
International  Journal  of

Environmental Research

and Public Health

Article

Mechanism and Kinetic Analysis of Degradation of
Atrazine by US/PMS

Yixin Lu 1,2,3, Wenlai Xu 4,5,*, Haisong Nie 6,* , Ying Zhang 1, Na Deng 1 and Jianqiang Zhang 3

1 College of Architectural and Environmental Engineering, Chengdu Technological University,
Chengdu 611730, China; yxlu61@163.com (Y.L.); txgsfy@163.com (Y.Z.); nstxdy@163.com (N.D.)

2 Center of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu 611730,
China

3 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031,
China; zhangchengdu@126.com

4 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of
Technology, Chengdu 611730, China

5 Haitian Water Grp Co Ltd., Chengdu 610059, China
6 Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and

Technology, Tokyo 1838509, Japan; nie-hs@cc.tuat.ac.jp
* Correspondence: xuwenlai1983@163.com (W.X.); nie-hs@cc.tuat.ac.jp (H.N.); Tel.: +86-135-5102-9646 (W.X.)

Received: 23 March 2019; Accepted: 16 May 2019; Published: 20 May 2019
����������
�������

Abstract: The degradation effect, degradation mechanism, oxidation kinetics, and degradation
products of Atrazine (ATZ) by Ultrasound/Peroxymonosulfate (US/PMS) in phosphate buffer (PB)
under different conditions were studied. It turned out that the degradation rate of US/PMS to ATZ
was 45.85% when the temperature of the reaction system, concentration of PMS, concentration of ATZ,
ultrasonic intensity, and reaction time were 20 ◦C, 200 µmol/L, 1.25 µmol/L, 0.88 W/mL, and 60 min,
respectively. Mechanism analysis showed that PB alone had no degradation effect on ATZ while
PMS alone had extremely weak degradation effect on ATZ. HO• and SO4

–
• coexist in the US/PMS

system, and the degradation of ATZ at pH7 is dominated by free radical degradation. Inorganic anion
experiments revealed that Cl–, HCO3

–, and NO3
– showed inhibitory effects on the degradation of

ATZ by US/PMS, with Cl– contributing the strongest inhibitory effect while NO3
– showed the weakest

suppression effect. According to the kinetic analysis, the degradation kinetics of ATZ by US/PMS was
in line with the quasi-first-order reaction kinetics. ETA with concentration of 1 mmol/L reduced the
degradation rate of ATZ by US/PMS to 10.91%. Product analysis indicated that the degradation of
ATZ by US/PMS was mainly achieved by dealkylation, dichlorination, and hydroxylation, but the
triazine ring was not degraded. A total of 10 kinds of ATZ degradation intermediates were found in
this experiment.

Keywords: ultrasound; peroxymonosulfate; free radicals; ATZ; degradation mechanism

1. Introduction

Atrazine (ATZ) is one of the most widely used chemical herbicides in Asian and South American
countries. The domestic use amount of ATZ was about 1.8 × 106 kg in late 1990s and increased by an
average of 20% each year [1]. At this level, the annual use amount of ATZ in China could reach 108 kg
by the end of 2018. ATZ can transform through different environmental media by diffuse, volatile,
surface runoff, leaching, dry and wet deposition, etc. The ways ATZ entering water mainly include
surface runoff, leaching, and dry and wet deposition [2]. The structure of ATZ is stable and difficult
to degrade in the natural environment, and it is also hard to mineralize by microorganisms [3]. Its
half-life in surface water can be up to 700 days [4]. ATZ with concentration up to 108 µg/L has been
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detected in north American rivers [5]. ATZ with a concentration of 3.9–81.3 µg/L has been detected in
many rivers and reservoirs in China [6–10], which far exceeded the limit of 2 µg/L according to the
hygienic standard of drinking water in China.

The main effects of ATZ on biology are toxic effects and endocrine interference. According to the
research by Benjamin [11], ATZ can cause stunted vertebrae development of zebra fish, and excessive
ATZ (more than 3 mmol/L) can cause serious defects in the craniofacial development of zebrafish. The
research conducted by HAYES [12] and others found that, when the growth of the African tree frog
from larva to adult are exposed to the ATZ solution with the concentration of 0.1 µg/L, 20% of the
young frogs will develop into hermaphrodites, which indicates that ATZ with a low concentration
can feminize the male African tree frog. The team of Jia [13] indicated that ATZ can further cause
heart and liver damage in quails by causing ion disturbances. Meanwhile, the study by Sanderson [14]
and others discovered that ATZ can interfere with endocrine balance by increasing the activity of the
CYP19 enzyme in the human body.

