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Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder with a high mortality
rate. Treatment options have improved in the last 20 years, but patients still die
prematurely of right heart failure. Though rare, it is heterogeneous at the
genetic and molecular level, and understanding and exploiting this is key to the
development of more effective treatments.  , encoding boneBMPR2
morphogenetic receptor type 2, is the most commonly affected gene in both
familial and non-familial PAH, but rare mutations have been identified in other
genes. Transcriptomic, proteomic, and metabolomic studies looking for
endophenotypes are under way. There is no shortage of candidate new drug
targets for PAH, but the selection and prioritisation of these are challenges for
the research community.
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Introduction
The normal adult pulmonary circulation, in contrast to the  
systemic circulation, is a low-pressure, low-resistance vascular 
bed. Pulmonary hypertension (PH) is diagnosed when the  
resting mean pulmonary artery pressure (mPAP) is at least 
25 mmHg and is classified into five main subgroups based on  
clinical and haemodynamic criteria1. It leads to an increased  
workload for the right ventricle, which, if it fails to hypertrophy  
and adapt, can result in premature death.

PH is not uncommon in left heart failure, in which there is an 
increasing appreciation of a gradation of risk such that even  
borderline elevation of mPAP contributes to mortality2. Pulmonary 
arterial hypertension (PAH) occurs less frequently—it has a 
reported incidence of 1.1 to 17.6 per million adults per year and 
a prevalence of 6.6 to 26.0 per million adults1 —and is diag-
nosed when the elevated mPAP is attributed to pre-capillary 
resistance to pulmonary blood flow, in the absence of airway or  
parenchymal lung diseases, or chronic thromboembolism1,3. 
PAH is clinically heterogeneous, comprising patients presenting 
with PAH with no obvious cause (termed as idiopathic PAH 
[IPAH]), heritable PAH, drug-induced PAH, and PAH with asso-
ciated congenital heart disease, connective tissue disease, HIV, 
portal hypertension or schistosomiasis. Histology at post-mortem 
or lung transplantation reveals marked pulmonary arterial 
remodelling due to vascular cell proliferation encroaching  
on the vascular lumen (Figure 1).

Even in the modern era, with licensed medication in four drug 
classes, annual mortality from PAH remains high, at about 
10% per year1. The past two decades have seen a concentrated 
effort from academia and industry to better understand PAH 
and improve treatment. The limitations of animal models4 have 

emphasised the importance of patient-orientated studies, and 
international collaboration is required to bring together well- 
phenotyped cohorts of patients. Here, we summarise the progress 
that is being made from these efforts.

Genetics
Genetic studies have focused on IPAH, heritable PAH, and drug-
induced PAH. Pathogenic variants in BMPR2 (encoding bone 
morphogenetic receptor 2), first reported in 20005,6, are found 
in up to 80% of patients with a clinical diagnosis and a family  
history of PAH and 15% of patients with IPAH and no known  
family history7. Mutations in BMPR2 increase susceptibility 
to PAH (lifetime penetrance is 20%) and are associated with an 
earlier age of onset of PH and a worse prognosis8. In the past 18 
years, family studies, isolated cases, small case series, and a recent 
genome-wide case-control analysis of patients in the National  
Institute for Health Research BioResource (NIHRBR) Rare  
Diseases study7 have linked at least 10 other genes to PAH  
(Table 1). Some, such as ACVRL1, ENG, SMAD9, and GDF2, 
encode proteins in the transforming growth factor-beta (TGFβ) 
superfamily and emphasise the significance of this signalling 
pathway in pulmonary vascular homeostasis. Others, such as 
KCNK39, TBX410, and newly identified genes ATP13A3, AQP1, 
and SOX177, point to genetic heterogeneity in PAH and novel  
pathways for therapeutic intervention.

