training

or each site, which is expensive and infeasible to acquire in large

umbers, but hard to evaluate without them ( Moyer et al., 2020 ). With

enerative methods it is also very difficult to validate the generated

harmonised’ images and so there is a risk of unknown errors propa-

ating through pipelines and affecting the results of any completed

nalysis; furthermore, there is very little exploration of this in the

iterature. In addition, these methods are data hungry and difficult to

rain, which leads to many of these methods being implemented in 2D

 Dewey et al., 2019 ) or on a patchwise basis ( Moyer et al., 2020 ). Such

mplementations prevent the CNN learning context from adjacent slices

r patches and can lead to errors in the reconstructed images, so that

ptimal performance is usually only achieved when the whole image

an be scanned in a single forward pass ( Kamnitsas et al., 2016b ). 

The key measure of success for harmonisation methods is to be dis-

riminative for the biological variable of interest whilst being indistin-

uishable with respect to the scanner used to acquire the data. Following

he framework introduced by Ben-David et al. (2010) , domain adapta-

ion routinely concerns the scenario where we have a source domain

ith a large set of labels and a target domain with either no labels or

 low number of labels. For this work, we consider only the case where

he task to be performed is identical across domains. We would expect

hat these two domains would be related but not identical: for instance,

he source and target domains could indicate different scanners or dif-

erent acquisition protocols. The difference between the two domains

eans that a neural network trained on the source data would have a re-

uced performance on the target domain ( Wachinger and Reuter, 2016 );

his degree of difference is known as domain shift ( Tan et al., 2018 ).

he smaller the degree of the domain shift, the more likely the domain

daptation is to be successful. Domain adaptation techniques therefore

ttempt to find a feature space that performs a given main task whilst

eing invariant to the domain of the data. This is achieved by learning

eatures using the source domain labels, but these features are trans-

ormed to a representation that should generalise to the target domain

y simultaneously adapting the features to have the same distribution

or both datasets. Therefore, domain adaptation should be applicable to

he task of MRI data harmonisation, creating features that are indiscrim-
2 
nate with respect to scanner but discriminate with respect to the task

f interest. 

There have been many methods proposed for domain adaptation, the

implest of which use a divergence-based approach that tries to min-

mise some divergence criterion between feature distributions for the

ource and target data distributions, which should provide a domain-

nvariant representation. This relies on a feature representation existing,

here the classifier is able to perform approximately equally on both

asks. Frequently used divergence measures include maximum mean

iscrepancy ( Rozantsev et al., 2016 ) that compares the means of two

amples to determine if they are from the same distribution, and corre-

ation alignment ( Sun and Saenko, 2016 ) that tries to align second-order

tatistics of the two distributions using a linear transformation. These

ethods are limited by the assumption that all scanner information can

e removed by satisfying a simply definable condition, which is unlikely

hen dealing with a highly non-linear system such as MRI. 

The similarity between domains is generalised further by using ad-

ersarial methods, where the features for each domain are forced to

e identical for the family of possible nonlinear functions that can be

roduced by a given convolutional neural network. Adversarial do-

ain adaptation was formalised with Domain Adversarial Neural Net-

orks (DANNs) Ganin et al. (2015) . Based on the premise that for effec-

ive domain transfer to be achieved, predictions must be based on fea-

ures that cannot discriminate between domains, they propose a generic

ramework that jointly optimises the underlying features as well as two

iscriminative classifiers that operate on these features. The first is a

abel predictor that predicts the class labels and the second is a domain

lassifier that aims to predict the source of the data. The overall aim

f the network is then to minimise the loss of the label predictor and

o maximise the loss of the domain classifier, such that the learnt fea-

ures are discriminative for the main task but are completely unable to

iscriminate between domains. They show that this behaviour can be

chieved for feedforward neural networks simply through the addition

f a domain classifier formed of standard convolutional layers and a

radient reversal layer Ganin and Lempitsky (2014) . The gradient re-

ersal layer allows the maximisation of the loss of the domain classifier

hilst minimising the loss for the main task. Placed between the fea-

ure extractor and domain classifier, the gradient reversal layer acts as

n identity function in the forward step, and during the backward pass,

t multiplies the gradient function by − 𝜆, where 𝜆 is a hyperparameter

et empirically for a given experimental setup ( Ganin et al., 2015 ). The

xtension of domain adaptation to 𝑁 source domains – key to enable

he harmonisation of more than two scanners – was formalised in Ben-

avid et al. (2010) and demonstrated for adversarial domain adaptation

n Zhao et al. (2019) . 

Another method for adversarial domain adaptation was introduced

n Tzeng et al. (2015) where, rather than using a gradient reversal layer

o update the domain classifier in opposition to the task, they used an

terative training scheme. By alternating between learning the best do-

ain classifier for a given feature representation, and then minimising a

onfusion loss which aims to force the domain predictions to be closer to

 uniform distribution, they obtain a domain classifier that is maximally

onfused ( Tzeng et al., 2015 ). Compared to DANN-style unlearning net-

orks, it is better at ensuring a domain classifier that is equally unin-

ormative across the domains ( Alvi et al., 2018 ) because the confusion

oss tries to force all softmax output values to be equal, which is vital

or successful data harmonisation, especially as we extend to a larger

umber of source scanners. This work was then applied in ( Alvi et al.,

018 ) to facial recognition, not for domain adaptation, but for the ex-

licit removal of identified sources of bias in their data, showing that

he framework can be extended to ‘unlearn’ multiple factors simultane-

usly. 

In this work we will show that the adversarial framework pro-

osed in ( Tzeng et al., 2015 ) can be adapted for use in harmonisation

or deep learning tasks. By considering harmonisation to be a multi-

le source, joint domain adaptation task, we will show that we can
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Fig. 1. General network architecture. The network is formed of three sections: the feature extractor with parameters 𝚯𝑟𝑒𝑝𝑟 , the label predictor with parameters 𝚯𝑝 , 

and the domain classifier with parameters 𝚯𝑑 . 𝑿 𝑝 represents the input data used to train the main task with labels 𝒚 𝑝 , and 𝑿 𝑢 represents the input data used to train 

the steps involved in unlearning scanner with labels 𝒅 . 
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roduce shared feature representations that are invariant to the acquisi-

ion scanner while still completing the main task of interest across scan-

ers and acquisition protocols with negligible performance compromise.

urther, we will consider a range of likely data scenarios, such as the

ffect of having limited amounts of training data and the effect of hav-

ng different distributions of data for different scanners, and show that

he training framework is simply adapted to deal with these additional

hallenges. Finally, we will show that the framework can be used to re-

ove other confounds in addition to harmonising for scanner. Whilst we

emonstrate the network on age prediction and tissue segmentation, the

ramework is applicable to all feedforward networks and tasks and so

hould be applicable to the harmonisation of data across a wide variety

f neuroimaging studies. 

. Methods 

.1. Data inputs and outputs 

Before we explain the method, we will introduce some notation

hich will be used in the equations that follow. The network takes as

nput a set of MRI scans, 𝑿 , and outputs the predicted labels �̂� , which

an take the form of a vector of scalar values (for age regression) or

lass probability maps (for segmentation). We also have target labels

 for the task of interest (regression or segmentation), which will be

ade available to the network during training. These data come from

distinct scanners or acquisition protocols, and for each scanner we

ave 𝑆 𝑛 subjects, where 𝑛 ∈ {1 ..𝑁} . Note that images acquired on the

ame physical scanner but using different acquisition parameters (eg. a

hange in T1 acquisition protocol) are treated as if they were acquired

n different scanners. 

