
Journal of Neuromuscular Diseases 8 (2021) 441–451
DOI 10.3233/JND-200554
IOS Press

441

Review

Current Therapeutic Approaches in FSHD
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Abstract. Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies. Over the last
decade, a consensus was reached regarding the underlying cause of FSHD allowing—for the first time—a targeted approach
to treatment. FSHD is the result of a toxic gain-of-function from de-repression of the DUX4 gene, a gene not normally
expressed in skeletal muscle. With a clear therapeutic target, there is increasing interest in drug development for FSHD,
an interest buoyed by the recent therapeutic successes in other neuromuscular diseases. Herein, we review the underlying
disease mechanism, potential therapeutic approaches as well as the state of trial readiness in the planning and execution of
future clinical trials in FSHD.
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INTRODUCTION

Facioscapulohumeral dystrophy (FSHD) is the
third most common muscular dystrophy after
Duchenne muscular dystrophy and myotonic dys-
trophy, with a prevalence of ∼12–15 per 100,000
[1, 2]. Age of onset is variable with presentations
at birth to late in life. On average, males tend to
present earlier in their late teen years to mid-twenties
whereas females present in their late twenties to
early thirties. Classically, the disease presents with
facial and proximal arm weakness with winged
scapula followed by weakness of foot dorsiflexion
and hip girdle muscles. Additionally, truncal mus-
cles including the paraspinals and abdominal muscle
are variably affected. Asymmetric involvement is fre-
quent and often very prominent [3]. Bulbar, cardiac,
and extraocular muscles are spared. Neuromuscu-
lar restrictive lung disease occurs in about 15% of
individuals with a minority needing non-invasive
ventilatory support [4]. Symptomatic hearing loss
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and retinal vascular disease (Coats disease) are
infrequent occurring exclusively in infantile-onset
disease [4]. Nevertheless, FSHD can result in signif-
icant morbidity with 20% of the patients becoming
wheelchair dependent after the age of 50 [5]. As the
wide spectrum of age at disease onset suggests, the
rate of disease progression is variable but generally
slow [6, 7].

MOLECULAR PATHOPHYSIOLOGY OF
FSHD

Genetics of FSHD

Over the past decade, consensus was reached
regarding the primary cause of FSHD, the inappro-
priate expression of the DUX4 gene on chromosome
4q35 in skeletal muscle (see Figure 1). There are mul-
tiple tandem copies of the DUX4 gene, each contained
in a 3.3 kb repeat unit, known as a D4Z4 macrosatel-
lite repeat [8]. Unlike microsatellite repeats that
consist of a few base pairs, macrosatellite repeats
are several kilobases in size. Tandem repeated DNA
composes a significant portion (>50%) of the human
genome and this type of copy number variation
accounts for much of human phenotypic variation.
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Fig. 1. DUX4 genetics. The production of DUX4 in human muscles requires the breakdown of the multiple genetic safeguards evolved
to suppress its expression in somatic cells: 1) The presence of more than 10 tandem repeat units on 4q that allow for heterochromatin
condensation [91]; 2) GC-rich sequence (73%) in the repeat that allow for methylation [92]; 3) a polyadenylation signal that cannot be
used in somatic/muscle cells in ∼50% of the European population [93]; 4) histone modification H3K9me3 to cause a repressive chromatin
state. The utilization of the 4qA polyadenylation signal seems to be specific in somatic cells and may be aided by muscle-specific enhancers
[94] in the proximal end of 4q that may aid in the transcription of DUX4 and the stabilization of the mRNA. The polyadenylation signal
is critical for pre-mRNA processing and allows for DUX4 pre-mRNA cleavage and extension of polyadenylation to the mRNA [95]. The
pathomechanism of derepression of DUX4 as the cause of FSHD was discovered because of careful study of the genetic structure of the 4q
locus and the many naturally occurring cross-over events with the 10q subtelomere and the conclusions are: 1) A single repeat containing
DUX4 is required; as an individual with complete loss of 4q subtelomeric region did not have FSHD [96]; 2) The region proximal to DUX4 on
4q and absent on 10q, including the upstream region with FRG1, SLC25A4 (ANT1) and DUX4c genes, is not required because a translocation
of the most distal end of 4q to 10q resulted in FSHD; 3) 10q contraction (as found in ∼10% of the normal population) does not result in
FSHD [97–99]—most likely because while 10q has similarity to the permissive 4qA alleles with the presence of 6.2-kb �-satellite sequence,
it lacks the polyadenylation signal— similar to the non-permissive 4qB alleles.
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The D4Z4 repeats are located at the telomeric end of
chromosomes 4q and 10q with copy numbers from
11 to greater than 150 repeats [8]. FSHD results
from a change in the non-permissive, highly methy-
lated chromatin structure of the D4Z4 repeats to a
more permissive euchromatic structure, allowing the
expression of the DUX4 gene from the most distal
D4Z4 repeat. There are two sequence variants distal
to the last repeat termed A and B. Only the A vari-
ant on 4q35 contains has a polyadenylation signal,
allowing the production of a stable DUX4 mRNA.