The UK NIHRBR study, which has sequenced over 14,000 
whole genomes, including 1,048 cases with a clinical diagno-
sis of IPAH, heritable PAH, or drug-associated PAH and 6,385 
non-PAH controls of European ancestry7, has offered power-
ful insight into the genetic architecture of clinical PAH. An 
early observation is that 1% of patients diagnosed with IPAH 
in the UK cohort have biallelic mutations in EIF2AK4, a gene 

Figure 1. Vascular remodelling in pulmonary arterial hypertension. Haematoxylin-and-eosin staining showing (A) neointimal proliferation 
(double arrow) in an elastic pulmonary artery, (B) medial hypertrophy and neointimal proliferation leading to occlusion of the vessel lumen 
(arrows) in muscular pulmonary arteries, and (C) a plexiform lesion, comprising a plexus of capillary-like channels, in a patient with plexogenic 
arteriopathy.
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associated with pulmonary veno-occlusive disease (PVOD)11.  
As patients with PVOD have a poorer prognosis and treatment 
response, this example illustrates the relevance of genetics 
for accurate subclassification of patients with PAH, and genetic 
testing for EIF2AK4 should be considered in patients presenting 
with IPAH. Further studies of larger cohorts will be needed 
to identify other rare causative mutations. Given the rarity of 
the disorder, international collaboration will be essential to 
determine the contribution of common genetic variation to  
disease risk and outcomes in PAH.

Molecular signatures of pulmonary arterial 
hypertension
It is accepted that the current clinical classification of PAH is 
unsatisfactory, from the point of view of both diagnosis and 
developing new drugs. Genetics coupled with deep molecular 
phenotyping offers the hope of defining the key drivers of 
PAH and new drug targets, opening up the possibility of more  
personalised medicine. The associated National PAH Cohort 
Study (http://www.ipahcohort.com) is facilitating the collection of  
biological samples from PAH patients across the UK and is 
beginning to provide deep phenotyping data, such as metabo-
lomics and proteomics, which can be cross-referenced with  
the genetic data provided by the NIHRBR effort12,13.

A subgroup of patients with PAH, less than 10%, respond well to 
calcium channel blockers, suggesting that this pharmacological  
phenotype should have a distinct molecular signature. In support  
of this, a transcriptomic signature has been reported in a small 
group of patients which requires further prospective validation14.  
Responders to calcium channel blockers have also been  
demonstrated to have metabolic profiles more similar to those of 
healthy volunteers than PAH patients who do not respond13.

High-throughput technologies, such as that provided by 
aptamer-based assays, nuclear magnetic resonance, and mass  

spectroscopy, have been applied to plasma samples and used to  
risk-stratify patients12,13. The prognostic panels developed from 
this approach may add valuable information to clinical assess-
ment. For example, a nine-protein panel was shown to improve 
risk stratification in combination with either N-terminal pro-brain 
natriuretic peptide (NT-proBNP) or the REVEAL (Registry  
to EValuate Early And Long-term PAH) registry risk equation, 
an equation built from clinical assessments and comorbidities of 
patients12,15. The advantage of a panel of circulating biomarkers is 
that they are more objective than functional class assessment and 
more accessible than imaging, and the combination of molecules 
reporting on different pathologies (for example, proliferation, 
inflammation, coagulation, and metabolic dysfunction) provides 
greater detail than a single biomarker (for example, brain natriu-
retic peptide).

But the real power of these techniques lies in their potential for 
identifying important and therapeutically relevant subgroups of 
patients presenting in the clinic. A US National Heart, Lung, 
and Blood Institute-funded initiative is looking to explore this. 
The PVDOMICS (Pulmonary Vascular Disease Phenomics  
Program) consortium seeks to “redefine pulmonary hypertension 
through pulmonary vascular disease phenomics”16. The aim is 
to enrol 1,500 participants with PH and healthy comparators for  
comprehensive clinical and “omic” analyses. Recruitment has 
begun and an analysis plan has been outlined (ClinicalTrials.
gov Identifier: NCT02980887). The challenge of data integration 
is not to be underestimated, but if successful it will provide 
the basis for a molecular classification of PH and biologically  
important insights.