.2. Network architecture 

We train a network formed of three parts, illustrated in Fig. 1 : a fea-

ure extractor with parameters 𝚯𝒓𝒆𝒑𝒓 , a label predictor with parameters

𝒑 , and the domain classifier with parameters 𝚯𝒅 . The first two jointly

orm the network needed to perform the main task: the feature extrac-

or takes the input image 𝑿 and outputs a fully connected layer. This

ully connected layer is then passed to the label predictor and outputs

he main task label, 𝒚 . The domain classifier is also added to the output
3 
f the feature extractor to allow us to adversarially remove the scanner

nformation. It therefore takes in the fully connected layer from the fea-

ure extractor and outputs softmax values where 𝑝 𝑛 is the softmax value

or the 𝑛 𝑡ℎ scanner. We assume that we are able to obtain the domain la-

el (e.g. scanner or acquisition protocol) for all available samples, which

ill be true for nearly all cases. We may, however, not have main task

abels 𝒚 (e.g. image annotations or subject age) available for all samples.

.3. Training procedure 

The train procedure consists of three stages: 

1. Optimising the feature extractor and the label predictor for the main

task. 

2. Optimising the domain classifier to identify the scanner information

remaining. 

3. Optimising the feature extractor to confuse the domain predictor and

remove scanner information. 

For each stage we optimise a different loss function, leading to three

onsecutive steps (or iterations) in each training batch. These work to-

ether to create a feature representation 𝑸 𝑟𝑒𝑝𝑟 = 𝑓 ( 𝑿 , 𝚯𝑟𝑒𝑝𝑟 ) – the activa-

ions at the final layer of the feature extractor – which we aim to make

nvariant to the scanner used for acquisition but discriminative for the

ain task of interest (e.g. segmentation or regression). 

The first stage involves minimising the loss function pertaining to

he primary task of interest. For instance, for segmentation it may take

he form of the Dice loss, whereas for a classification task it may be

ategorical cross entropy. This loss function is evaluated separately for

ach scanner (or dataset acquired with a different protocol) such that

he optimisation is not driven by the largest dataset: 

 𝑝 ( 𝑿 𝑝 , 𝒚 𝑝 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) = 

𝑁 ∑
𝑛 =1 

1 
𝑆 𝑛 

𝑆 𝑛 ∑
𝑗=1 

𝐿 𝑝 ( 𝒚 𝑗,𝑛 , ̂𝒚 𝑗,𝑛 ) (1)

here 𝑿 𝑝 ⊂ 𝑿 and 𝑝 selects the subset of data for which main task labels

re available, 𝒚 𝑝 . 𝐿 𝑝 is the primary loss function being evaluated for the

ubjects acquired on scanner 𝑛 ∈ {1 ..𝑁} – 𝑆 𝑛 – and �̂� 𝑗,𝑛 is the predicted

abel for the main task for the 𝑗 𝑡ℎ subject from the 𝑛 𝑡ℎ scanner. The no-

ation 𝐿 𝑝 ( 𝑿 𝑝 , 𝒚 𝑝 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) means that we evaluate the loss function for

he data { 𝑿 𝑝 , 𝒚 𝑝 } , which are fixed, given the current values of the pa-

ameters 𝚯𝑟𝑒𝑝𝑟 , and 𝚯𝑝 found by the optimisation process (i.e. quantities
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fter the semicolon are ones that can be changed). It can therefore be

een that the optimizer controlling the training relating to this loss func-

ion is given access to the parameters in the feature extractor and the

abel predictor, as these are the values which are indicated to vary. The

omain classifier is not involved in this stage. 

The scanner information is then ‘unlearned’ (i.e. removed from the

nternal representation) using two loss functions in combination. The

rst is the domain loss that assesses how much scanner information re-

ains in 𝑸 𝑟𝑒𝑝𝑟 . It simply takes the form of categorical cross-entropy :

 𝑑 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) = − 

1 
𝑆 𝑢 

𝑆 𝑢 ∑
𝑠 =1 

𝑁 ∑
𝑘 =1 

𝟙 [ 𝑑 𝑠 = 𝑘 ] 𝑙𝑜𝑔( 𝑝 𝑠,𝑘 ) (2)

here 𝑝 𝑠,𝑘 is the softmax output of the domain classifier for the 𝑠 𝑡ℎ sub-

ect and 𝑘 𝑡ℎ possible scanner domain, 𝑿 𝑢 ⊂ 𝑿 and 𝒅 𝑢 ⊂ 𝒅 where 𝑢 indi-

ates the subset of data to be used for unlearning, and we calculate the

ean over all the subjects used for the domain unlearning 𝑆 𝑢 = |𝑿 𝑢 |.
ote the negative sign, following the standard definition of categorical

ross entropy, as we wish to maximise the performance on the classi-

cation task so as to evaluate the scanner information remaining, and

o need to minimise the categorical cross entropy. Although we assume

hat we are able to access domain labels for all of the data points, we

o not necessarily use the full set for unlearning, depending on the sce-

ario. This will be explored in the later experiments. 

For this stage, the optimiser has access only to the weights in the

omain classifier and has no influence on 𝚯𝑟𝑒𝑝𝑟 , which is fixed, as in-

icated by the loss function 𝐿 𝑑 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) . We therefore find the

est domain classifier given the fixed feature representation and, hence,

n indication of the amount of scanner information remaining. 

The second loss function controlling the unlearning is the confusion

oss. Minimising this loss function aims to tune the parameters in the fea-

ure extractor 𝚯𝑟𝑒𝑝𝑟 such that all scanner information is removed from

 𝑟𝑒𝑝𝑟 , thus, making it scanner invariant. When this feature representa-

ion is entirely scanner invariant, even the best domain classifier will

e unable to predict which scanner acquired the data, and so the soft-

ax outputs of the domain classifier will all be equal, corresponding to

andom chance. The confusion loss therefore has the form: 

 𝑐𝑜𝑛𝑓 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) = − 

1 
𝑆 𝑢 

𝑆 𝑢 ∑
𝑠 =1 

𝑁 ∑
𝑘 =1 

1 
𝑁 

𝑙𝑜𝑔( 𝑝 𝑠,𝑘 ) (3)

here 𝑿 𝑢 and 𝒅 𝑢 are the same subsets used in the previous loss function.

his step only updates the parameters in 𝚯𝑟𝑒𝑝𝑟 and depends on the fixed

alue of 𝚯𝑑 as indicated by 𝐿 𝑐𝑜𝑛𝑓 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) . Again, note the neg-

tive sign such that the loss is minimised when the softmax outputs are

ll equal in value. 

Stages 2 and 3 should be considered to be a unit and therefore the

rder in which they are updated is fixed. The confusion loss is most

ffective at removing crucial information to confuse the domain classi-

er once it has been tuned to find and utilise any domain information.

ence it is best to update the domain classifier first, to enable it to learn

he domain information, prior to using the confusion loss. To this end,

e must update Eq. (2) before Eq. (3) . 

Therefore, the overall method minimises the total loss function: 

 ( 𝑿 𝑝 , 𝑿 𝑢 , 𝒚 𝑝 , 𝒅 𝑢 , 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 , 𝚯𝑑 ) = 𝐿 𝑝 ( 𝑿 𝑝 , 𝒚 𝑝 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) 

+ 𝛼𝐿 𝑑 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) (4) 

+ 𝛽𝐿 𝑐𝑜𝑛𝑓 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) 

here 𝛼 and 𝛽 represent the weights of the relative contributions of the

ifferent loss functions and recalling that 𝐿 𝑑 and 𝐿 𝑐𝑜𝑛𝑓 contain negative

igns enabling the adversarial training. 

Eqs. (2) and (3) cannot be optimised in a single step because they

ct in direct opposition to each other, hence the iterative update scheme

nd three forward/backward passes per stage for each batch. This is not

oo computationally expensive as in each stage we only update a subset

f the total parameters. 
4 
The domain classifier can only be used to assess how well domain

nformation is being removed if it is capable of accurately predicting the

omain prior to unlearning. In order to ensure this, we pretrain the net-

ork using equations (1) and (2) until the primary task reaches conver-

ence. Provided that the domain classifier is able to accurately predict

he scanner label at this stage, optimising the confusion loss in equa-

ion (3) such that the domain classifier performs no better than random

hance, corresponds to removing the scanner information in 𝑸 𝑟𝑒𝑝𝑟 . In

ddition, pretraining will decrease the number of epochs required for

nlearning. As epochs with the unlearning steps are more computation-

lly expensive, this serves to decrease the overall training time. 