Environmental atrazine removal mainly involves several kinds of methods including
biodegradation, chemical degradation, and physical absorption. Ma et al. [15] reported that an
Ensifer sp. strain can mineralize atrazine completely from the surrounding environment by utilizing
it as its main nitrogen source. He et al. [16] reported the effects of fulvic acids and electrolytes on
colloidal stability and photocatalysis of nano-TiO2 for atrazine removal. The results indicate that the
removal efficiency of atrazine by nano-TiO2 decreased with the increase in fulvic acids concentration.
Wu et al. [17] investigated the removal efficiency of atrazine from aqueous solutions using magnetic
Saccharomyces cerevisiae bio-nanomaterial, and found that the maximum removal efficiency of
100% was achieved at 28 ◦C, a pH of 7.0, and 150 rpm with an initial atrazine concentration of
2.0 mg/L. In another research, Zhu et al. [18] pointed out that both adsorption and biodegradation
by the bio-nanocomposite contributed to atrazine removal. Zhao et al. [19] studied the sorption
properties of biochars (CS450 and ADPCS450) from corn straw with different pretreatment and
sorption behavior of atrazine. The sorption experiment showed that sorption was more favorable for
atrazine sorption in acidic solution and the sorption was temperature-dependent and a spontaneous
process. At present, the photo-Fenton and photo-Fenton-like advanced oxidation technologies based
on Persulfate/Peroxymonosulfate (PS/PMS) have been proven to be effective in the degradation of
ATZ in water including Heat/PS [20], PBS/PMS [21], UV/PS [22], and UV/PMS [23]. For example,
Ji et al. [20] demonstrated that heat-activated persulfate could effectively degrade ATZ in water and
pointed out that the increase of the persulfate concentration or temperature significantly enhanced the
degradation efficiency. Khan et al. investigated the efficacy of atrazine degradation by UV, UV/H2O2,
UV/PS, and UV/PMS. However, so far, there have been few reports on the degradation of ATZ by
US/PMS. Therefore, in this paper, the effect of US/PMS oxidative degradation to ATZ under different
conditions was investigated in PB solution, and its degradation mechanism, oxidation kinetics, and
degradation products were analyzed and discussed. These factors have a certain reference value for
chemical treatment of pesticide wastewater.

2. Materials and Methods

2.1. Reagents and Instruments

Reagents: methyl alcohol of chromatographically pure, sodium hydroxide, sodium dihydrogen
phosphate, sodium nitrite, ethanol, tert-butanol, sodium chloride, sodium bicarbonate, potassium
nitrate, which are all analytically pure. ATZ and PMS (KHSO5·0.5KHSO4·0.5K2SO4, KHSO5 ≥ 47%)
were purchased from Aladdin Co., Ltd. (Seoul, Korea).

Instruments: high performance liquid chromatograph (Waters 2695-2996), electronic scales,
ultrasonic generator with a frequency of 150 KHz, lab pH meter from Shanghai Electronics Science
Instrument Co., Ltd., Shang Hai, China, NC ultrasonic cleaner (KH5200DB), Ultra-pure Water Purifier
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from ULUPURE Co., Ltd., Chengdu, China, energy-saving intelligent thermostat tank (DC-1030),
stirring hot plate (78 HW-1).

2.2. Experimental Scheme

2.2.1. Solution Preparation

Ultrapure water with the electrical resistivity of 18.24 MΩ·cm was used to prepare ATZ mother
liquor of 100 µmol/L, NaH2PO4 solution of 0.2 mol/L, NaOH solution of 0.02 mol/L, NaNO2 solution
of 0.1 mol/L, NaCl solution of 1 mol/L, NaHCO3 solution of 0.5 mol/L, KNO3 solution of 1mol/L, PMS
solution of 0.01 mol/L in sealed containers out of light, tertiary butanol solution of 16 g/L, and ethanol
solution of 16 g/L. The preparation methods of phosphate buffer at pH 6, pH 7, and pH 8 with constant
volume of 1L were shown in Table 1.