New drugs
The current treatments for PAH come from four drug classes 
(prostanoid analogues, endothelin receptor antagonists, phos-
phodiesterase type 5 inhibitors, and soluble guanylate cyclase 
stimulators) that act to address endothelial dysfunction and 

Table 1. Genes containing rare variants associated with pulmonary 
arterial hypertension.

Code Name

BMPR2 Bone morphogenetic protein receptor type 2

ACVRL1 Activin A receptor like type 1

ENG Endoglin

SMAD9 SMAD family member 9

KCNK3 Potassium two pore domain channel subfamily K member 3

TBX4 T-box 4

GDF2 Growth differentiation factor 2 (or bone morphogenetic protein 9)

ATP13A3 ATPase 13A3

AQP1 Aquaporin 1

SOX17 SRY-box 17

EIF2AK4a Eukaryotic translation initiation factor 2 alpha kinase 4

Rare causal variants identified by family studies and whole genome sequencing  
case-control analyses6. aEIF2AK4 mutations associated with pulmonary veno-occlusive 
disease and pulmonary capillary haemangiomatosis10.
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reduce vasomotor tone. They provide symptom relief and improve  
functional capacity, but there is limited evidence that these 
drugs arrest the course of PAH and prolong the survival of 
patients. To do that, a drug will need to at least support right 
ventricular function and, better still, reverse the remodelling of  
pulmonary arteries. There is no shortage of potential new drug  
targets for PAH.

Targets from genetics
Impaired BMPR2 signalling creates an imbalance in TGFβ/BMP 
signalling favouring TGFβ and may underlie vascular remodelling 
in PAH patients with and without BMPR2 mutations. A number of 
therapeutic strategies have been proposed, beyond the aspiration 
of gene therapy, and include pharmacological approaches, 
such as chloroquine (to prevent lysosomal degradation of the 
BMPR2)17, ataluren (to read through missense mutations), and  
increasing BMP9 levels18. To date, the only treatment that 
has been used to target BMPR2 signalling in clinical trials is  
tacrolimus. This drug binds and removes FKBP12 from all 
three BMP type 1 receptors and activates BMPR2-mediated  
signalling even in the absence of exogenous ligand and BMPR2. 
Although some patients responded with a pronounced increase in  
BMPR2 expression as well as improvement in 6-minute walk 
distance (6MWD) and serological and echocardiographic param-
eters of heart failure, the changes were not observed across all 
patients19. An alternative approach is to inhibit TGFβ activity 
by using a novel activin-receptor fusion protein (sotatercept) 
that competitively binds and neutralises TGFβ-superfamily  
ligands20. This approach is progressing to clinical trials, but the 
effect of the rise in haematocrit that accompanies this therapy  
needs to be carefully monitored and understood.

Growth factors
Much has been made of the similarities between the dys-
regulated growth of vascular cells and that of tumour cells,  
leading to interest in repurposing drugs from oncology. Studies 
with the tyrosine kinase receptor inhibitor imatinib have led the  
field. In addition to inhibiting the bcr-abl tyrosine kinase, imat-
inib inhibits platelet-derived growth factor (PDGF) receptor-α 
and -β and c-KIT. PDGF is a trophic factor in vascular cells, 
and PAH lung shows increased expression of PDGF receptors21. 
A phase 3 trial reported an increase in mean placebo-corrected 
treatment effect on 6MWD of 32 m and a reduction in pulmo-
nary vascular resistance by 379 dyne·s·cm−522. But there was no  
improvement in time to clinical worsening, and serious adverse 
events and discontinuations were more frequent with imatinib. 
Of particular concern was subdural hematoma, which occurred 
in eight patients receiving imatinib and anticoagulation. Further 
development of imatinib as a treatment has halted, but there 
remains interest in understanding the characteristics of patients 
who appear to derive considerable benefit. The ability to iden-
tify potential responders, coupled with avoiding concomitant 
anticoagulation, would help the argument to revisit imatinib as a  
treatment. However, there remains concern over toxicity, as other 
tyrosine kinase inhibitors have fared less well and dasatinib 
use for other indications is associated with the development  
of PH on rare occasions23,24.