As shown by the loss functions, different sets of data can be used to

valuate the different loss functions. This not only means that we can

nlearn scanner information for data samples for which we do not have

ain task labels, but also that we can unlearn scanner information using

urated (or ‘matched’) subsets of data samples when potentially prob-

ematic biases exist in the data as a whole. These scenarios are explored

n the experiments to follow. 

.4. Age prediction task 

We first consider the task of brain age prediction ( Cole et al., 2016;

ranke and Gaser, 2019; Franke et al., 2010 ) as an example task to

emonstrate the framework: 𝑿 takes the form of the T1-weighted MRI

mages and 𝒚 the true biological age values. 

For these experiments, an architecture similar to the VGG-16

 Simonyan and Zisserman, 2015 ) network was used. A batch size of

2 was used throughout, with each batch constrained to have at least

ne example from each dataset. This increases stability during training

ut requires oversampling of the smaller datasets. The main task loss

 Eq. (1) ) was the Mean Square Error (MSE) for each scanner. All experi-

ents were completed on a V100 GPU and were implemented in Python

3.6) and Pytorch (1.0.1) ( Paszke et al., 2019 ). 

.4.1. Datasets 

We used three datasets for these experiments: UK Biobank

 Sudlow et al., 2015 ) (Siemens Skyra 3T) preprocessed using the UK

iobank Pipeline ( Alfaro-Almagro et al., 2017 ) (5508 training, 1377

esting); healthy subjects from the OASIS dataset ( Marcus et al., 2007 )

Siemens Telsa Vision 1.5T) at multiple longitudinal time points, split

nto training and testing sets at the subject levels (813 training, 217 test-

ng), and healthy subjects from the Whitehall II study ( Filippini et al.,

014 ) (Siemens Magnetom Verio 3T) (452 training, 51 testing). The

odel was trained using five-fold cross validation with the training data

plit as 80% training 20% validation; the results are reported for the hold

ut test set. 

The input images for all the three datasets were resampled, taking

ccount of the original voxel size, to 128 × 128 × 128 voxels, each of size

 × 1 × 1 mm using spline interpolation and then every fourth slice was

etained, leaving 32 slices in the z direction (axial slices). This then

aintains the physical size of the object and makes datasets comparable

n this way, at the price of some interpolation-related changes to the

ntensities. Note that such resampling was necessary in order to enable

s to use all the datasets within the same model. 

Every fourth slice was selected so as to maximise coverage across the

hole brain whilst minimising the redundancy and allowing us to use a

arger batch size and number of filters. The inputs were also normalised

o have zero mean and unit standard deviation. The distributions of the

ata can be seen in Fig. 2 . The p -values from T-tests on the dataset pairs

how that there is only a significant difference between the distribution

f the UK Biobank and Whitehall data - UK Biobank and OASIS p = 0.22,

ASIS and Whitehall p = 0.09, UK Biobank and Whitehall p = 0.001. 

.4.2. Basic fully-supervised learning 

We first consider the simplest training scenario where we have main

ask training labels available for all datasets being used and that all the
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Fig. 2. Normalised age distributions for the three datasets: Biobank, OASIS and 

Whitehall. The dashed line indicates the mean age of the three datasets. 
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c  
atasets have similar distributions for the main task label. This means

hat there is not a high degree of correlation between the age and the

canner and we should, therefore, be able to remove scanner informa-

ion from the feature representation without removing information that

s discriminative for the age prediction task. 

In this scenario, all three loss functions can be evaluated on a single

ombined dataset 𝑿 where we have labels 𝒚 for the full set and know

he acquisition scanner for all data points 𝒅 , meaning that the overall

ethod minimises the total loss function: 

 ( 𝑿 , 𝒚 , 𝒅 , 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 , 𝚯𝑑 ) = 𝐿 𝑝 ( 𝑿 , 𝒚 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) 

+ 𝛼𝐿 𝑑 ( 𝑿 , 𝒅 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) (5) 

+ 𝛽𝐿 𝑐𝑜𝑛𝑓 ( 𝑿 , 𝒅 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) 

To allow comparison, we also train the network using normal train-

ng - training only the feature extractor and label predictor - on the

ifferent possible combinations of datasets, and compare to all combi-

ations of datasets. As a form of ablation study, we also compare to stan-

ard training with the main task loss function evaluated as in Eq. (1) .

hese comparisons are vital because we do not want the harmonisation

rocess to significantly degrade the performance on the main task. We

o not compare to existing harmonisation methods such as ComBat be-

ause these methods approach harmonisation differently to our method

nd so are not directly comparable. 

.4.3. Biased domains 

When the distribution of the data for the main task is similar across

ll data points, unlearning can simply be completed on all of the data

oints. However, where there exists a large difference between the two

omains, such that the main task label is highly indicative of the scan-

er, it is likely that the unlearning process will also remove informa-

ion that is important for the main task. This latter scenario could, for

nstance, be where the age distributions for the two studies are only

lightly overlapping or where nearly all subjects with a given condition

re collected on one of the scanners. 

To reduce this problem, we utilise the flexibility of the training

ramework, and, whilst evaluating the main task on the whole dataset,

e perform the scanner unlearning ( Eqs. (2) and (3) ) on only a subset of

he data. For the case of age prediction, we perform unlearning only on

he overlapping section of the data distributions. If we were to consider

he case where we had data from both subjects and healthy controls

nd, for instance, most of the subjects had been scanned on one of the

wo scanners, we could perform unlearning on only the healthy controls

ather than the whole dataset. As we do not need main task labels for the
5 
ata used for unlearning, unlearning could be performed on a separate

ataset so long as the scanner and protocol remained identical. 

We subsample the Biobank and OASIS datasets so as to create three

egrees of overlapping datasets: 5 years, 10 years and 15 years ( Fig. 3 )

nd test on the same test sets as before, spanning the whole age range.

e compare three training options: i) training normally on the full com-

ination of the biased datasets, ii) unlearning on the whole distribution,

nd iii) unlearning only on the overlapping section of the distributions.

.4.4. Extension to ABIDE data 

Having demonstrated the network on three scanners, we now

emonstrate the network on a multi-site dataset, ABIDE Di Mar-

ino et al. (2013) . We split the data into 90% training and 10% test-

ng across each scanner and process as described in Section 2.4.2 . We

herefore have data from 16 scanners, including Philips, Siemens and

E scanners, each with between 27 and 165 scans per site, for training.

his is representative of many neuroimaging studies, with relatively low

umbers of scans available for each site. Following the same fully super-

ised framework, as demonstrated in Section 2.4.2 , we compare training

n the combination of data from all 16 sites, to the unlearning approach.

A batch size of 32 was used in training, with the batch constrained to

ave at least one example from each scanner. To achieve this, the smaller

atasets were over sampled such that the number of batches was limited

y the largest dataset. This was performed because it was found that

aving an example of each dataset in each batch led to higher stability

uring training. The over sampled data points were not augmented so

hat we could be sure improvement was not due to the augmentation,

ut, in practice, this would be a sensible step. 

.4.5. Removal of other categorical confounds 

In addition to unlearning scanner information to harmonise the data,

e can also adapt the framework to explicitly remove other confounds.

s shown in Fig 4 , an additional data pair is added to training and an

dditional two loss functions are added to the overall loss function per

onfound. For each confound we wish to remove, we add a confound

lassification loss , which, like the domain classification loss, identifies

ow much information relating to the confound remains in the feature

pace, and a confound confusion loss , which aims to modify the feature

pace so as to remove the confound information by penalising deviations

rom a uniform distribution for the softmax predictions for the given

ask. 