In FSHD type 1 (FSHD1), which constitutes about
95% of patients with FSHD, contraction of the D4Z4
repeat number to between 1–10 repeats results in
chromatin relaxation. When a contraction occurs on a
4q35 with an A variant, stable DUX4 mRNA and pro-
tein is produced leading to a toxic gain-of-function.
In FSHD1, the shorter the number of residual repeats
is broadly associated with younger disease onset,
overall severity, and increase penetrance. Individuals
with 1–3 repeats tend to have earlier onset and more
severe muscle weakness and non-muscular mani-
festations such as symptomatic hearing loss, retinal
vascular disease and more likely to develop restric-
tive lung disease [9]. Most individuals with FSHD1
have between 4–7 repeats and tend to have, as a
group, more moderate disease. Contractions with
8–10 repeats have later onset, milder disease, and a
higher frequency of non-penetrance (not developing
symptoms). Despite the relationship between dis-
ease severity and repeat size, the wide intra-familial
variability points to the presence of other factors
influencing disease severity.

The remaining 5% of patients with FSHD have
FSHD type 2 (FSHD2). FSHD2 is a digenic dis-
ease requiring the co-occurrence of two events: 1)
at least one 4q35 D4Z4 with an A polymorphism
and a contracted array, and 2) mutation in a gene
that plays a role in the epigenetic repression of
the D4Z4 repeats. Whereas the contraction of the
D4Z4 array is the main reason for derepression of
that D4Z4 array (in cis) for FSHD1, the mutations
in FSHD2 result in derepression of D4Z4 repeats
in trans, (of all D4Z4 arrays even the ones on
chromosome 10 in addition to those on chromo-
some 4). About 95% of individuals with FSHD2
have concomitant mutation in the SMCHD1 gene.
SMCHD1 protein is involved in DNA hypermethyla-
tion and plays a role in X-inactivation [10–13]. The
SMCHD1 mutation results in chromatin hypomethy-
lation of the repeats on chromosome 4 resulting in
DUX4 expression from the 4q35 with a permis-

sive A polymorphism. Another gene implicated in
FSHD2 is DNA (cytosine-5-)-methyltransferase 3
beta (DNMT3B), a methyltransferase gene respon-
sible for epigenetic repression [14]. Heterozygous
mutations in DNMT3B also result in hypomethyla-
tion; but only those patients with relatively short
9–13 units of D4Z4 on a permissive allele develop
FSHD. Most recently, a homozygous mutation in
a third gene, Ligand-Dependent Nuclear Receptor
Interacting Factor 1 (LRIF1 [also known as HBiX1]),
was found in a patient with an FSHD phenotype
and hypomethylation of the D4Z4 repeats consistent
with FSHD2 [15]. The number of D4Z4 repeats in
FSHD2 is on the lower range of what is considered
normal, possibly less than 16 [16]. There is also an
overlap between FSHD1 and FSHD2 where the pen-
etrance of symptoms in patients with 8–10 repeats is
increased due to hypomethylation at the D4Z4 array
by mutations in trans such as SMCHD1 [16]. There is
no differences between FSHD1 and FSHD2 clinical
phenotypes [17].

Normal function of DUX4 in humans

DUX4 is highly conserved among primates such
as humans, chimpanzees, and orangutans. DUX4 is
a transcription factor important in zygotic genome
activation at the two-/four-cell embryo stage as well
as in regulation of spermatagonia in adult male testes
[18–20]. It is not clear how DUX4 is activated during
embryogenesis, however, DUX4 is produced from
the most distal monomer of both 4q35 and 10q26
in the embryo [19]. Downstream DUX4 targets are
expressed in human testis [21]. Other that testes,
DUX4 is known to be expressed in the thymus but
has not been shown to be in any other somatic cells
[22].