There is an active interest in elastase inhibitors, which have been 
shown to prevent and reverse experimental PH25,26. Elafin, an 
endogenously produced low-molecular-weight elastase inhibitor, 
induces apoptosis in human pulmonary arterial smooth muscle 
cells and decreases neointimal lesions in lung organ culture. 
Augmentation of BMPR2 signalling, dependent upon sta-
bilisation of caveolin-1 in the cell membrane, has also been  
implicated as a mechanism of action26.

Metabolism
The “metabolic theory” of PAH is based on the observation 
that proliferating cells switch cell metabolism from oxidative 
phosphorylation to glycolysis for ATP production27. Increased  
expression of pyruvate dehydrogenase kinase (PDK), which 
inhibits pyruvate dehydrogenase, is one factor underlying this 
switch, but other PDK-independent factors (for example, variants  
reducing the function of SERT3 or UCP2 that predict reduced 
protein function) may also contribute28,29 and indeed impair 
the clinical response to inhibition of PDK by dichloroacetate 
(DCA)30. A 16-week study of DCA treatment in PAH showed 
a reduction in pulmonary artery pressure alongside a reduction  
in lung parenchymal glucose uptake in genetically susceptible 
patients30.

Aside from the metabolic perturbation seen in proliferating cells, 
insulin resistance is common in PAH31. Although the underlying 
explanation for this association is not clear, pre-clinical data 
support further evaluation of repurposing insulin resistance 
medicines in PAH. These include rosiglitazone32, metformin33,  
and glucagon-like peptide 1 (GLP-1) receptor agonists34.

Oestrogen signalling
Despite disparities in the results of pre-clinical and clinical  
studies, modulation of oestrogen levels is another potential ther-
apeutic approach for the treatment of PAH35. A variant in the  
promoter region of the aromatase gene, which encodes the 
enzyme responsible for the conversion of androgens to oestrogen,  
is associated with higher circulating 17b-estradiol (E2) levels 
and increased risk of PAH in patients with cirrhosis36. Inhibition 
of aromatase via anastrozole or metformin therapy also reduced 
PH and right ventricular hypertrophy in in vivo models of 
PH37,38. These observations have culminated in a randomised 
clinical trial in 18 patients, where anastrozole (1 mg/day) signifi-
cantly reduced serum E2 levels and increased 6MWD compared 
with placebo39, and a further phase 2 study is in progress  
(ClinicalTrials.gov Identifier: NCT03229499).

Inflammation
Histological studies of PAH lung support the case for inflam-
mation as a pathological driver of PH40. A clinical trial of the  
anti-CD20 monoclonal antibody rituximab in PAH associated 
with connective tissue disease is ongoing (ClinicalTrials.gov 
Identifier: NCT01086540). Pre-clinical data supporting a role 
for interleukin-6 (IL-6)41 underpins a trial of tocilizumab in 
PAH, which has just been completed (ClinicalTrials.gov Identi-
fier: NCT02676947). Autoantibodies have been detected in IPAH 
that can contribute to worsening of the disease, and the effect of  
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immunoadsorption as an add-on to optimised medical treatment 
has been explored with some haemodynamic improvement  
(ClinicalTrials.gov Identifier: NCT01613287). The main concern 
with immunomodulation is the risk of infection.

Oxidative stress
Attempts to reduce oxidative stress in PAH have included  
inhibition of apoptosis signal-regulating kinase 1 (ASK1) and  
treatment with bardoxolone methyl. Pharmacological inhibition 
of ASK1 has demonstrated efficacy in a number of pre-clinical 
PAH models42, but a phase 2 clinical trial (ClinicalTrials.gov  
Identifier: NCT02234141) failed to show clinical benefit.