Table 1. The preparation method of NaH2PO4-NaOH buffer.

pH 0.2 mol/L NaH2PO4 (mL) 0.2 mol/L NaOH (mL)

6 250 28.50
7 250 148.15
8 250 244.00

2.2.2. Experimental Scheme of ATZ Degradation by US/PMS

The degradation efficiency of US/PMS to ATZ in 1.25 mmol/L phosphate buffered solution was
investigated under the following conditions: different temperature of 10, 15, 20, and 25 ◦C, different
pH value of 6, 7, and 8, different PMS concentration of 50, 100, 200, and 400 µmol/L, different ATZ
concentration of 0.625, 1.25, and 2.5 µmol/L, and different US intensity with the frequency of 150 KHz
of 0.22 W/mL, 0.44 W/mL, 0.66 W/mL, and 0.88 W/mL.

Different concentrations of tertiary butanol and ethanol were added to investigate the mechanism
of degradation of ATZ by US/PMS in 20 ◦C water bath when the US intensity, PB concentration, PMS
concentration, and ATZ concentration were 0.88 W/mL, 1.25 mmol/L, 200 µmol/L, and 1.25 µmol/L,
respectively. The effect of common anions in water including Cl–, HCO3

–, and NO3
– on US/PMS

degradation to ATZ was investigated by adding different concentrations of NaCl, NaHCO3, and
NaNO3 solution. NaNO2 solution of 0.1 mol/L served as the termination agent for the reaction.

2.3. Analytical Method

Symmetry® C18 stable bond was adopted to detect ATZ, and the specific test method is as follows:
the mobile phase ratio of methyl alcohol to ultrapure water is 60:40, flow velocity of 0.8 mL/min,
column temperature of 40 ◦C, and wavelength of 225 nm.

3. Results and Discussion

3.1. Effect of Temperature on ATZ Degradation by US/PMS

The influence of temperature on ATZ degradation by US/PMS in phosphate buffered solution at
pH 7 was shown in Figure 1 when the concentration of ATZ, US intensity, and PMS concentration were
respectively 1.25 µmol/L, 0.88 W/mL, and 200 µmol/L. In this figure and all the following figures, C
represents ATZ concentration at any time and C0 is the concentration of ATZ at time 0. According
to Figure 1, with the increase of reaction temperature, the effect of ATZ degradation by US/PMS was
enhanced. The ATZ removal rate increased from 19.37% to 50.96% when the reaction temperature
rose from 10 ◦C to 25 ◦C. This is mainly due to the increase in the percentage of PMS molecules
activated by a temperature rise, which accelerates the decomposition of PMS to generate SO4

–
• and

HO• [24]. At the same time, increasing the temperature will accelerate the motion speed of molecules
and increasing the collision frequency between ATZ, SO4

–
•, and HO•, accelerates the degradation of
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ATZ. It is easy to observe that, when the temperature increased from 15 ◦C to 20 ◦C, the removal rate of
ATZ increased more significantly. When compared with the temperature from 10 ◦C to 15 ◦C and from
20 ◦C to 25 ◦C, the improvement effect clearly indicates that the temperature change within the normal
range has a great impact on US/PMS degradation to ATZ. As the reaction temperature increases, the
effect of temperature variation on the US/PMS based removal rate of ATZ will be less pronounced.
Su et al. also observed the same phenomenon [25] in the research of the degradation efficiency of the
antibiotics amoxicillin in aqueous solution. They found that the activation of sulphate radicals under
ultrasound irradiation present nonlinear correlation with a temperature variation.

Int. J. Environ. Res. Public Health 2019, 16, x 4 of 14 

 

will be less pronounced. Su et al. also observed the same phenomenon [25] in the research of the 
degradation efficiency of the antibiotics amoxicillin in aqueous solution. They found that the 
activation of sulphate radicals under ultrasound irradiation present nonlinear correlation with a 
temperature variation. 

 

Figure 1. The ATZ removal rate under a different temperature (C0 = 1.25 μmol/L). 