Pathophysiologic consequences of DUX4
expression in human skeletal muscle

DUX4 expression in skeletal muscle tissue acti-
vates a similar transcriptional program as in the
embryo—inducing many of the DUX4 target genes
before zygotic genome activation at the four-cell
stage of the human embryo [18]. However, DUX4
protein is toxic to muscle fibers or cultured myocytes
[12, 23–26]. In FSHD patient-derived myoblasts,
DUX4 is expressed in stochastic bursts in a small
number of myonuclei as opposed to a steady low-
level expression [19, 27]. With differentiation into
myotubes, DUX4 expression is more pronounced



444 L.H. Wang and R. Tawil / Current Therapeutic Approaches in FSHD

resulting in cell death [28]. Once activated, DUX4
induces a number of genetic programs that lead to
initiation of the inflammatory cascade, muscle atro-
phy, oxidative stress, and disrupted myogenesis [21,
28–32]. The expression of these genes is undetectable
or nearly undetectable in control muscle samples but
increased in FSHD1 and 2 muscle samples or DUX4-
transfected cell lines [33].

THERAPEUTIC APPROACHES

A number of non-targeted therapeutic interven-
tions were tried in FSHD. These include an open
label trial of prednisone [34], several randomized
control trials of albuterol [35–37], an intravenous
myostatin inhibitor (MYO-029) [38], and a trial
of oral antioxidants [39]. In none of those stud-
ies did the primary outcome measure show positive
results. A more recent study evaluated the effects of
an intramuscularly-administered myostatin inhibitor,
ACE-083, in FSHD [40]; however, the phase 2
study was stopped as no functional benefit was
demonstrated despite increasing muscle mass. One
could speculate that muscle mass was only increased
in good muscle and the lack of recovery of
already-affected muscle prevents an improvement in
functionality; this seems to be a lesson for not just
FSHD but also myostatin inhibitors in other muscle
diseases such as inclusion body myositis.

More targeted approaches are now possible. FSHD
is an attractive target pharmaceutically because it
is a relatively common muscle disease. Moreover,
whereas most muscular dystrophies result from loss-
of-function mutations in genes coding for critical
skeletal muscle proteins, FSHD is the result of the
deleterious gain-of-function due to the expression of
a gene not expressed in somatic cells. Consequently,
effective blocking of DUX4 expression could poten-
tially be curative in FSHD. Possible therapeutic
approaches include: 1) epigenetic silencing of the
D4Z4 repeats; 2) blocking DUX4 mRNA produc-
tion; 3) targeting one of several identified downstream
pathologic pathways triggered by DUX4 expression.
(For overview, see Figure 2.)

Targeting DUX4 upstream

Multiple approaches have shown decreased DUX4
expression by either enhancing epigenetic repres-
sion of D4Z4 repeats or inhibiting upstream signals.
Enhancing epigenetic repression can be achieved by

targeting methylation, SCHMD1 activity, or other
signals that repress the chromatin.

Delivering non-coding RNAs of the D4Z4 repeats
into muscle cells may help with regulation of D4Z4
repeats by facilitating DICER/AGO-dependent epi-
genetic silencing of the D4Z4 repeat arrays [41,
42]. SMCHD1 overexpression in FSHD1 and FSHD2
myotubes suppresses DUX4 expression [43] and
small molecules are being developed to augment
SMCHD1 activity. The caveat would the unintended
effects of increased SMCHD1 activity as it regulates
and inactivates other loci such as the X chromosome.
Viral delivery of SMCHD1 under a muscle-specific
promoter could be an alternative but would not be as
elegant of a solution as a small molecule whose effect
one can titrate.

For patients with FSHD2 secondary to SCHMD1
mutations, genome editing of intronic mutation was
attempted in muscle cell culture and could be a ther-
apeutic approach in patients with FSHD2 secondary
to SCHMD1 mutations [44]. However, it is limited
by the current low efficiency rate of genome edit-
ing in a whole organism. Other signals that repress
the chromatin through histone modification such as
inhibiting acetylation of histone or increasing methy-
lation by the polycomb repressive complex 2, may
suppress DUX4 expression [27]. Agents that increase
the activity and/or expression of NuRD/MBD2 and/or
MBDl/CAF-1 complex members that modify the
chromatin/histone have also been patented for the
treatment of FSHD.