Bardoxolone methyl is an orally available semi-synthetic trit-
erpenoid that induces the nuclear factor erythroid 2-related  
factor 2 (Nrf2), a transcription factor that regulates antioxidant 
proteins, and suppresses activation of the pro-inflammatory  
factor nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB). An initial report from a phase 2 study reported 
some signals of efficacy, and a phase 3 study is in progress  
(ClinicalTrials.gov Identifiers: NCT02036970 and NCT03068130). 
Elamipretide, a small mitochondrially targeted tetrapeptide  
(D-Arg-dimethylTyr-Lys-Phe-NH2) that is currently in develop-
ment as a treatment for mitochondrial disease (ClinicalTrials.
gov Identifier: NCT02805790) and that appears to reduce the 
production of toxic reactive oxygen species (ROS) and stabilise  
cardiolipin, is also of interest in PH43.

Hypoxic stress and iron homeostasis
Hypoxia-inducible factor (HIF) is upregulated in remodelled 
pulmonary vessels. Selective deletion of either HIF1α or HIF2 
offers protection against hypoxia-induced PH in mice44,45. Muta-
tions that lead to dysfunctional von Hippel–Lindau (VHL)  
protein lead to PH in the context of patients with Chuvash  
polycythemia46. Iron deficiency in the absence of anaemia is 
common in PAH and is associated with reduced survival47.  
The cause is unclear. It is not explained by inflammation. 
Oral iron is poorly absorbed by patients with PAH. Two  
open-label studies of intravenous iron replacement in PAH 
have reported an improvement in measures of exercise  
capacity48,49. A randomised double-blind study is near completion 
(ClinicalTrials.gov Identifier: NCT01447628).

Serotonin
The 5-HT1B receptor is highly expressed in human pulmonary 
arteries, has increased expression in patients with PAH, and 
mediates serotonin-induced vasoconstriction and remodelling50. 
The 5-HT2A receptor mediates these effects systemically 
and so the 5-HT1B effects are pulmonary specific. Both the  
5-HT1B receptor and serotonin transporter (SERT) are impor-
tant in Nox1-derived ROS production and in serotonin-mediated  
vascular effects in PAH. But, so far, clinical studies evaluat-
ing pharmacological manipulation of serotonin activity in PAH 
have been disappointing. Current interest resides with inhibi-
tion of tryptophan hydroxylase 1 (TPH1), the rate-limiting 
enzyme in serotonin biosynthesis. KAR5585, a prodrug of  
KAR5417, is a functionally selective inhibitor of TPH1.  

Dose-dependent inhibition of serum serotonin and its plasma and 
urinary breakdown product 5-hydroxyindoleacetic acid (5-HIAA) 
have been demonstrated in healthy volunteers (ClinicalTrials.
gov Identifier: NCT02746237). In pre-clinical PAH models, 
KAR5585 decreased serum, gut, and lung levels of serotonin 
and 5-HIAA in a dose-dependent manner and significantly 
reduced pulmonary arterial pressure and pulmonary vessel  
wall thickness and occlusion51.

Humoral modulation
Pre-clinical data52 and an early clinical study suggest that 
vasoactive intestinal polypeptide (VIP) may have a beneficial 
effect in PAH53. This was not supported by a study of VIP 
administration by inhalation54, but further studies addressing 
the formulation and bioavailability of VIP are recruiting  
(ClinicalTrials.gov Identifier: NCT03315507).

Activation of the sympathetic and renin–angiotensin systems in 
PAH is well recognised. Although benefit from beta-blockers 
and inhibition of angiotensin-converting enzyme (ACE) and 
angiotensin II has been documented in the systemic circula-
tion, this cannot be extrapolated to the pulmonary circulation. 
The debate about inhibition of sympathetic activity in PAH 
has been around whether it has a pathological as opposed to a  
compensatory role and whether interference is safe. Obser-
vations from small randomised, prospective clinical trials 
including bisoprolol and carvedilol have reported opposing 
results concerning safety55,56. Therefore, further efforts are still 
required to clarify the optimal timing, duration, and dosing of  
beta-blocker therapy in patients with PAH.