3.2. The Effect of PMS Concentration on the ATZ Degradation by US/PMS 

The influence of PMS concentration on the ATZ degradation by US/PMS was demonstrated in 
Figure 2 when the ATZ concentration, US intensity, and temperature were 1.25 μmol/L, 0.88W/mL, 
and 20 °C. As shown in Figure 2, the effect of ATZ degradation by US/PMS was enhanced with the 
increase of PMS concentration. The ATZ removal rate increased from 28.90% to 58.77% when the 
PMS concentration rose from 50 μmol/L to 400 μmol/L. It is vital because increasing PMS 
concentration in the reaction system will relatively increase the yield of SO4-• and HO• per unit time, 
and then accelerate ATZ degradation by US/PMS when other conditions remain unchanged. It is 
worth mentioning that, when the concentration of PMS increased from 100 μmol/L to 200 μmol/L, 
the removal rate of ATZ did not change much. Therefore, PMS concentration has a greater influence 
on US/PMS degradation to ATZ. 

 

Figure 2. The ATZ removal rates under a different PMS density (C0 = 1.25 μmol/L). 

3.3. The Effect of pH Value on the ATZ Degradation by US/PMS 

The impact results of a different pH value on the ATZ degradation by US/PMS in phosphate 
buffer solution at 20 °C were shown in Figure 3 when the concentration of ATZ. US intensity and 
PMS concentration were 1.25 μmol/L, 0.88 W/mL, and 200 μmol/L. From Figure 3, the effect of ATZ 
degradation by US/PMS was enhanced with the increase of pH value. The ATZ removal rate 
increased from 46.46% to 56.77% when the pH value rose from 6 to 8. The ATZ removal rate was 
higher in alkaline pH than in acidic pH, primarily because ultrasound can stimulate PMS to generate 
SO4-• and HO• simultaneously (Equation (1-1) shows the reaction equation), and HO• has a slightly 

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

t (min)

 10℃
 15℃
 20℃
 25℃

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

t (min)

 50μmol/L
 100μmol/L
 200μmol/L
 400μmol/L

Figure 1. The ATZ removal rate under a different temperature (C0 = 1.25 µmol/L).

3.2. The Effect of PMS Concentration on the ATZ Degradation by US/PMS

The influence of PMS concentration on the ATZ degradation by US/PMS was demonstrated in
Figure 2 when the ATZ concentration, US intensity, and temperature were 1.25 µmol/L, 0.88W/mL,
and 20 ◦C. As shown in Figure 2, the effect of ATZ degradation by US/PMS was enhanced with the
increase of PMS concentration. The ATZ removal rate increased from 28.90% to 58.77% when the PMS
concentration rose from 50 µmol/L to 400 µmol/L. It is vital because increasing PMS concentration in the
reaction system will relatively increase the yield of SO4

–
• and HO• per unit time, and then accelerate

ATZ degradation by US/PMS when other conditions remain unchanged. It is worth mentioning that,
when the concentration of PMS increased from 100 µmol/L to 200 µmol/L, the removal rate of ATZ
did not change much. Therefore, PMS concentration has a greater influence on US/PMS degradation
to ATZ.
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3.3. The Effect of pH Value on the ATZ Degradation by US/PMS

The impact results of a different pH value on the ATZ degradation by US/PMS in phosphate
buffer solution at 20 ◦C were shown in Figure 3 when the concentration of ATZ. US intensity and
PMS concentration were 1.25 µmol/L, 0.88 W/mL, and 200 µmol/L. From Figure 3, the effect of ATZ
degradation by US/PMS was enhanced with the increase of pH value. The ATZ removal rate increased
from 46.46% to 56.77% when the pH value rose from 6 to 8. The ATZ removal rate was higher in alkaline
pH than in acidic pH, primarily because ultrasound can stimulate PMS to generate SO4

–
• and HO•

simultaneously (Equation (1) shows the reaction equation), and HO• has a slightly stronger oxidation
capacity to ATZ than SO4

–
•. The secondary reaction rates of the two with ATZ were 3× 109 M−1

·s−1 [26]
and 2.59 × 109 M−1

·s−1 [23], respectively. In aqueous solution, SO4
–
• can react with water at any given

pH condition to produce HO•, and the reaction rate constant is 8.30 M−1
·s−1 [27] (see Equation (2) for

the reaction equation). Under alkaline conditions, SO4
–
• can also react with OH– to produce HO•, and

the reaction rate constant is 6.50 × 107 [28] (The equation is shown in Equation (3)), and the change
of pH did not affect the yield of the SO4

–
• in US/PMS. Thus, under alkaline conditions, the US/PMS

system produced more HO• per unit time. Therefore, the removal rate of ATZ is higher in alkaline pH
than in acidic conditions. Thus, it can be seen that pH has a greater influence on ATZ degradation by
US/PMS [23,26,28].