Increasing methylation results in repression of
the D4Z4 region, and molecular therapies that
increase DNA methylation through DNMT3B
may inhibit DUX4 expression. DNMTs utilize
S-Adenosylmethionine as a co-factor, which is syn-
thesized from methionine using co-factors such as
folate, choline, betaine, and vitamins B2, B6 and
B12. However, indiscriminate dietary supplementa-
tion has not been documented to effect epigenetic
modification beyond the perinatal period [45] and
therefore unlikely to increase DNMT3B activity in
muscle specifically. This was borne out in a small
study utilizing folic acid and methionine to try to
increase methylation [46].

In a screen of immortalized myoblasts derived
from patients with FSHD1 or FSHD2 transfected
with a reporter of DUX4 activity, inhibitors of bro-
modomain and extra-terminal domain (BET) family
of proteins were found to suppress DUX4 activity by
blocking binding of BET family proteins to acety-
lated histones allowing class I histone deacetylases
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Fig. 2. Targeting DUX4. Possible targeted therapeutic approaches to FSHD include: 1) epigenetic silencing of the D4Z4 repeats; 2) blocking
DUX4 mRNA production by inhibiting DUX4 promoter or DUX4 mRNA formation; 3) targeting one of several identified downstream
pathologic pathways triggered by DUX4 expression.

(HDACs) to suppress DUX4 expression [47].
Other potential drugs identified by screening

immortalized FSHD patient-derived myoblasts are
beta2 adrenergic receptor agonists, such as clen-
buterol and albuterol, which decreased DUX4 mRNA
synthesis [47]. Interestingly, �2 adrenergic agonists
are known to be powerful anabolic agents that trig-

ger skeletal muscle hypertrophy and have been tried
for treatment of muscle wasting as well as FSHD
(for review see Joassard et al. [48]). They activate
adenylyl cyclase to increase cellular cyclic adenosine
monophosphate (cAMP) levels and subsequently the
protein kinase A (PKA) pathway. Clinical trials of
�2 adrenergic agonists (albuterol/salbutamol) failed
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to improve strength or function [36, 37]. However,
Kissel et al. reported that albuterol caused a modest,
dose-dependent, but statistically significant increase
lean body mass compared to placebo. Whether clen-
buterol, a more potent �2 adrenergic agonist, can
achieve a more marked increase in lean body mass
resulting in improved strength or function remains to
be seen.

A systematic search for small-molecule inhibitors
of the PKA pathway led to the discovery of p38�/�
inhibitors as inhibitors of DUX4 expression in
immortalized myoblasts [49]. In xenograft trans-
plant, RNA levels for DUX4 and its targets were
decreased by approximately 80% with the p38�/�
inhibitor losmapimod. P38 is a subgroup of the
mitogen-activated protein kinases (MAPKs) that
regulates multiple processes. Of the four family
members, p38� is ubiquitously expressed, p38� is
more restricted in expression and expressed at a
lower level in muscle [50]. When muscle satellite
stem cells are activated and divide, one cell with
active p38�/� becomes the proliferating daughter cell
(myoblast) and the other cell with inactive p38�/�
replenishes the quiescent satellite stem cell pool. Fur-
ther down the myogenesis process, p38�/� MAPKs
are also important for activating transcriptional and
epigenetic programs that result in differentiation of
the myoblast into the myocyte [51]. Losmapimod
appears to work in the myoblasts and the differen-
tiated myocytes.

However, one must take into context the ubiquity of
the p38 pathway with p38� being expressed in most
cells. Tissue-specific knockout of p38� show that it
is important for proliferation of lung epithelial cells
and cardiomyocytes [52, 53]. Activation of p38 leads
to activation of inflammatory cytokines. This led to
therapeutic trials of losmapimod in chronic obstruc-
tive lung disease, and pain, none of which showed a
beneficial effect of losmapimod [54–56]. Currently,
Fulcrum Therapeutics is conducting a phase II trial
to address whether p38�/� inhibitors decrease DUX4
expression and preserve muscle bulk on MRI [57].
However, the ubiquitous role of p38 in cell functions
will make long-term surveillance important.