Therefore, the overall method will minimise the loss: 

𝐿 ( 𝑿 𝑝 , 𝑿 𝑢 , 𝑿 𝑐 , 𝒚 𝑝 , 𝒅 𝑢 , 𝒚 𝑐 , 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 , 𝚯𝑑 , 𝚯𝑐 ) = 𝐿 𝑝 ( 𝑿 𝑝 , 𝒚 𝑝 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) 
+ 𝛼𝐿 𝑑 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) 
+ 𝛽𝐿 𝑐𝑜𝑛𝑓 ( 𝑿 𝑢 , 𝒅 𝑢 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) 
+ 

∑𝐽 

𝑗 
( 𝛾𝑗 𝐿 𝑐 𝑗 

( 𝑿 𝑐 𝑗 
, 𝒚 𝑐 𝑗 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑐 𝑗 

) + 𝜙𝑗 𝐿 𝐶𝑐𝑜𝑛𝑓 𝑗 
( 𝑿 𝑐 𝑗 

, 𝒚 𝑐 𝑗 , 𝚯𝑐 𝑗 
; 𝚯𝑟𝑒𝑝𝑟 )) 

(6) 

here we consider 𝐽 different confounds we wish to remove, 𝛾𝑗 is the

eighting for the classification loss 𝐿 𝑐 𝑗 
for the 𝑗 𝑡ℎ confound, and simi-

arly 𝜙𝑗 is the weighting of the confound confusion loss 𝐿 𝐶𝑐𝑜𝑛𝑓 𝑗 
for the

 

𝑡ℎ confound. We demonstrate this with sex as the confound and so the

lassification loss can simply be the binary cross-entropy loss. If the con-

ound to be unlearned took the form of a continuous variable, such as

ge, then following ( Alvi et al., 2018 ) it would need to be split into

iscrete bins. 

We consider three different scenarios for removing sex as a confound

hile completing the age prediction task. We first consider the simplest

ase, where sex is approximately equally distributed across age and scan-

er. In this case we can simply evaluate all the loss functions for the

hole set of input images – assuming all labels are available for input

mages for all tasks. 

We also explore the scenarios of the confound being correlated with

) the scanner and b) the main task. For correlation with scanner, we

reate datasets where 80% of the subjects in the OASIS dataset are male
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Fig. 3. The three biased datasets used in this experiment with 5 years, 10 years and 15 years overlap. Only the shaded overlap region is used for unlearning scanner 

information; all the data points are used to evaluate the main loss function. 

Fig. 4. The general network architecture can be adapted to allow us to also remove other confounds from the data. In addition to the datasets used for the main task 

and the scanner unlearning, we add a data pair where 𝑿 𝑐 are the input images used for deconfounding and 𝒚 𝑐 are the confound labels. 
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nd 80% of the subjects in the Biobank dataset are female. For correla-

ion with age, we consider the case where 80% of the subjects under the

edian age across the two datasets (65) are female and 80% of the sub-

ects over the median age are male. For both scenarios, we still test on

he full test set, and we compare normal training, unlearning sex on the

hole training set, and unlearning sex on a subset curated to be balanced

ith respect to the generated bias. In the last case, the loss functions for

he main task and unlearning of scanner are evaluated across the whole

atasets and only the equations controlling unlearning the sex confound

re evaluated for the subsets. 

.4.6. Removal of continuous confounds 

While the approach for the removal of categorical confounds, such

s sex, is clear from the section above, the extension to continuous vari-

bles is less clear. If we reframe our network such that sex prediction

s now the main task, we can consider the process of removing the age

nformation. 

The continuous age labels could be approximately converted into

ategorical labels by binning the data into single-year bins spanning

cross the age range. This, however, would not encode the fact that a

rediction of 65 for a true label of 66 encodes more true age information

han a prediction of 20. We therefore convert the true age labels into a

oftmax label around the true age, normally distributed as a  ( 𝜇, 𝜎2 )
here 𝜇 was the true age label and 𝜎 was set to 10 empirically, allowing

s to maintain relative information between bins. The value of 10 was

hosen as, when used in normal training, this minimised the mean abso-

ute error (MAE) on the test set. The loss function for the main task then
6 
ecomes the Kullback-Leibler (KL) divergence between the true softmax

istribution and the predicted softmax outputs. Unlearning can then be

chieved as before, with the aim still being to make all the softmax out-

uts equal, so that no information about the age of the subject remains.

.5. Segmentation task 

Having demonstrated the unlearning process on the age prediction

ask, we now consider the task of segmentation. We specifically con-

ider the case where our network architecture takes the form of a U-Net

 Ronneberger et al., 2015 ), the most popular network for biomedical

mage segmentation, where the skip-connections, which form a crucial

art of the architecture, have the possibility of increasing the complex-

ty of unlearning. Again, the input images 𝑿 are T1-weighted input im-

ges but the labels take the form of tissue segmentations (grey mat-

er/white matter/CSF) produced using FSL FAST ( Zhang et al., 2001 )

s a proxy to manual segmentations, which were converted to one-hot

abels for the segmentation. We consider examples from the UK Biobank

 Sudlow et al., 2015 ) (2095 training, 937 testing) and healthy subjects

rom the OASIS dataset ( Marcus et al., 2007 ) (813 training, 217 testing).

s before, these were resized to 128 × 128 × 128 voxels (each of which is

 × 1 × 1 mm in size) using spline interpolation and the intensity values

ormalised, but then they were split into 2D slices so that we trained a

D network. The labels were interpolated using trilinear interpolation

nd then thresholded at 0.5 to create categorical labels. Multi-class Dice

oss was used as the primary task loss function. All experiments were
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Fig. 5. Network architecture used for unlearning with segmentation. 𝑿 𝑝 represents the input images used to evaluate the primary task with 𝒚 being the main task 

label segmentations. 𝑿 𝑢 are the input images used for unlearning scanner information with domain labels 𝑑 𝑢 . The domain discriminator for unlearning can be attached 

from A, B or the two in combination. If it is attached from A and B together, the first fully connected layers (the output of the two downsampling branches D) are 

concatenated together to produce a single feature representation. 
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ompleted on a V100 GPU and were implemented in Python (3.6) and

ytorch (1.0.1). 

.5.1. Basic fully supervised learning 

As can be seen in Fig. 5 , the general structure is identical to that

sed for age prediction, apart from the location of the domain classifier.

n the case of the age prediction task, the unlearning was performed at

he first fully connected layer, chosen as it was both a reduced repre-

entation of the data and because it was at the end of the network so

here were few weights afterwards for the network to re-learn how to

xploit any remaining scanner information were it not fully removed by

he unlearning process. In the case of the U-Net architecture, the most

ompressed representation of the information is at the bottleneck (B)

ut there are both several upsampling layers and skip-connections after

his point. Therefore, if we were to only complete unlearning at the bot-

leneck, all scanner information would most likely be re-learned by the

ubsequent layers in the upsampling branch and so might still influence

he output segmentations. 

We therefore consider unlearning from both the end of the network

efore the label predictor (A), the bottleneck (B) and the combination

f the two, formed by concatenating the first fully-connected layers to

orm a single domain prediction. We also compare to standard training

s a benchmark. We utilise the simplest training regime, where we have

egmentation labels available for all the data from all scanners and that

e have identical segmentation tasks. Therefore the overall loss function

akes the same form as Eq. (5) and all of the loss functions are evaluated

n all of the data points. 

.5.2. Semi-supervised learning 

Finally, we consider the scenario where we have very few or no la-

els available for one of the scanners – this is a very likely scenario for

egmentation where manual labels are time consuming and difficult to
7 
btain. We therefore assume access to one fully labelled dataset (UK

iobank) - and another dataset for which we do not have many labels.

hile the unlabelled data points cannot be used to evaluate the main

ask, they can be used for scanner unlearning. 