HSO5
– + US→SO4

–
• + HO• KHO• = 3 × 109 M−1

·s−1; KSO4
–
• = 2.59 × 109 M−1

·s−1 (1)

SO4
–
• + H2O→SO4

2– + HO• + H+ K = 8.30 M−1
·s−1 (2)

SO4
–
• + OH–

→SO4
2- + HO• K = 6.50 × 107 (3)
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3.4. The Effect of US Intensity on the ATZ Degradation by US/PMS

The influence of different US intensity on the ATZ degradation by US/PMS in PB at 20 ◦C were
shown in Figure 4 when the ATZ concentration, PMS concentration, and pH were, respectively,
1.25 µmol/L, 200 µmol/L, and 7 µmol/L. As seen in Figure 4, the effect of US/PMS to ATZ degradation
gradually increased with the increase of US intensity in the reaction system. The removal rate of ATZ
increased from 25.53% to 45.85% when the US intensity increased from 0.22 W/mL to 0.88 W/mL. This
is mainly due to the fact that the ultrasound can cause a cavitation bubble phenomenon, while the
formation and collapse of the cavitation bubble can form extreme high temperature and pressure
conditions and then activate PMS to generate SO4

–
• and HO• to degrade ATZ [25,29]. It is worth

noting that, when the US intensity increased from 0.66W/mL to 0.88 W/mL, the removal rate of ATZ
was significantly higher than when the US intensity increased from 0.22 W/mL to 0.44 W/mL. The
results showed that US intensity had a great effect on US/PMS degradation to ATZ.
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3.5. The Effect of ATZ Concentration on the ATZ Degradation by US/PMS

The influence of different ATZ intensity on the ATZ degradation by US/PMS in PB at 20 µmol/L
were shown in Figure 5 when the pH, US intensity, and PMS concentration were, respectively, 7,
1.25 µmol/L, 0.88 W/mL, and 100 µmol/L. From Figure 5, with the increase of ATZ concentration in the
reaction system, the effect of US/PMS degradation ATZ was gradually weakened. The ATZ removal
rate decreased from 71.37% to 35.22% when the ATZ concentration increased from 0.625 µmol/L to
2.5 µmol/L. It is easy to observe that, when the ATZ concentration increased from 0.625 µmol/L to
1.25 µmol/L, the ATZ removal rate decreased significantly from 71.37% to 40.88%. The ATZ removal
rate decreased slightly from 40.88% to 35.22% when the ATZ concentration increased from 1.25 µmol/L
to 2.5 µmol/L. The results showed that ATZ concentration had a significant effect on ATZ degradation
by US/PMS.
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Figure 5. The ATZ removal rates under different ATZ density C0.

3.6. Mechanism Analysis of ATZ Degradation by US/PMS

The mechanism of ATZ degradation by US/PMS was analyzed by using a single factor method,
and the results are shown in Figure 6 where the concentration of PB in pH7, US intensity, PMS
concentration, temperature, and ATZ concentration were 1.25 mmol/L, 0.88 W/mL, 200 µmol/L, 20 ◦C,
and 1.25 µmol/L. According to Figure 6a, PB alone had no degradation effect on ATZ, but PMS alone
had a very weak degradation effect on ATZ at the current concentration, and the degradation rate
was 4.1%. The degradation efficiency of ATZ by US/PB/PMS (The US/PB/PMS system and US/PMS
system are distinguished in this section, and the US/PMS system in other places refers to PB) alone was
13.43%, which accounts for 29.29% of the total removal rate of US degradation ATZ. The removal rate
of ATZ by US/PMS was 45.85%. When compared with US alone, the degradation efficiency of ATZ was
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32.43% higher, mainly because US can stimulate PMS to generate SO4
–
• and HO•, and SO4

–
•– and

HO• have better degradation effects on ATZ [25,30]. Research by Dionysiou [31] indicated that the
reaction rate of TBA to HO• and SO4

–
• is 3.8–7.6 × 108 M−1

·s−1 and 4–9.1 × 105 M−1
·s−1, respectively.