Another compound that inhibits DUX4 expression
is casein kinase I (CK1) inhibitors which suppress
DUX4 expression in FSHD myotubes and in the
xenograft model [58]. The authors consider their
drug-screening assay to be superior as it can simul-
taneously measure DUX4 repression and myoblast
fusion index at various drug concentrations. Since
DUX4 expression occurs when myoblasts fuse into

myotubes, a drug inhibiting myoblast fusion will
result in a false positive measure of DUX4 inhibition.

Another therapeutic approach to inhibit DUX4
upstream is to target the promoter of DUX4 on 4q.
Himeda et al. fashioned a dominant negative inhibitor
with a catalytically dead Cas9 loaded with a guide
RNA to the promoter region of DUX4 linked to a
protein that blocked transcription activation (the cat-
alytically dead Cas9) [59]—suggesting a clever way
to utilize our understanding of the 4q35 genetic archi-
tecture to block DUX4 expression.

Any approach to DUX4 repression should consider
possible off-target effects on tissues that normally
express DUX4, such as the thymus and testes. DUX4
repression in the thymus is not likely to cause
untoward side effects but possible effects on sper-
matogenesis need to be considered.

Targeting DUX4 directly at the RNA level

Targeting DUX4 directly at the RNA level is
appealing because it targets a transcript that should
not be expressed and there is well-described chem-
istry, antisense oligonucleotide (ASOs) or inhibitory
RNA (RNAi) therapies, to target the RNA.

Inhibitory RNA (RNAi) therapies using small
interfering RNA (siRNA) were used to target the 3′
untranslated region transcribed from pLAM [60], the
coding region [21], well as the region upstream of
the DUX4 transcription start site [41]. The last is an
endogenously produced siRNA that may be part of
the cell’s regulatory mechanism of the D4Z4 region.
One of the limitations of RNA interference approach
is its high dose cytotoxicity derived from its off-target
effects [61, 62].

Similarly, ASOs have been successful in targeting
portions of the 3′ untranslated region of the DUX4
pre-mRNA to inhibit the polyadenylation in immor-
talized FSHD cells [63], myotubes derived from
FSHD muscle cultures and xenografts [64]. A poly-
adenosine tail is extended on the pre-mRNA and is
beyond the polyadenylation signal and not encoded
in the D4Z4 DNA. ASOs interfere with transcript
termination and 3’ end processing to cause mRNA
degradation and decrease DUX4 protein expression.
ASOs have also been made to interfere with DUX4
mRNA splicing [65].

Locked nucleic acid (LNA) gapmer antisense
oligonucleotides also have been engineered to bind to
DUX4 mRNA and be knocked down through RNAse
H-mediated degradation and shown to be successful
in tissue culture and injection into mouse models [66].
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However, these types of technologies are bedeviled
by the electrostatic nature or bulk of the compounds
which prevents efficient uptake through the lipid
bilayer and the muscle cells when delivered systemi-
cally; as have been found in myotonic dystrophy and
Duchenne muscular dystrophy [61, 62]. Some of this
is being addressed by using adeno-associated virus
(AAV) as a delivery vector. AAV vectors deliver-
ing artificial microRNAs targeting the DUX4 mRNA
were able to direct the transcript toward an RNAi
degradation pathway [67]. In addition, ASOs mod-
ified with a carrier that targets muscle cells and
facilitates uptake are being tried. Finally, modifying
the chemistry of the backbone could be beneficial as
locked nucleic acid (LNA) gapmer antisense oligonu-
cleotides.

Targeting downstream effects of DUX4

DUX4 is a powerful inducer of myriad genetic
programs that lead to initiation of the inflam-
matory cascade, muscle atrophy, oxidative stress,
disrupted myogenesis. As a transcription factor,
DUX4 uncovers a vast, complex gene regulatory
network. Inhibition of DUX4 can be achieved by
utilizing DNA aptamers, short oligonucleotides,
engineered bind to the DNA binding site of DUX4
and thus inhibiting DUX4 from binding to its tran-
scriptional activator sites [68].

To exert its transcriptional activity, DUX4 recruits
histone acetyltransferases (HATs) p300 and CBP
(CREB binding protein) [69]. Selective inhibitors of
p300 can inhibit the transcriptional activity of DUX4
in cell culture [70]. One such transcription factor
is PITX1, another double homeobox transcription
factors that activates pathways that lead to mus-
cle atrophy (through atrogin-1 and MuRF-1) and
inflammatory features [30]. PITX1 suppression with
ASOs can ameliorate the pathological features of the
muscle-specific PITX1 transgenic mouse [71].