No changes to the architecture are required; rather, we simply eval-

ate the main task for those data points for which we have main task

abels and use all data points for unlearning such that the overall method

inimises: 

 ( 𝑿 , 𝒚 𝑝 , 𝒅 , 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 , 𝚯𝑑 ) = 𝐿 𝑝 ( 𝑿 𝑝 , 𝒚 𝑝 ; 𝚯𝑟𝑒𝑝𝑟 , 𝚯𝑝 ) 

+ 𝛼𝐿 𝑑 ( 𝑿 , 𝒅 , 𝚯𝑟𝑒𝑝𝑟 ; 𝚯𝑑 ) (7) 

+ 𝛽𝐿 𝑐𝑜𝑛𝑓 ( 𝑿 , 𝒅 , 𝚯𝑑 ; 𝚯𝑟𝑒𝑝𝑟 ) 

here 𝑿 𝑝 is the subset of 𝑿 for which we have main task labels 𝒚 𝑝 avail-

ble and the full dataset 𝑿 is used in unlearning scanner information. 

We explore the effect of increasing numbers of data points on the

nal segmentation, comparing to normal training on the combination

f the full UK Biobank dataset and OASIS with available segmentations.

.6. Ethics statement 

UK Biobank: has approval from the North West Multi-centre Re-

earch Ethics Committee (MREC) to obtain and disseminate data and

amples from the participants, and these ethical regulations cover the

ork in this study. Written informed consent was obtained from all par-

icipants. Details can be found at www.ukbiobank.ac.uk/ethics . 

Whitehall dataset: ethical approval was granted generically for the

Protocol for non-invasive magnetic resonance investigations in healthy

olunteers ” (MSD/IDREC/2010/P17.2) by the University of Oxford Cen-

ral University / Medical Science Division Interdisciplinary Research

thics Committee (CUREC/MSD-IDREC), who also approved the spe-

ific protocol: “Predicting MRI abnormalities with longitudinal data of

he Whitehall II sub-study ” (MSD-IDREC-C1-2011-71). 

http://www.ukbiobank.ac.uk/ethics
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Table 1 

Results comparing unlearning to training the network in different combinations on the datasets. Mean absolute 

error is reported in years. Scanner accuracy is the accuracy achieved by a domain classifier given the fixed feature 

representation at convergence, evaluating only for the datasets the network was trained on. Number in brackets 

indicates random chance. B = Biobank, O = OASIS, W = Whitehall. p values can be found in the supplementary 

material. Bold indicates the experiment with the best average across the datasets. 

Training Data 

B O W Biobank MAE OASIS MAE Whitehall MAE Scanner Classification Accuracy % 

Normal Training 

1. ✓ × × 3.25 ± 2.36 16.50 ± 6.77 13.81 ± 5.42 - 

2. × ✓ × 5.61 ± 3.52 4.27 ± 3.79 6.73 ± 4.82 - 

3. × × ✓ 5.61 ± 3.65 5.22 ± 4.83 3.15 ± 2.81 - 

4. ✓ ✓ × 3.30 ± 2.50 4.00 ± 2.78 4.71 ± 3.42 98 (50) 

5. ✓ × ✓ 3.31 ± 2.49 4.45 ± 3.53 3.05 ± 2.84 100 (50) 

6. × ✓ ✓ 5.71 ± 3.59 4.05 ± 3.71 3.21 ± 2.94 100 (50) 

7. ✓ ✓ ✓ 3.24 ± 2.47 4.19 ± 3.50 2.89 ± 2.70 96 (33) 

Normal Training - Eq (1) 

8. ✓ ✓ × 3.45 ± 2.63 3.99 ± 2.85 4.56 ± 3.38 100 (50) 

9. ✓ × ✓ 3.42 ± 2.60 4.19 ± 4.01 2.99 ± 2.69 100 (50) 

10. × ✓ ✓ 4.56 ± 3.05 4.08 ± 3.73 3.18 ± 2.93 100 (50) 

11. ✓ ✓ ✓ 3.55 ± 2.68 3.90 ± 3.53 2.62 ± 2.65 98 (33) 

Unlearning 

12. ✓ ✓ × 3.41 ± 2.04 3.79 ± 2.99 4.60 ± 3.47 48 (50) 

13. ✓ × ✓ 3.41 ± 2.58 4.07 ± 4.12 2.81 ± 2.57 52 (50) 

14. × ✓ ✓ 3.38 ± 2.64 3.91 ± 3.53 2.82 ± 2.65 50 (50) 

15. ✓ ✓ ✓ 3.38 ± 2.64 3.90 ± 3.53 2.56 ± 2.47 34 (33) 

 

c  

v  

f  

a  

M

 

fi  

t  

s  

o  

f  

P  

D

3

3

3

 

d  

a

f  

i  

b  

c  

t  

t  

m  

r  

t  

c

 

s  

t  

p  

s  

d

 

i  

O  

i  

f  

t  

u

 

t  

f  

I  

a  

t  

f  

T  

w  

s  

w  

C  

m  

n  

w  

a  

n  

(  

a  

t  

s

 

t  

c  

p  

t  

B  

g  

v  

t  

p  

b  

n  

s  

u  

o

OASIS dataset: was previously collected under several study proto-

ols at Washington University. All studies were approved by the Uni-

ersity’s Institutional Review Board (IRB). All subjects gave written in-

ormed consent at the time of study participation. The University’s IRB

lso provided explicit approval for open sharing of the anonymized data.

ore information relating to this can be found in Marcus et al. (2007) . 

ABIDE dataset: prior to data contribution, sites are required to con-

rm that their local Institutional Review Board (IRB) or ethics commit-

ee have approved both the initial data collection and the retrospective

haring of a fully de-identified version of the datasets (i.e., after removal

f the 18 protected health information identifiers including facial in-

ormation from structural images as identified by the Health Insurance

ortable and Accountability Act [HIPAA]). More details can be found in

i Martino et al. (2013) . 

. Results 

.1. Age prediction task 

.1.1. Basic fully-supervised learning 

The results from training with all three datasets separately and the

ifferent combinations can be seen in Table 1 . The scanner classification

ccuracy is achieved by taking the frozen feature representation 𝑸 𝑟𝑒𝑝𝑟 

rom training, and training a classifier based on this. For the unlearn-

ng method, this is the domain classifier that was used during training

ut fine tuned to convergence. For normal training, an identical domain

lassifier is trained using the frozen feature representation as input un-

il convergence. Therefore, the closer the value is to random chance,

he less informative the feature representation is about scanner, thus

eaning the influence of the scanner on the prediction is reduced. The

esults from training on all combinations of datasets both with standard

raining, and standard training using our loss function for the main task

onditioned on each scanner, are shown for comparison. 

In Fig. 6 , a T-SNE plot van der Maaten and Hinton (2008) can be

een, allowing visualisation of the activations at the output of the fea-

ure extractor, 𝑸 𝑟𝑒𝑝𝑟 . It can be seen that, before unlearning, the features

roduced are entirely separable by scanner, but after unlearning the

canner features become jointly embedded and so the feature embed-

ing is not informative of scanner. 

The T-SNE demonstrates that without unlearning, not only are there

dentifiable scanner effects but that they also affect the age predictions.
8 
n the other hand, it can be seen that we are able to remove scanner

nformation using our unlearning technique, such that the data points

or all three scanners share the same embedding. This is confirmed by

he scanner classification accuracy being almost random chance after

nlearning has been completed. 

It can also be seen that unlearning does not decrease substantially

he performance on the main task. Graphs showing the different loss

unctions with training can be found in the supplementary material.

f we consider the case of training on all three datasets, we actually

chieve an overall improvement in performance using unlearning across

he three datasets (comparing lines 7 and 15 in Table 1 ) with the per-

ormance on the OASIS and Whitehall datasets substantially improving.

he performance on the UK Biobank dataset decreases, but this is as

ould be expected because the UK Biobank dataset has a much larger

ize and so, with normal training, the network is driven by this dataset

hereas, with unlearning, all of the datasets drive the performance.

omparing to line 11, where the same loss function was used for the

ain task, evaluated separately for each dataset, but unlearning was

ot performed, we can see that there was an improved performance

hen the unlearning was added and so the unlearning itself provides

ctual improvement on the main task. It can also be seen that the scan-

er classification accuracy is almost perfect when using normal training

 96% ), or the loss function evaluated on the datasets separately ( 98% ),

nd is random chance after unlearning ( 34% ), clearly demonstrating that

he unlearning process removes scanner information from the feature

pace. 