The experiment conducted by Buxton [32] showed that the reaction rate of ETA to HO• and SO4
–
•

is 1.2–2.8 × 109 M−1
·s−1 and 1.6–7.7 × 107 M−1

·s−1. Therefore, when HO• and SO4
–
• coexist in the

reaction system, HO• can be captured by TBA, and HO• and SO4
–
• by ETA. From Figure 6b–d, both

TBA and ETA can effectively inhibit the degradation of ATZ by US/PMS, and ETA has a stronger
inhibitory effect than TBA. HO• and SO4

–
• exist in the US system simultaneously. The degradation

rate of US to ATZ decreased from 45.85% to 16.36% and 8.28%, respectively, when 48 mg/L TBA and
48 mg/L ETA were maintained in PB at a pH of 7. Therefore, the degradation of ATZ by US/PMS at a
pH of 7 was dominated by free radical oxidation.
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Figure 6. (a) The analysis of the oxidation effect of each component in the US/PMS system. (b) The effect
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of ATZ by US/PMS in PB at pH 7. (d) The Comparison of TBA and ETA on US/PMS degradation ATZ
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3.7. Effect of Common Anion Concentration in Water on PMS Degradation of ATZ

The influence of common anions in waters as Cl–, HCO3
–, and NO3

– on the degradation of
ATZ by UV/PMS in PB of 1.25 mmol/L was shown in Figure 7 when the pH of PB, US intensity,
PMS concentration, temperature, and ATZ concentration were 7, 0.88W/mL, 200 µmol/L, 20 ◦C, and
1.25 µmol/L, respectively. According to Figure 7, Cl–, HCO3

–, and NO3
– with the same concentration

showed an inhibitory effect on ATZ degradation by the US/PMS system. It is easy to observe that
the inhibition ability of the three kinds of ions, from largest to smallest, is in the order of Cl–, HCO3

–,
and NO3

–. Specifically, the degradation efficiency of the three kinds of ions on ATZ is reduced from
45.85% to 23.72%, 34.93%, and 46.75%, respectively, after adding 0.1 mmol/L Cl–, HCO3

–, and NO3
–

into the US/PMS system. The reaction rates of Cl•, Cl2–
•, ClOH–

• and CO3
–
•with ATZ were lower

than those of HO• and SO4
–
• with ATZ. The inhibitory effect of Cl– was slightly stronger than that
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of HCO3
– mainly because the secondary reaction constant between Cl2–

• and ATZ was lower than
that between CO3

–
• and ATZ. The weak inhibitory effect of the compound is mainly caused by the

following two reasons: first, NO3
– can react with SO4

–
• to form NO3• with a high redox potential,

and NO3• can also participate in the degradation of the ATZ reaction. Second, objectively speaking,
the concentration of NO3

– is much higher than that of ATZ in the US/PMS system [33–35]. While the
reaction rate of NO3

– and SO4
–
• is very low, a large number of NO3

– and SO4
–
• still compete with

ATZ in the US/PMS system, which makes NO3
– show weak inhibition on the macro level (the main

equations are shown in Equations (4) to (15)) [23,26,27,36–43].

HO• + HCO3
–
→CO3

–
• + H2O K = 8.60 × 106 M−1

·s−1 (4)

SO4
–
• + HCO3

–
→CO3

–
• + HSO4

– K = 2.80 × 106 M−1
·s−1 (5)

CO3
–
• + ATZ→products K = 6.20 × 106 M−1

·s−1 (6)

HO• + Cl–→ClOH–
• K = 4.30 × 109 M−1

·s−1 (7)

ClOH–
• + Cl–→Cl2–

• + OH– K = 1.0 × 105 M−1
·s−1 (8)

SO4
–
• + Cl–→Cl• + SO4

2– K = 3.0 × 109 M−1
·s−1 (9)

Cl• + Cl–→Cl2–
• K = 8.50 × 109 M−1

·s−1 (10)

Cl2–
• + ATZ→products K = 5.0 × 104 M−1

·s−1 (11)

SO4
–
• + NO3

–
→NO3• +SO4

2– K = 5.0 × 104 M−1
·s−1 (12)

NO3• + ATZ→products (13)

SO4
–
• + ATZ→products K = 2.59 × 109 M−1

·s−1 (14)

HO• + ATZ→products K = 3.0 × 109 M−1
·s−1 (15)
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Figure 7. (a) The effect of Cl– on the degradation of ATZ by US/PMS in PB at pH 7. (b) The effect of
HCO3

– on the degradation of ATZ by US/PMS in PB at pH 7. (c) The effect of NO3
– on the degradation

of ATZ by US/PMS in PB at pH 7. The initial concentration C0 = 1.25 µmol/L.