DUX4 induction in FSHD myoblast model
results in accumulation of the glycosaminoglycan
hyaluronic acid and mediates a few of the down-
stream pathways that DUX4 is known to activate
[72]. 4-methylumbelliferone, a well-characterized
competitive inhibitor of HA biosynthesis prevents
DUX4-induced accumulation of hyaluronic acid
and subsequent downstream pathways. It is an
already approved drug in Europe and Asia called
“hymecromone” where it is used to treat biliary
spasm.

Oxidative stress, with its resultant production of
free radicals and reactive oxygen species, results in
cellular damage can be important in the pathophysi-
ology of FSHD and several known antioxidants have
been identified to inhibit DUX4-induced toxicity in
myoblasts [73]. A small subset of antioxidants were
studied in adults with FSHD [39] and no follow-up
studies have since been done to look at more specific
antioxidants.

It is not clear, however, that inhibiting specific
downstream pathways of DUX4 will completely
abrogate all the damage caused by the myriad genetic
programs that DUX4 uncovers in muscle cells.

CLINICAL TRIAL READINESS IN FSHD

Work on various aspects of trial readiness is ongo-
ing for the last decade as consensus on the FSHD
disease mechanism was reached [74, 75]. Critical
components of trial readiness include facilitating
patient access to clinical trials, establishing research
centers familiar with FSHD assessments, having a
good understanding of the natural history of the dis-
ease and developing a multitude of relevant outcome
measures for early and late phase trials.

Patient access to research studies is facilitated by
the presence of a number of FSHD patient registries
in the US and in several European countries [76–79].
The oldest is the National Registry for Facioscapu-
lohumeral Dystrophy in the US which prospectively
collected yearly clinical data on patients with FSHD
for almost two decades, data that proved valuable in
understanding aspects of functional progression [80].

The first prospective natural history study of FSHD
followed 80 patients for up to three years [6]. The
study was limited by absence of genetic testing in all
subjects and evaluations were restricted to manual
muscle testing and quantitative myometry. Never-
theless, both outcome measures showed a slight
12-month decline in strength. A large, multi-national,
natural history study, the ReSolve study, is currently
in its third year and will exam a change in a vari-
ety of outcome measures over a span of 24 months
[81]. These outcome measures include, in addition
to strength testing, a composite functional outcome
measure (FSHD-COM), reachable workspace as a
quantitative measure of shoulder function an FSHD-
specific patient reported health index (FSHD HI)
(90, 91, 92, 93). Additionally, DEXA scan to assess
changes in lean body mass and electrical impedance
myography (EIM), a measure of muscle composi-
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tion, to look for changes in individual muscles are
being investigated as potential biomarkers [82]. Sep-
arate studies have investigated the utility of MRI and
muscle ultrasound as a biomarker in FSHD [83–86].

Early phase 2 trials seeking to test safety and target
engagement of DUX4 will require either a tissue or
validated circulating biomarkers. To date, there are
no validated FSHD circulating biomarkers [87, 88].
However, as DUX4 is expressed stochastically and at
very low levels, it is difficult to measure quantitatively
in muscle samples. Fortunately, as DUX4 is a tran-
scription factor, a large number of genes are turned
on and act as reliable surrogates of DUX4 activ-
ity. [21, 33, 47, 89]. Moreover, quantitating a subset
of four DUX4-regulated genes (LEUTX, KHDC1L,
PRAMEF2 and TRIM43) may increase sensitivity of
detecting DUX4 activity. A recent study, using MRI to
select muscles for biopsy showed that muscles with
T2 STIR positive changes and fatty infiltration on
T1 sequences showed the highest levels of DUX4-
target expression [90]. These findings suggest MRI
guidance is crucial in the selection of the optimal
muscle to biopsy in early phase 2 trials. This concept
is being validated in the current losmapimod trials, as
is the use of downstream DUX4-targets as a marker
of DUX4 activity.

CONCLUSION

For almost two decades, the underlying disease
mechanism in FSHD, one of the most common mus-
cular dystrophies, was an enigma. With consensus
reached on disease mechanism, targeted treatments
are now possible resulting in heightened interest from
pharmaceutical companies. Simultaneously, active
clinical research studies are reexamining FSHD natu-
ral history, vetting a number of novel disease-specific
clinical outcome measures as well as imaging, circu-
lating and tissue biomarkers.
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