It can also be seen that the unlearning process creates a feature space

hat generalises better to the third unseen dataset. If, for instance, we

ompare lines 5 and 13 we can see that not only is there an improved

erformance on the OASIS and Whitehall datasets used for training, but

here is also a significant improvement in the performance on the UK

iobank dataset, which was unseen by the network. This, therefore, sug-

ests that the unlearning process not only creates features that are in-

ariant to the scanners that were present in the training set, but also that

hese features are more generalisable and so can be more effectively ap-

lied to other scanners. It can again be seen there is an improvement

etween normal training with our loss function evaluated on each scan-

er separately and the performance with unlearning (lines 9 and 13),

howing that the increase in generalisability of the features is due to the

nlearning process. The same pattern can be seen for training on the

ther possible pairs of datasets. 
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Fig. 6. a) T-SNE plot of the activations of the fully connected layer, 𝑸 𝑟𝑒𝑝𝑟 , before unlearning. It can be seen that the domains can be almost entirely separated, except 

for two data points grouped incorrectly, showing that data from each scanner has its own distinct distribution. b) T-SNE plot of the activations of the fully connected 

layer, 𝑸 𝑟𝑒𝑝𝑟 , after unlearning. It can be seen that, through the unlearning, the distributions become entirely jointly embedded. 

Table 2 

Comparison of the effect of training with the full datasets with imbalanced numbers from each 

scanner versus training with balanced numbers of subjects from each scanner (452 per scanner, 

randomly selected compared to 5508 Biobank, 813 OASIS and 452 Whitehall), comparing both 

normal training and unlearning. The method giving the best average across datasets is highlighted. 

Training Method Testing Dataset (MAEs) 

Biobank OASIS Whitehall Scanner Classification Accuracy 

Full Dataset 

Normal Training 3.24 ± 2.47 4.19 ± 3.50 2.89 ± 2.70 100 (33) 

Unlearning 3.38 ± 2.64 3.90 ± 3.53 2.56 ± 2.47 34 (33) 

Balanced Dataset 

Normal Training 5.31 ± 3.82 5.80 ± 3.93 3.50 ± 3.09 98 (33) 

Unlearning 4.11 ± 3.23 4.10 ± 3.68 3.11 ± 2.99 34 (33) 
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The generalisability of the features between datasets and the reduc-

ion of the scanner classification accuracy together demonstrate that

he unlearning process successfully harmonises the differences between

canners and protocols. 

The results were also found to be robust to the choice of hyperpa-

ameters. An exploration of this can be found in the supplementary ma-

erials. 

We considered if it were better to use the full imbalanced datasets

o maintain the number of data points or if this hindered the unlearning

rocess. Therefore, we randomly downsampled the Biobank and OA-

IS datasets to have the same number of examples as the Whitehall

ataset (452 subjects). Testing was evaluated on the same test dataset

s in the previous experiments. The results can be seen in Table 2 . For

oth normal training and unlearning, there was a large decrease in per-

ormance using the balanced datasets, but the decrease was less pro-

ounced when using unlearning than when using normal training. Using

alanced datasets made no difference to the ability to classify scanner:

ith normal training the classifier was still able fully to distinguish be-

ween scanners; with unlearning, the classification was almost random

hance. Therefore, any advantage gained from having balanced datasets

s outweighed by the reduction in performance from having reduced

umbers of training examples and so we are better off training on the

hole dataset. Given that the method is able to remove nearly all infor-

ation with significant imbalance in this case (Biobank 5508 training

ata points compared to Whitehall’s 452) it is likely that unlearning

ould be sufficient in most cases. 

.1.2. Biased datasets 

We assessed the performance of the network training with biased

atasets curated from subsets of the Biobank and OASIS datasets. We

onsidered the cases of 5-year, 10-year and 15-year overlaps where the

maller the overlap, the harder the task. The trained networks are tested
9 
n the same test sets used above, with subjects across the whole age

ange included. 

The results can be seen in Table 3 where we compare normal train-

ng, naïve unlearning on the whole dataset, and unlearning on only the

verlapping age range. It can be seen that for all three degrees of over-

ap, standard training leads to much larger errors than unlearning and

hat unlearning on only the overlap gives a lower error than unlearning

n all data points. Plots of the MAEs with age can be seen in Fig. 7 for

he 10-year overlap case. It can be seen that the overall lowest MAEs

re achieved across the age range when unlearning is performed only

n the overlapping subjects. 

As expected, it can be seen that the normal training regime produces

arge errors, especially outside of the range of the Biobank training data,

s the learnt weights are very largely driven by the much larger size of

he Biobank training data. With naïve unlearning, the network is not

ble to correct for both scanners and the results for the OASIS data are

oor, whereas by unlearning on just the overlapping subjects, the error

s reduced on both of the datasets during testing. The only area where we

ee a reduction in performance is the lower end of the OASIS dataset,

ossibly because when the network was being driven by the Biobank

ata, the network generalised well to the OASIS subjects from the same

ange. Naïve unlearning also performs slightly less well at removing

canner information on the testing data, probably indicating that the

eatures removed also encode some age information and so generalise

ess well across the whole age range. 

.1.3. Extension to ABIDE data 

Fig. 8 shows the results of applying the unlearning process to the

BIDE data, comparing normal training to unlearning. It can be seen

hat unlearning improves the MAE across all sites apart from MPG,

hich contains significantly older subjects compared to the other sites.

he scanner classification accuracy before unlearning was 55 . 9% and
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Table 3 

MAE results for Biobank and OASIS data from training with datasets with varying degrees of 

overlap as shown in Fig. 3 . Standard refers to training normally and naïve unlearning refers to 

unlearning on the whole of the datasets. Scanner accuracy is calculated by training a domain 

classifier on the fixed feature representation. Random chance is given in brackets. The method 

with the best average across the datasets for each degree of overlap is highlighted. 

Method Biobank MAE OASIS MAE Scanner Classification Accuracy ( % ) 

5 Years Overlap 

1. Standard 16.5 ± 5.94 15.5 ± 6.95 100 (50) 

2. Naïve Unlearning 6.11 ± 3.99 4.44 ± 4.20 58 (50) 

3. Unlearning on Overlap 5.49 ± 3.67 4.37 ± 4.05 53 (50) 

10 Years Overlap 

4. Standard 9.66 ± 5.83 13.6 ± 6.58 100 (50) 

5. Naïve Unlearning 4.20 ± 2.90 4.29 ± 4.01 56 (50) 

6. Unlearning on Overlap 3.93 ± 2.81 4.04 ± 3.86 52 (50) 

15 Years Overlap 

7. Standard 8.91 ± 5.31 10.4 ± 5.55 100 (50) 

8. Naïve Unlearning 3.82 ± 2.84 4.39 ± 4.07 57(50) 

9. Unlearning on Overlap 3.75 ± 2.78 3.99 ± 3.52 50 (50) 

Fig. 7. Density plots showing the absolute errors for the three different training regimes: standard training, naïve unlearning and unlearning only on the overlap 

data for 10-year overlap. It can be seen that unlearning only on the overlap dataset leads to substantially lower losses across both datasets. 
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fter unlearning was reduced to 6 . 42% , where random chance was 6 . 25% .

herefore, we can see that scanner information is present in the feature

mbeddings, even when harmonised protocols are used. 

These results therefore show that the framework can be applied to

any sites with no changes needed. It also shows that the framework is

pplicable to lower numbers of subjects, with some of the sites having

s few as 27 subjects for training. We thus foresee that the framework

hould be applicable to many studies. 