ACE2 is a homologue of ACE that is insensitive to ACE  
inhibitors. It converts angiotensin I and angiotensin II to angi-
otensin-(1–7), angiotensin-(1–9), and angiotensin-(1–5). These 
peptides have vasculo- and cardio-protective properties. Decreased 
ACE2 levels and ACE2 autoantibodies have been detected in 
serum from patients with PAH and have been implicated in  
contributing to the pathophysiology of PAH57. Studies of the effect 
of a purified intravenous formulation of soluble recombinant 
human ACE 2 (rhACE2; GSK2586881) are under way (Clini-
calTrials.gov Identifier: NCT03177603), but a recent open-label 
pilot study of five PAH patients (ClinicalTrials.gov Identifier: 
NCT01884051) found that a single infusion of rhACE2 was 
well-tolerated and was associated with improved pulmo-
nary haemodynamics and reduced markers of oxidant and  
inflammatory stress58.

Interest in the fibrogenic properties of aldosterone has led to 
studies of mineralocorticoid receptor antagonism with spironol-
actone or eplerenone in animal models, which provide evidence 
of efficacy. Retrospective analysis of data on the addition of 
spironolactone to targeted PAH treatment with ambrisentan 
from ARIES 1 and ARIES 2 studies suggests some clinical  
benefit. Two prospective studies are examining the effect of 
chronic spironolactone on markers of fibrosis (ClinicalTrials.gov  
Identifier: NCT01468571) and exercise capacity (ClinicalTrials.
gov Identifier: NCT01712620).
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Epigenetic
Histone deacetylase (HDAC) inhibitors have been reported to  
produce both benefit59,60 and harm61 in pre-clinical models of  
PAH. Of particular concern is cardiotoxicity. There are four  
classes of HDACs and a number of subtypes. Identifying the 
HDAC subtype that is relevant and a specific inhibitor is key to 
unlocking the therapeutic potential of this approach. Indeed, 
recent pre-clinical studies suggest that HDAC6 is implicated in 
the development of PAH and selective inhibition represents a 
new promising target to improve PAH62. MicroRNAs (miRNAs) 
have also been shown to reverse as well as prevent PH in animal 
models63. As with HDAC inhibitors, the challenge in the first  
instance is to identify the most relevant miRNA in PAH 
pathobiology and attention has focused on the miR-143/145  
cluster, for example 64,65.

DNA damage
Dysregulation of DNA damage-and-repair mechanisms has 
been identified as a trigger for disease progression in PAH66, and 
inhibition of poly(ADP-ribose) polymerase (PARP) reverses 
PAH in several animal models67. A safety study to repurpose 
olaparib, an orally available PARP inhibitor approved for the 
treatment of BRCA-related breast cancer, for PAH has been  
proposed (ClinicalTrials.gov Identifier: NCT03251872).

Challenges
With these opportunities come challenges. The animal models 
are not high-fidelity reproductions of the human condition and 
have a poor track record for predicting efficacy. The clinical trial 
design template used for the currently approved drugs, which act 

by reducing vascular tone, is not suitable for the development 
of drugs that target vascular remodelling. Clinical trials  
have to compete for a relatively small pool of patients.

There is considerable room to improve how we select and  
prioritise new candidate drugs for evaluation, how we identify  
suitable patients for each study, how we use creative trial designs 
for go/no-go decisions, and how we learn from failure. Tar-
gets suggested by genetic studies understandably hold pride  
of place in prioritising candidates to take forward. A variant that 
is associated with PAH through a biologically plausible pathway 
(that is, supported by endophenotype data) reduces the risk of 
failure and provides a biomarker for selecting suitable patients 
for the clinical study. But we can also learn from studies where 
human exposure has already taken place. Analysing samples 
and data from patients according to response can suggest 
strategies for enrichment (using genetic, proteomic, metabo-
lomic, or other clinical markers) in follow-on studies with  
patients more likely to respond.
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