3.8. Kinetic Analysis of ATZ Degradation by US/PMS

According to the research of Simonin [44], the kinetic model of ATZ degradation by O3 was
established according to the following kinetic equation, and the quasi first order kinetic equation is
as follows:

Ln(C/C0) = –K1t (16)

C—ATZ concentration at any time, µmol/L;
C0—ATZ concentration at time 0, µmol/L;
K1—quasi first order rate constant, min−1.
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In PB of 1.25 mmol/L at a pH of 7, when the concentration of Cl–, HCO3
–, NO3

–, and ETA was
1.25 µmol/L, the quasi first order reaction kinetics of ATZ degradation by US/PMS was fitted using
Ln(C/C0)(y) as the Y-axis and t(x) as the X-axis when the US intensity, PMS concentration, temperature,
and ATZ concentration were respectively 0.88 W/mL, 200 µmol/L, 20 ◦C, and 1.25 µmol/L. Its dynamic
fitting curves were shown in Figure 8 and the parameters for the quasi first order kinetic fitting equation
were shown in Table 2. According to Figure 8 and Table 2, the ATZ degradation kinetics by US/PMS at
different PMS concentrations were consistent with the quasi first order reaction kinetics, and ETA had
the strongest inhibitory effect on the ATZ degradation of US/PMS under the same concentration. ETA
reduced the degradation rate of US/PMS to ATZ by 10.91%, and the inhibitory effect of Cl–, HCO3

–,
and NO3

– on ATZ degradation by US/PMS was not significantly different under the concentration of
1 mmol/L. The mechanism of the three ion inhibitory effects is described in detail above and will not
be described in this paper. Research results by Li and others [45] discovered that the degradation of
1,1,1-trichloroethane and 1,4-dioxane by US/PS were consistent with the first order reaction kinetics,
which is similar to the results of this experiment.Int. J. Environ. Res. Public Health 2019, 16, x 10 of 14 
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Figure 8. (a) The kinetics of quasi - first - order reaction of US/PMS degradation ATZ under different
PMS density. (b) The kinetics of quasi - first - order reaction of US/PMS degradation ATZ under a
different PMS density and different reaction systems. The initial concentration of C0 is 1.25 µmol/L.

Table 2. The kinetics parameters of US/PMS degradation ATZ.

Reaction System K1 (min−1) R2

US/PMS

50 µmol/L −0.00563 0.99875
100 µmol/L −0.00856 0.99571
200 µmol/L −0.01008 0.98788
400 µmol/L −0.01415 0.98768