.1.4. Removal of other categorical confounds 

The effect of removing sex information as an additional confound in

ddition to harmonising for scanner was investigated. In Fig. 9 it can be

een that there is no significant effect on the MAE results when remov-

ng sex information in addition to scanner information. Unlearning sex
10 
nformation had no substantive effect on the ability to remove scanner

nformation with the scanner classification accuracy being 48% and 49% ,

espectively. The sex classification accuracy was 96% before unlearning

nd 54% after unlearning. Therefore, we can remove multiple pieces of

nformation simultaneously and, so long as the information we wish to

nlearn does not correlate with the main task, we can do so without

ignificantly reducing the performance on the main task. 

We then considered the case where sex information was correlated

ith the acquisition scanner given that 80% of the subjects in the OASIS

ataset are male and 80% of the subjects in the Biobank dataset are fe-

ale. Table 4 shows the comparison of normal training on these datasets

ompared to unlearning sex on all data points and unlearning sex on a

ubset with balanced numbers of each sex for each scanner. The full

esting set was still used. 
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Fig. 8. MAE results broken down by site for the ABIDE data, comparing normal training to unlearning. 

Table 4 

MAE results for unlearning scanner and sex when sex is highly correlated with scanner. 

Training Method Biobank MAE OASIS MAE Scanner Classification Accuracy Sex Classification Accuracy 

Normal Training 3.44 ± 2.56 3.98 ± 3.33 100 (50) 98 (50) 

Unlearning All 3.41 ± 2.60 4.05 ± 3.66 52 (50) 57(50) 

Unlearning Balanced 3.43 ± 2.60 4.04 ± 3.60 49 (50) 56 (50) 

Fig. 9. Results comparing unlearning scanner only to unlearning scanner and 

sex information. 
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It can be seen that there is little difference between unlearning on

ll, or just a balanced subset, compared to the normal training baseline.

t can also be seen that neither method affects the network’s ability to

nlearn scanner or sex information and so there is no need to change

he unlearning training from the standard case. 

Finally, we considered the case where sex – the confound we wish to

nlearn – is highly correlated with age – the main task – such that 80%
f the subjects below the median age are female and 80% of the subjects

ver the median age are male. Again, normal training was compared to
11 
nlearning on the whole dataset and to unlearning on a curated subset,

ith uniform distributions of sex with age for each scanner. Testing was

gain performed on the full testing datasets. 

It was found that it was not possible to unlearn on the whole distri-

ution as it caused the training to become unstable almost immediately

after approximately 5 epochs), with the training and validation loss ex-

loding before we were able to unlearn sex and scanner information.

he results from unlearning scanner can be seen in Table 5 where it can

e seen that by unlearning only on a subset of data points with equal

ample numbers we can almost entirely unlearn both scanner and sex in-

ormation. Fig. 10 shows a T-SNE ( van der Maaten and Hinton, 2008 ) of

 𝑟𝑒𝑝𝑟 where it can be seen that, before unlearning, the data was largely

eparable by scanner and sex, and that, after unlearning, these are in-

istinguishable. 

.1.5. Removal of continuous confounds 

For the removal of age as a confound, we used sex prediction as

he main task. We achieved an average of 96 . 3% on the sex prediction

ask before unlearning and 95 . 9% after unlearning. As before, we were

ble to unlearn scanner information, reducing the scanner classification

ccuracy from 100% to 53% . Fig. 11 a) shows the averaged softmax labels

rom the age prediction task with normal training, where it can be seen

hat there is a large degree of agreement between the true labels and

he predicted labels, showing that we are able to learn age using the

ontinuous labels and KL divergence as the loss function. We achieved

AE values of 3 . 26 ± 2 . 47 for Biobank and 4 . 09 ± 3 . 46 for OASIS with

ormal training in this manner. 

Fig. 11 b) shows the softmax labels after unlearning. It can be seen

hat the predicted labels no longer follow the same distribution as the

rue labels and that they are distributed around the random chance value
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Table 5 

MAE results for unlearning scanner and sex when sex is highly correlated with age. 

Training Method Biobank MAE OASIS MAE Scanner Classification Accuracy Sex Classification Accuracy % 

Normal Training 3.45 ± 2.60 4.85 ± 3.73 100 (50) 95 (50) 

Unlearning All 5.25 ± 3.70 5.62 ± 4.07 100 (50) 65 (50) 

Unlearning Balanced 3.53 ± 2.61 4.53 ± 3.52 52 (50) 54 (50) 

Fig. 10. a) T-SNE plot of 𝑸 𝑟𝑒𝑝𝑟 from training without unlearning, having trained on a dataset where sex correlates highly with age. It can be seen that the scanners 

can still be almost entirely separated, except for two data points grouped incorrectly (located within the cluster of light blue data points), showing that data from 

each scanner has its own distinct distribution and that the data points can also be entirely split by sex for the Biobank data. b) T-SNE plot of 𝑸 𝑟𝑒𝑝𝑟 after unlearning. 

It can be seen that, through the unlearning, the distributions become entirely jointly embedded in terms of both scanner and sex. 

Fig. 11. Softmax labels for the age prediction task, averaged across all examples for the Biobank dataset showing both the true values converted into Gaussian 

distributions and the predicted values. The dashed line corresponds to the value if all the softmax values were equal. a) Predictions with standard learning b) 

Predictions after unlearning. It can be seen that after unlearning the softmax values are much closer to the dashed line and there is no trend towards the true 

maximum. 
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ndicated by the dotted line. It can also be seen that there is no trend

owards the true age value, indicating that a large amount of the age

nformation has been removed. After unlearning, the MAEs for the age

rediction task were 17 . 54 ± 7 . 65 for Biobank and 22 . 86 ± 9 . 40 for OASIS.

he average KL divergence has increased from 0.0022 with standard

earning to 0.251 after unlearning. This therefore demonstrates that, by

dapting the labels, we can also use the same training regime to remove

ontinuous information. 

.2. Segmentation task 

.2.1. Supervised learning 

The results from comparing the location of the domain classifier can

e seen in Table 6 . We compare the Dice scores and consider the scanner

lassification accuracy. It can be seen that the best results for both Dice

nd the scanner classification accuracy were achieved with the domain
12 
lassifier simply connected at the final convolution. Training with the

omain classifier attached to the bottleneck was also much less stable.

iven this result, the location of the domain classifier is fixed to the final

onvolutional layer for the rest of the experiments that follow. 

This finding goes against the expectation from the literature

 Kamnitsas et al., 2016a ) which suggests a mixture of locations are best

or domain adaptation. We suspect this is due to our prioritisation of the

emoval of the scanner information to ensure harmonisation through un-

earning: at the bottleneck (B) we have the most compressed represen-

ation of the data and it is probable that by unlearning at that location

e constrain these features too highly and they are unable to find as

uccessful a representation of the data. 

The results for training on the combination of datasets with normal

raining and unlearning can be seen in Table 7 , averaged across tissue

ype, and in Fig. 12 by tissue type for each scanner. It can be seen that

he unlearning process does not reduce the Dice score achieved across
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Table 6 

Dice scores comparing different locations for attaching the domain classifier in the network (as 

indicated in Fig. 5 ) A) at the final convolutional layer, B) at the bottleneck, and A+B) the combi- 

nation of the two locations. The scanner classification accuracy was the accuracy achieved by a 

separate domain classifier using the fixed feature representation at the final convolutional layer. 

Random chance is given in brackets. 

Location of Domain Classifier Biobank Dice OASIS Dice Scanner Classification Accuracy 

Final Convolution (A) 0.910 ± 0.023 0.916 ± 0.021 51 (50) 

Bottleneck (B) 0.871 ± 0.046 0.882 ± 0.030 100 (50) 

Both (A + B) 0.903 ± 0.025 0.912 ± 0.021 55 (50) 

Table 7 

Dice scores comparing unlearning to training the network on different combinations of the 

datasets, averaged across the tissues types. Scanner accuracy is the accuracy achieved by a do- 

main classifier given the fixed feature representation, with random chance given in brackets. 

Training Data Biobank Dice OASIS Dice Scanner Classification Accuracy ( % ) 

Biobank Only 0.910 ± 0.022 0.836 ± 0.043 - 

OASIS Only 0.874 ± 0.032 0.917 ± 0.020 - 

Both (Normal Training) 0.906 ± 0.024 0.915 ± 0.020 100 (50) 

Both (Unlearning) 0.910 ± 0.023 0.916 ± 0.021 51 (50) 

Fig. 12. Dice scores for the two datasets for each method broken down by tissue type. CSF = Cerebrospinal fluid Fluid, WM = White Matter, GM = Grey Matter 
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issue types and that we are able to almost entirely unlearn scanner

nformation. 

.2.2. Semi-supervised segmentation 

To allow us to explore the effect of training the network with low

umbers of labelled training points for one of the scanners, we trained

he network with both normal learning and with unlearning for different

umbers of OASIS data points with labels. Only the examples with labels

ere used for evaluating the main task but all of the data points were

till used for unlearning scanner as these loss functions do not require

ain task labels to be evaluated. The results can be seen in Fig. 13 : for all

ases, the scanner classification accuracy for normal training was 100%
nd between 50% and 55% for unlearning. It can be seen that unlearning

ives a large improvement in the segmentations with low numbers of

ata points, not only in terms of the mean value but also the consistency

f the segmentations, including when the network is unsupervised with

egards to the OASIS dataset and so has no training labels. Even with

arge numbers of training examples, there is never a disadvantage to

sing unlearning. 
13 
. Discussion 

In this work, we have shown how a domain adaptation technique

an be adapted to harmonise MRI data for a given task using CNNs,

y creating a feature space that is invariant to the acquisition scanner.

emoval of scanner information from the feature space prevents the in-

ormation driving the prediction. The cost of the harmonisation is an

pproximately two fold increase in training time (from 0.88 s per batch

o 1.53 s) but there is no increase in prediction time, and so, once the

odel is trained, there is no disadvantage to having unlearned scanner

nformation. The duration of a batch increase is not the three times that

ight be expected, with the increase from one-forward and backward

ass to three forward and backward passes per epoch, because the sec-

nd two loss functions only update subsets of the parameters, reducing

he number of calculations that must be completed. 

We have demonstrated our technique for both regression and seg-

entation and so it should be applicable to nearly all medical imaging

roblems. The applicability to a wide range of networks, even those with

kip connections such as the U-Net, provides a high level of flexibility. It
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Fig. 13. Dice scores for the three different tissue types for 

the OASIS data with increasing numbers of OASIS train- 

ing slices, comparing both normal training and unlearn- 

ing with the full Biobank dataset used throughout. For 

clarity, the x axis is not plotted to scale. 
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t  
oes, however, only harmonise the features for a given task and there-

ore a separate network must be trained for each task. Consequently,

n area for future research would be to harmonise across both scan-

ers and tasks. As a comparison, a DANN-style network ( Ganin et al.,

015 ), with the same architecture as our network but an additional gra-

ient reversal layer inserted for the domain classifier branch, was also

rained, but it was found that when training with only two datasets,

he domain classifier was unstable and predicted the domains with 7 . 2%
ccuracy (results can be seen in the supplementary material). This was

 local minimum but clearly meant that the scanner information was

ot successfully removed. This instability in adversarial tasks posed as

 minmax optimisation has also been experienced for other applications

cross the literature ( Gulrajani et al., 2017; Lezama, 2019 ). By contrast,

he confusion loss used in our iterative approach forces the logits to-

ards random chance and we experience much more stability in the

omain unlearning branch. We have not been able to compare to exist-

ng harmonisation methods, such as ComBat, because the different ap-

roaches are not easily compared, especially for the segmentation task,

nd focus on different stages of the pipeline. 

A potential limitation of our work is that the framework is not gen-

rative and therefore cannot be easily used in conjunction with tools

uch as VBM or Freesurfer, although could be added into deep learn-

ng equivalents such as Fastsurfer ( Henschel et al., 2020 ), especially

s more tools gain CNN-based equivalents. The decision to not make

he framework generative was due to generative CNN methods needing

arge amounts of data to train or, even in some examples, paired data,

eaning that they are not applicable to most real life neuroimage stud-

es, whereas we have shown that our framework is applicable even on

ighly multi-site datasets with limited examples from each site, such as

he ABIDE data. Furthermore, due to the data-hungry nature of gener-

tive CNNs, most of these methods reduce 3D volumes to 2D slices or

ven patches. This then leads to errors when reconstructing the outputs,

uch as inconsistencies between slices. Were these images then to be

sed in further downstream analysis, it is very hard to anticipate how

hese errors might impact on obtained results and to know how to ac-

ount for them. Although we do not produce harmonized images, the

mage-derived values can be used in downstream analysis, for instance

issue volumes or segmentation maps can be used with a GLM to ex-

lore group differences. Our approach, therefore, is limited to within
14 
NNs but this is a rapidly growing area of study within neuroimaging

nd the flexible nature of the framework means it should be applicable

cross feedfoward architectures and different neuroimaging tasks. 

The ablation study on the age prediction task shows that not only

re we able to unlearn the scanner information but that there is an in-

rease in performance that is not just due to the main task loss function.

his indicates that the learned features generalise better across datasets,

hich is confirmed by the performance on the third dataset when only

raining on two. This corroborates the scanner classification accuracy

nd T-SNE plots, showing that scanner information has largely been re-

oved and that the features that remain encode age information that

ransfers across datasets. Even for the segmentation task, where there

s no significant improvement in the performance on the segmentation

ask, including the unlearning gives us the assurance that the output

alues are not being driven by scanner. This could be important for

ownstream analysis, for instance comparing white matter volumes, al-

owing the data to be pooled across sites. This result is also robust to the

hoice of the weighting factors and so the unlearning is not sensitive to

he hyper-parameters. 

The results also show that we can use the unlearning scheme even

hen there is a strong relationship between the main task label and

he acquisition scanner. This could be especially useful when combin-

ng data between studies with different designs and with very different

umbers of subjects from each group. As we can perform unlearning on

 different dataset to the main task, we have the flexibility to apply the

ethod to a range of scenarios. 

At the limit where there exists no overlap between the datasets’ dis-

ributions, unlearning scanner information would be highly likely to re-

ove information relating to the main task. This would then only be

ble to be solved by having an additional dataset for each scanner, ac-

uired with the same protocol, and so represents a potential limitation

f the method. The extension to the ABIDE dataset, however, shows the

pplicability of the method to many small datasets, and therefore this

ay be solvable using a set of small datasets which together span the

hole distribution. It also shows that the framework is able to harmonise

cross scanner manufacturers as the data was collected on a range of GE,

iemens and Philips scanners. 

We have also shown that the approach can be extended to allow us

o remove additional confounds, and have demonstrated a way that this
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ould also be extended to allow us to remove continuous confounds such

s age. For each confound to be removed, we require two additional loss

unctions and two additional forward and backward passes. Therefore,

he training time will increase with each additional confound, present-

ng a potential limitation. Were many confounds to be removed, we

ight also need to increase the number of times the passes for the main

ask are performed to prevent the performance on the main task suf-

ering too much degradation due to the feature space being optimised

or multiple tasks. We have, however, also shown how confounds can

e removed even when they correlate with the main task. By carefully

electing a subset of the data with which to unlearn the scanner, we can

emove the confounds, including, for instance, where sex is correlated

ith age, which is a case where both the main task and confound to be

emoved are associated with structural changes. 

The approach can also be applied when no labels are available for

ne or more of the domains. We have demonstrated for the segmentation

ask that we are able to use this technique effectively when we only have

abels for one domain and we would expect that this should extend to

ultiple unlabelled datasets. 

. Conclusion 

We have presented a method for MRI harmonisation and confound

emoval that should be applicable across many tasks for neuroimaging

nd data scenarios. We have shown that it can be easily applied to seg-

entation, classification and regression tasks and with the highly flexi-

le nature of the framework it should be applicable to any feedforward

etwork. The ability to remove scanner bias influencing the predictions

f CNNs should enable to the combination of small datasets and the ex-

loration of problems for which there are no single-scanner datasets of

dequate size to consider. 
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