US/PMS/NO3
–

−0.00788 0.89850
US/PMS/HCO3

–
−0.00735 0.94938

US/PMS/Cl– −0.00738 0.95685
US/PMS/ETA −0.00110 0.68884

3.9. Analysis of ATZ Degradation Products and Degradation Pathway by US/PMS

The degradation products of ATZ by US/PMS were analyzed by HPLC-ESI-MS (cationic mode),
and the degradation path was speculated. The three samples were extracted for 5, 20, and 60 min in
the process of the experiment. Then the first-order mass spectrum scanning was conducted, and the
total ions and extracted ions were analyzed. According to the mass spectrum, total ion chromatogram
and extracted ion flow diagrams from the three samples extracted at 5, 20, and 60 minutes. The
mass-to-charge ratio of the main degradation products of ATZ was 128, 129, 146, 156, 172, 174, 188, 198,
214, 218, and 232. The relative molecular weight of ATZ is 216, m/z218 has a molecular weight 2 greater
than ATZ. Thus m/z218 is produced when the methyl group is replaced by the hydroxyl group in
the process of ATZ degradation, that is 2-chloro-4-diethylamino-6-hydroxyisopropyl atrazine, CDHA.
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m/z198 has a molecular weight 18 less than ATZ. Thus, in the process of ATZ degradation, Cl atoms are
replaced by hydroxyl groups to produce 2-hydroxy-4-diethylamino-6-isopropylamino atrazine, HDIA.
m/z156 has a molecular weight 42 less than HDIA, which is the molecular weight of isopropyl. Thus,
m/z156 is regarded as the isopropyl product of HDIA, namely 2-hydroxy-4-diethylamino-6-amino
atrazine, HDAA. m/z174 has a molecular weight 42 less than HDIA, which is the molecular weight
of isopropyl. Thus, m/z174 is regarded as isopropyl ATZ, namely 2-chloro-4-diethylamino-6-amino
atrazine, CDAA. m/z188 has a molecular weight 28 less than HDIA, which is the molecular weight of
ethyl. Thus, m/z188 is regarded as desethyl ATZ, that is 2-chloro-4-amino-6-isopropylamino atrazine,
CAIA. m/z146 has a molecular weight 28 less than HDIA, which is the molecular weight of ethyl.
m/z146 has a molecular weight 42 less than CAIA, which is the molecular weight of isopropyl. Thus
m/z146 is regarded as deethylated isopropyl ATZ, that is 2-chloro-4,6-diamino atrazine, CDA. m/z128
has a molecular weight 18 less than m/z146 and 28 less than m/z156. Thus m/z128 is regarded as chlorine
ions of CDA replaced by hydroxyl groups or deethyl product of HDAA, that is 2-hydroxy-4,6-diamino
atrazine, HDA. m/z129 has a molecular weight 1 greater than HDA. Therefore, m/z129 was produced
by HAD amidogen, which was replaced by hydroxy, namely 2,4-dihydroxy-6-amino atrazine, DAA.
m/z232 has a molecular weight 16 greater than ATZ, which is the molecular weight of hydroxy.
Therefore, in the process of ATZ degradation, a hydrogen atom was replaced by a hydroxyl group to
produce 2-Chloro-4-hydroxyethylamino-6-isopropyl atrazine, CHIA. m/z214 has a molecular weight
18 less than CHIA. Therefore, m/z214 may be the product of the CHIA chloride ion being replaced by a
hydroxyl group, that is 2-hydroxy-4-hydroxyethylamino-6-isopropyl atrazine, HHIA. It can, thus, be
seen that the degradation of ATZ by US/PMS was mainly conducted by dealkylation, dechloridation,
and hydroxylation, which are similar to the research results of Ji [20], Javed [23], Wu [46], and others.
The degradation path of ATZ is shown in Figure 9.
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4. Conclusions

In this research, the US/PMS based degradation of ATZ in phosphate buffer is investigated. The
degradation mechanism, oxidation kinetics, and degradation products of ATZ by US/PMS are analyzed.
The influences of reaction temperature, PMS concentration, ATZ concentration, pH value, and US
intensity on the degradation efficiency of ATZ are discussed in detail. The main results are presented
as follows. The higher the temperature is, the higher the degradation efficiency of US/PMS to ATZ is.
The temperature variation within the normal temperature range (10–25 ◦C) has a significant effect on
the efficiency of ATZ degradation by US/PMS. Within the range of existing experimental settings, the
greater the concentration of PMS is, the greater the intensity of US, the higher the pH value is, and the
higher the degradation efficiency of US/PMS on ATZ is. Since the concentration of ATZ in the reaction
system increases gradually, the efficiency of ATZ degradation by US/PMS decreases continuously. US
can activate PMS. HO• and SO4

–
• coexist in the US/PMS system at the same time. The degradation of

ATZ by US/PMS is dominated by free radical oxidation degradation. At a pH of 7, US alone accounted
for 29.29% of the total ATZ removal rate. Cl–, HCO3

–, and NO3
– showed inhibitory effect on the ATZ

degradation by the US/PMS system under the concentration setting, and the inhibitory ability of the
three ions was in the order of Cl–, HCO3

–, and NO3
– from large to small. The reaction kinetics of

ATZ degradation by US/PMS was consistent with Quasi first order reaction kinetics. The degradation
of ATZ by US/PMS was mainly realized by dealkylation, dechloridation, and hydroxylation, but the
triazine ring was not degraded. A total of 10 ATZ degradation intermediates were found by product
analysis. The presented research has a high potential for the detoxification of water contaminated
with atrazine.
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